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Abstract

Boosting is a fundamental approach in machine learning that enjoys both strong
theoretical and practical guarantees. At a high-level, boosting algorithms cleverly
aggregate weak learners to generate predictions with arbitrarily high accuracy. In
this way, boosting algorithms convert weak learners into strong ones. Recently,
Brukhim et al. [6] extended boosting to the online agnostic binary classification
setting. A key ingredient in their approach is a clean and simple reduction to
online convex optimization, one that efficiently converts an arbitrary online convex
optimizer to an agnostic online booster. In this work, we extend this reduction to
multiclass problems and give the first boosting algorithm for online agnostic mutli-
class classification. Our reduction also enables the construction of algorithms for
statistical agnostic, online realizable, and statistical realizable multiclass boosting.

1 Introduction

Boosting is a fundamental technique in machine learning that cleverly aggregates the predictions of
weak learners to produce a strong learner. Originally studied in the batch (realizable) PAC learning set-
ting for binary classification, boosting has now been extended to a wide variety of settings, including
multiclass classification, online learning, and agnostic learning. Recently, Brukhim et al. [6] extended
boosting to online agnostic binary classification, marking the completion of boosting algorithms for
all four regimes of statistical/online and agnostic/realizable binary classification. However, less can
be said about multiclass classification, where boosting algorithms are only well studied under the
assumption of realizability. Designing online agnostic multiclass boosting algorithms is important for
several reasons. First, realizability is a very strong assumption in real-life: it requires the existence
of an expert that perfectly labels the data. Second, the vast majority of classification tasks require
more than two labels, a prominent example being image classification. Lastly, modern machine
learning tasks often require sequential processing of data, making the design and development of
online algorithms increasingly relevant. In this work we fill this gap in literature by studying online
agnostic boosting for multiclass problems.

1.1 Main Results

We give the first weak learning conditions and algorithms for online agnostic multiclass boosting. A
key idea of our algorithms is a reduction from boosting to online convex optimization (OCO), an
idea borrowed from Brukhim et al. [6]. As a consequence of this reduction, we are also able to give
algorithms for the three other settings of statistical agnostic, online realizable, and statistical realizable
multiclass boosting. Finally, we give empirical results showcasing that our OCO-based boosting
algorithms are fast and competitive with existing state-of-the-art multiclass boosting algorithms.
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1.2 Related Works

Boosting was first studied for binary classification under the realizable PAC learning setting [33, 16–
18, 32] and then later extended to the agnostic PAC learning setting [15, 21, 27, 26, 25, 28, 2]. The
success of boosting for binary classification led to significant interest in designing boosting algorithms
for multiclass problems. As a result, several multiclass boosting algorithms were proposed for the
realizable batch setting [19, 14, 22, 20], culminating in the work by Mukherjee and Schapire [30],
who unified the previous approaches under a cost matrix framework. Beyond the batch setting,
online boosting algorithms for binary [31, 9, 4] and multiclass classification [10, 24] have been
designed assuming realizability (mistake-bound). More recently, Brukhim et al. [6] give the first
online agnostic (regret-bound) boosting algorithm for binary classification, marking complete all four
regimes of statistical/online and agnostic/realizable boosting for binary classification.

Moving to agnostic multiclass boosting, Brukhim et al. [7] study the resources required for boosting
in the statistical/batch setting as the number of labels k grows. However, they consider an alternative
model of boosting where the weak learner is a strong agnostic PAC learner for a simple "easy-to-learn"
base hypothesis class, and the goal is to learn target concepts outside the base class. Specifically, they
assume the target concept can be represented by weighted plurality votes over the base class. In this
way, the weakness of a weak learner is manifested in the base hypothesis class. Instead, in our work,
we consider the standard boosting model of fixing the base hypothesis class, and ask whether a weak
learner’s performance can be improved relative to the best fixed hypothesis in that class.

Beyond classification, several other works have studied online agnostic boosting for real-valued loss
functions under both full-information and bandit feedback settings [3, 1, 5]. In particular, the work
by Brukhim and Hazan [5] reduce online boosting for regression tasks under bandit feedback to
online linear optimization. A key difference between these works and ours is in the weak learning
assumption: these works consider a weak learner that is a strong learner for a small base class of
regression functions. The goal of boosting then is to produce a strong online learner for a larger class
which contains linear spans of the base class. This is in contrast to this work, where again, we fix the
base hypothesis class, and boost the regret bound.

2 Preliminaries and Notation

We first describe the basic setup for online agnostic multiclass boosting. There are k possible labels
Bk := {1, ..., k} and k is known to the booster and the weak learners. The booster maintains N

copies of a weak learner, W , which themselves are (randomized) online learning algorithms that
sequentially process examples from instance space X and output predictions in Bk, which we denote
as the set of basis vectors of length k. At each iteration t = 1, ..., T , an adversary picks a labeled
example (xt, yt) 2 X ⇥ Bk and reveals xt to the booster. Once the booster observes the unlabeled
data xt, it gathers the weak learners’ predictions and makes a final (possibly randomized) prediction
ŷt 2 Bk. After observing the booster’s final decision, the adversary reveals the true label yt, and the
booster suffers the loss {ŷt 6= yt} or equivalently, gains the reward 2 {ŷt = yt}� 1. Finally, the
booster, after observing the true label yt, updates each weak learner. Note that the loss/gain of the
booster in round t can be written as 1� ŷt · yt and 2ŷt · yt � 1 respectively. We also let �k represent
the (k � 1)-dimensional probability simplex and � k

�
represent the 1

� -scaled (k � 1)-dimensional
probability simplex for � 2 (0, 1). Finally, we let k denote the k-dimensional ones vector.

Evaluation. Unlike the realizable setting, in the agnostic setting, we place no restrictions on how the
stream of examples x1, ..., xT are labelled. Thus, for a fixed hypothesis class H ✓ BX

k , the goal of
the booster is to output predictions ŷt such that the expected regret,

E
"
max
h2H

TX

t=1

(2h(xt) · yt � 1)�
TX

t=1

(2ŷt · yt � 1)

#
,

is minimized, where the expectation is over the randomness of the booster and that of the possibly
adaptive adversary. Note, this is in contrast to the realizable setting where the stream is labelled by a
h 2 H and we wish the booster to minimize the (expected) number of mistakes (mistake-bound).

Agnostic Boosting. A key technique in agnostic boosting, first appearing in the work by Kanade and
Kalai [27], is to update weak learners by feeding randomly relabelled examples. This is in contrast
to the realizable setting where we typically update weak learners by passing reweighted examples.
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Accordingly, in order to design a good boosting algorithm, we need to design the booster’s strategy
for random relabelling while also quantifying the weak learner’s ability to maximize cumulative gain,
even under relabelled data. The first task will be resolved by allowing the booster to use an Online
Convex Optimization (OCO) oracle. In this way, we reduce boosting to OCO, an idea borrowed from
Brukhim et al. [6]. For the second task, we give different possible weak learning conditions for the
same algorithm, all of which capture the ability of a weak learner to maximize cumulative gain with
respect to the best fixed competitor in hindsight.

Online Convex Optimization. Our booster will use an OCO oracle to update its weak learners. The
OCO setting is a sequential game between an online player and adversary over N rounds (see [23] for
an in-depth introduction). In each round, the player plays a point xi in a compact convex set K ⇢ d,
the adversary reveals a loss function fi chosen from a family of bounded convex functions over K,
and the player suffers the loss fi(xi). The goal of player is to also minimize regret, defined as

R(N) =
NX

i=1

fi(xi)�min
x2K

NX

i=1

fi(x).

We will denote an algorithm in this setting as OCO(K, N). If A is a OCO(K, N), then we will
denote its regret by RA(N). For many OCO algorithms, like Online Gradient Descent (OGD), the
regret RA(N) is a sub-linear function of the time-horizon N .

3 Online Agnostic Boosting

In this section, we present an online agnostic boosting algorithm and analyze its performance. We
begin in Subsection 3.1 by formally describing our algorithm which reduces boosting to OCO. Then,
in Subsection 3.2, we state a weak learning condition and subsequently prove a regret bound for our
proposed algorithm.

3.1 Algorithm

Pseudocode for our online agnostic boosting algorithm is provided in Algorithm 1. The booster
maintains oracle access to N copies of a weak learner W1, ...,WN as well as a OCO(�k, N)
algorithm A. Each weak learner is characterized by some advantage parameter � 2 (0, 1] (directly
proportional to its strength), and we will be precise about what exactly � quantifies in Subsection 3.2.
In round t, the booster uses the weak learners to make a prediction ŷt, observes the true label yt, and
finally simulates a game with the OCO algorithm A to update each weak learner Wi. Specifically,
the booster uses the outputs of A to feed relabelled examples (xt, y

i
t) to Wi. A critical component of

our algorithm is the L2 projection operator onto the probability simplex �k, which we denote by
Q

.
This is used by the booster in line 4 to make randomized predictions ŷt.

We now highlight some desirable properties of Algorithm 1. First, it is easy to implement and efficient
assuming access to an efficient weak learner. In particular, for each round t, if the running time
of the weak learner is Q, then the running time of our booster is O(NQ + Nk log(k)). This is
in contrast to the OnlineMBBM algorithm proposed by Jung et al. [24] for the realizable setting
which is not efficient even assuming access to an efficient weak learner. Second, when k = 2, our
algorithm reduces down to the online agnostic boosting algorithm proposed by Brukhim et al. [6] in
the binary case. Indeed, one can verify that when k = 2, the L2 projection operator reduces to the
same projection used by Brukhim et al. [6] and the distribution over labels pit induced by the outputs
of OCO algorithm are equal for each weak learner in every round t.

While the framework in Algorithm 1 is inspired from Brukhim et al. [6] in the binary setting, several
new complications arise in the multiclass setting. Most notably, when k > 2, we must figure out how
the booster should make predictions, what loss functions the booster should construct and pass to A,
and lastly, how the booster should use the output of A to update each weak learner. The interplay
behind these three algorithmic pieces is delicate and they have been carefully designed in Algorithm
1 to enable the analysis in Subsection 3.2. Below, we provide some intuition behind these algorithmic
decisions.

Randomized Prediction. At the start of each round, the booster averages the weak learners votes,
scales the average by the parameter �, projects the scaled vector back into the simplex, and finally
samples a random label. When the L2 projection operator is selected, this approach for randomized
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Algorithm 1: Online Agnostic Multiclass Boosting via OCO
Input: Weak Learners W1...WN , OCO(�k, N ) algorithm A, Advantage parameter �

1 for t = 1, ..., T do
2 Receive example xt

3 Accumulate weak predictions ht =
PN

i=1 Wi(xt)
4 Set Dt =

Q
( ht
�N )

5 Predict ŷt ⇠ Dt

6 Receive true label yt
7 for i = 1, ..., N do
8 If i > 1, obtain p

i
t = A(l1t , ..., l

i�1
t ). Else, initialize p

1
t = k

k .

9 Reveal loss function: lit(p) = p ·
⇣

2Wi(xt)� k

� � (2yt � k)
⌘

10 Sample random label yit ⇠ p
i
t, and pass (xt, y

i
t) to Wi

11 Reset A

Figure 1: The red, blue, and black lines correspond to �2
� for � = 0.50, 0.75, and, 1.0 respectively.

p1 and p2 are �-scaled votes and p
⇤

1 and p
⇤

2 are their corresponding L2 projection onto �2. p̃1 and p̃2

denote the orthogonal projections onto the plane containing �2.

prediction achieves a polarization effect: as � gets smaller, the projection concentrates mass on a
fewer number of labels, specifically those labels that have achieved the majority of the votes from the
weak learners. When � nears 0, the L2 projection eventually places all mass on the label with the
most votes.

One might think that the L2 projection is not a natural projection operator for �k (as KL or L1

projections might seem better suited to the geometry of the probability simplex). However, in the case
where we project from � k

�
to �k, we find that it is a natural choice from a geometric perspective.

Figure 1 provides a visualization of the L2 projection operator from � k
�

to �k for k = 2. Because
the spaces � k

�
and �k are parallel, given any point p 2 � k

�
, one can think of its L2 projection in the

following procedural manner:

1. Compute the orthogonal projection, p̃, onto the plane containing �k.
2. If p̃ 2 �k, output p⇤ = p̃.
3. Else, output p⇤ = argminp2�k

||p� p̃||2.

From this procedural perspective, Figure 1 lends a geometric intuition behind the polarization effect
of the L2 projection. As � shrinks, the number of points in � k

�
that lie orthogonally above �k

shrinks. Thus, the orthogonal projection of the vast majority of points in � k
�

will lie outside �k,

4



leading to a greater number of sparse projections that lie on the boundary of �k. From the booster’s
viewpoint, this property of the L2 projection is desirable. If the weak learners are very weak (small �)
but somehow concentrate votes on a few labels, then it may be likely that the true response is amongst
these few labels. In this sense, � controls how many weak learners need to agree on a particular label
to convince the booster to deterministically predict that label.

Updating Weak Learners. Once the true label yt is revealed in each round, the booster must update
each weak learner. As mentioned in Section 2, one strategy for updating weak learners in the agnostic
setting is via random relabelling. Indeed, in line 10, the booster passes back to the weak learner the
example xt with a random label yit ⇠ p

i
t. Together, the specified loss function in line 9 and random

relabelling strategy in line 10 achieve the following effect: if more weak learners make mistakes,
the distribution over labels output by the OCO algorithm A in line 8 concentrates on the true label
yt, increasing the likelihood that yt is passed to subsequent weak learners. This is desirable as the
outputs of the OCO guide each weak learner to correct for the mistakes of preceding learners.

3.2 Regret Analysis

Before we give the regret bound of Algorithm 1, we need to specify the capacity to which the weak
learners can make predictions, even under potentially relabelled data. Unfortunately, in the agnostic
setting, there is no canonical weak learning condition for multiclass problems. In this paper, we give
several possible definitions of an Agnostic Weak Online Learner (AWOL) for the multiclass setting,
all of which enable a regret analysis of Algorithm 1. We emphasize that we can derive different regret
bounds for Algorithm 1 based on what condition we assume our weak learners to satisfy. For this
section, we present a weak learning condition based loosely on a one-vs-one approach to multiclass
classification. In Appendix C, we provide alternative weak learning conditions.

Define the gain function for input z 2 Bk,

�y,`(z) = {z = y}� {z = `} = z · (y � `).

For some y 2 Bk and ` 2 Bk \{y}, �y,`(·) can be thought of as the binary classification task between
labels y and `. Definition 1 requires that for any such sequence of binary classification tasks, an
online agnostic weak learner must be able to eventually distinguish between every pair of labels to
some non-trivial, but far from optimal, degree.

Definition 1 (Agnostic Weak Online Learning). Let H ✓ BX

k be a class of experts and let 0 < �  1
denote the “advantage”. An online learning algorithm W is a (�, T )-agnostic weak online learner

(AWOL) for H if for any adaptively chosen sequence of tuples (xt, yt, `t) 2 X ⇥ Bk ⇥ Bk where

`t 6= yt, the algorithm outputs W(xt) 2 Bk at every iteration t 2 [T ] such that,

�max
h2H

E
"

TX

t=1

�yt,`t(h(xt))

#
� E

"
TX

t=1

�yt,`t(W(xt))

#
 RW(T, k),

where the expectation is taken w.r.t. the randomness of the weak learner W and that of the possibly

adaptive adversary, and RW : ⇥ ! + is the additive regret: a non-decreasing, sub-linear

function of T .

The precise dependence of RW(T, k) on k is explored in more detail in Appendix D where we
explicitly construct learners satisfying AWOL. We make few remarks about Definition 1. First, the
strength of the weak learner varies directly with �. Second, for k = 2, Definition 1 reduces to the
weak learning condition by Brukhim et al. [6] in the binary setting. Finally, we emphasize that
Definition 1 holds under an adaptive adversary, one that can choose (yt, `t) based on {W(xi)}t�1

i=1
and its own internal random bits. Importantly, we also allow the adversary to pick `t even after it has
observed W(xt) as this only controls how much loss the weak learner suffers when it is incorrect.

Under the assumption that weak learners satisfy Definition 1, Theorem 1 bounds the regret of
Algorithm 1 under an oblivious adversary. Using a standard reduction, our results can then be
generalized to an adaptive adversary (see Chapter 4 in [8]). In particular, a key requirement allowing
an oblivious regret bound to generalize to an adaptive regret bound is that the learner’s predictions on
round t should not depend on any of its past predictions from previous rounds. This is indeed true for
our Booster.
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Theorem 1 (Regret Bound). Assuming weak learners satisfy Definition 1, the expected regret bound

of Algorithm 1 is,

1

T
E
"
max
h2H

TX

t=1

(2h(xt) · yt � 1)�
TX

t=1

(2ŷt · yt � 1)

#
 RW(T, k)

�T
+

RA(N)

N
,

where the expectation is over the randomness of the algorithm and weak learners, and RW(T, k),
RA(N) are the regret terms of the AWOL, OCO algorithms respectively.

If one picks A to be Online Gradient Descent (OGD), then RA(N) = O(GD
p
N), where D is the

diameter of �k and G is the upper-bound on ||rpl
i
t(p)||. In our setting, D =

p
2 and G = O( 1� )

(using Lemma 19) and hence the average regret further simplifies to:

1

T
E
"
max
h2H

TX

t=1

(2h(xt) · yt � 1)�
TX

t=1

(2ŷt · yt � 1)

#
 RW(T, k)

�T
+O

✓
1

�
p
N

◆
.

To exemplify the role of N , consider a scenario where RW(T, k) = O(k
p
T ) (see Appendix D

for examples). By setting N = T
�2 the overall regret of the booster becomes O(k

p
T

� ). In the next
subsection, we give the proof of Theorem 1.

3.2.1 Proof of Theorem 1

We follow a similar procedure to Brukhim et al. [6] by lower and upper bounding the expected sum
of losses passed to A in terms of the regret of the weak learner and the regret of A respectively.
These bounds rely on several lemmas that have been abstracted out and provided in Appendix E. As
mentioned previously, we also assume an oblivious adversary.

Let (x1, y1), ..., (xT , yT ) be any sequence of example-label pairs. We start by giving a lower bound on
the expected sum of losses passed to A using Definition 1. Define h⇤ = argmaxh2H

PT
t=1(2h(xt) ·

yt � 1) as the optimal competitor in hindsight and let

`
i
t =

⇢
Wi(xt), if Wi(xt) 6= y

i
t

` 2 Bk \ {yit}, otherwise
.

Note that the precise choice of `it in the second case is not important. The proof below only uses the
fact that `it 2 Bk \ {yit} in that case. We then have,

E
"

NX

i=1

TX

t=1

l
i
t(p

i
t)

#
= E

"
NX

i=1

TX

t=1

p
i
t ·
✓
2Wi(xt)� k

�
� (2yt � k)

◆#

=
1

�

NX

i=1

TX

t=1

E
⇥
p
i
t · (2Wi(xt)� k)

⇤
�

NX

i=1

TX

t=1

E
⇥
p
i
t · (2yt � k)

⇤

=
1

�

NX

i=1

TX

t=1

E
⇥
2Wi(xt) · yit � 1

⇤
�

NX

i=1

TX

t=1

E
⇥
p
i
t · (2yt � k)

⇤
(Lemma 15)

=
1

�

NX

i=1

TX

t=1

E
h
�yi

t,`
i
t
(Wi(xt))

i
�

NX

i=1

TX

t=1

E
⇥
p
i
t · (2yt � k)

⇤
.

Using the weak learning condition in Definition 1,
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1

�

NX

i=1

TX

t=1

E
h
�yi

t,`
i
t
(Wi(xt))

i
�

NX

i=1

max
h2H

TX

t=1

E
h
�yi

t,`
i
t
(h(xt))

i
� NRW(T, k)

�
(Definition 1)

�
NX

i=1

TX

t=1

E
h
�yi

t,`
i
t
(h⇤(xt))

i
� NRW(T, k)

�

�
NX

i=1

TX

t=1

E
⇥
2h⇤(xt) · yit � 1)

⇤
� NRW(T, k)

�

=
NX

i=1

TX

t=1

E
⇥
p
i
t · (2h⇤(xt)� k)

⇤
� NRW(T, k)

�
. (Lemma 15)

Putting things together, we find,

E
"

NX

i=1

TX

t=1

l
i
t(p

i
t)

#
�

NX

i=1

TX

t=1

E
⇥
p
i
t · (2h⇤(xt)� 2yt)

⇤
� NRW(T, k)

�

�
NX

i=1

TX

t=1

E [2(h⇤(xt) · yt � 1)]� NRW(T, k)

�
(Lemma 16)

= N

TX

t=1

2(h⇤(xt) · yt � 1)� NRW(T, k)

�
.

Now, we compute an upper bound. For any t 2 [T ] and arbitrary p
⇤ 2 �k:

E
"
1

N

NX

i=1

l
i
t(p

i
t)

#
 1

N
E
"
min
p2K

NX

i=1

l
i
t(p)

#
+

RA(N)

N
(OCO Regret)

 1

N
E
"

NX

i=1

l
i
t(p

⇤)

#
+

RA(N)

N

=
1

N

NX

i=1

E

p
⇤ ·
✓
2Wi(xt)� k

�
� (2yt � k)

◆�
+

RA(N)

N

=
1

�N

NX

i=1

(p⇤ · E [2Wi(xt)� k])� p
⇤ · (2yt � k) +

RA(N)

N

= p
⇤ ·
 

1

�N

NX

i=1

E [2Wi(xt)� k]

!
� p

⇤ · (2yt � k) +
RA(N)

N

= E
"
p
⇤ ·
 

2
N

PN
i=1 Wi(xt)� k

�
� (2yt � k)

!#
+

RA(N)

N

 E
"
2

 
Y
 

1

�N

NX

i=1

Wi(xt)

!
· yt � 1

!#
+

RA(N)

N
(Lemma 17)

= 2 (E [ŷt] · yt � 1) +
RA(N)

N
. (Law of total expectation)

Summing over T ,

E
"
1

N

TX

t=1

NX

i=1

l
i
t(p

i
t)

#


TX

t=1

2 (E [ŷt] · yt � 1) +
TRA(N)

N
.
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Combining lower and upper bounds for E
h

1
NT

PN
i=1 `

i
t(p

i
t)
i
, we get

1

T
E
"
max
h2H

TX

t=1

(2h(xt) · yt � 1)�
TX

t=1

(2ŷt · yt � 1)

#
 RW(T, k)

�T
+

RA(N)

N
,

which completes the proof. Since 2h(xt) · yt � 1 = 1 � 2 k{h(xt) 6= yt}, we can also write the
average regret in terms of the number of mistakes,

1

T
E
"

TX

t=1

{ŷt 6= yt}�min
h2H

TX

t=1

{h(xt) 6= yt}
#
 RW(T, k)

2�T
+

RA(N)

2N
.

4 Beyond Online Agnostic Boosting

In this section, we present results of extending our reduction to the three other boosting settings,
namely statistical agnostic, online realizable, and statistical realizable learning. The purpose of
this section is to showcase the generality of the OCO-based boosting framework and not to achieve
state-of-the-art bounds for these settings. Boosting algorithms and all associated proofs can be found
in AppendixA and B. Throughout this section we will let WS denote the hypothesis output by a weak
learner trained on a sample S.

4.1 Statistical Agnostic Boosting

In the statistical setting, our objective of interest is the correlation, which we define below. Let D be
a distribution over X ⇥Bk and let h : X ! Bk be an hypothesis. Define the multiclass correlation of
h with respect to D as

corD(h) = E
(x,y)⇠D

[h(x) · (2y � k)] .

Like the online agnostic setting, the boosting algorithm for this setting (provided in Appendix A) can
be analyzed under several candidate weak learning conditions. To showcase the dependence on k, we
provide a weak learning condition based loosely on a one-vs-all approach to multiclass classification.
Definition 2 (Empirical Agnostic Weak Learning). Let H ✓ BX

k be a hypothesis class and let

0 < �  1 denote the “advantage”. Let x = (x1, ..., xm) 2 X denote an unlabeled sample. A

learning algorithm W is a (�, ✏0,m0)-agnostic weak learner (AWL) for H with respect to x if for

any labels y = (y1, ..., ym) 2 Bk, and every reference label ` 2 Bk,

E
S0

2

4
X

i:yi=`

WS0(xi) · (2yi � k)

3

5 � �max
h2H

X

i:yi=`

h(xi) · (2yi � k)�m✏0,

where S
0

is an independent sample of size m0 drawn from the distribution which uniformly assigns to

each example (xi, yi) probability 1/m.

Under the assumption that our weak learners satisfy Definition 2, Corollary 2 bounds the expected
correlation of a statistical agnostic boosting algorithm.
Corollary 2 (Empirical Agnostic Correlation Bound). There exists a boosting algorithm whose

output after T rounds, denoted by h̄, satisfies:

E
⇥
corS(h̄)

⇤
� max

h2H

E [corS(h)]�
RA(T )

T
� k✏0

�
,

where S is the distribution which uniformly assigns to each example (xi, yi) probability 1/m.

Letting A be OGD, and setting T = O( 1
�2✏2 ) for any ✏ > 0 gives an error rate of k✏0

� + ✏. Although,
to our best knowledge, there are no existing multiclass boosting algorithms in the agnostic setting,
we point out that there is evidence to suggest that a sub-optimal dependence of the error rate on k

might be unavoidable (see [7]).
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4.2 Online Realizable Boosting

In the online realizable setting, we are guaranteed that the stream of examples (x1, y1), ..., (xT , yT ) is
perfectly labelled by some hypothesis h 2 H. Definition 3 then gives an appropriate online realizable
weak learning condition.
Definition 3 (Realizable Weak Online Learning). Let H ✓ BX

k be a class of experts and let 0 < �  1
denote the “advantage”. An online learning algorithm W is a (�, T )-realizable weak online learner

(RWOL) for H if for any sequence (x1, y1), ..., (xT , yT ) 2 X ⇥ Bk that is realizable by H, at every

iteration t 2 [T ], the algorithm outputs W(xt) 2 Bk such that,

E
"

TX

t=1

(2W(xt) · yt � 1)

#
� �T �RW(T, k),

where the expectation is taken w.r.t. the randomness of the weak learner W and RW : ⇥ ! +

is the additive regret: a non-decreasing, sub-linear function of T .

Under Definition 3, Corollary 3 bounds the expected gain of an online boosting algorithm.
Corollary 3 (Mistake Bound). There exists a boosting algorithm whose outputs ŷ1, ..., ŷT satisfy:

1

T

TX

t=1

(2E [ŷt] · yt � 1) � 1� RA(N)

N
� R̃W(T, k)

�T
,

where R̃W(T, k) = 2RW(T, k) + Õ(
p
T ).

If we consider a scenario where R̃W(T, k) = O(k
p
T ), taking A to be OGD, N to be O( 1

�2✏2 ) and
T to be O( 1

�2✏2 ), gives a mistake-bound at most ✏kT . We point out that we cannot readily compare
this bound with the existing bounds for online realizable boosting by Jung et al. [24] because the
dependence of RW(T,k) on k depends on the weak learner of choice.

4.3 Statistical Realizable Boosting

In the statistical realizable setting, our metric of interest is again the multiclass correlation. However,
under the realizability assumption, maxh⇤2H corD(h⇤) = 1. Accordingly, Definition 4 gives an
appropriate realizable weak learning condition.
Definition 4 (Empirical Realizable Weak Learning). Let H ✓ BX

k be a hypothesis class and let

0 < �  1 denote the “advantage”. Let S = {(x1, y1), ..., (xm, ym)} 2 X ⇥ Bk be a sample. A

learning algorithm W is a (�,m0) - realizable weak learner (RWL) for H with respect to S if for

any distribution p = (p1, ..., pm) over the examples,

E
S0
[corp(WS0)] � �,

where S
0

is an independent sample of size m0 drawn from p.

Under Definition 4, Corollary 4 bounds the expected correlation of a statistical realizable boosting
algorithm.
Corollary 4 (Empirical Correlation Bound). There exists a boosting algorithm whose output after T

rounds, denoted h̄, satisfies,

E
⇥
corS(h̄)

⇤
� 1� RA(T )

T
,

where S is the distribution which uniformly assigns to each example (xi, yi) probability 1/m.

Note that the cost of weak learning manifests in the regret term of the OCO algorithm. Precisely,
if one picks OGD to be the OCO algorithm, then the bound on correlation can be expressed as
E
⇥
corS(h̄)

⇤
� 1 � O

⇣
1

�
p
T

⌘
, which exhibits a decreasing lower bound as � shrinks. Setting

T = O( 1
�2✏2 ) for any ✏ > 0 ensures that at most ✏ error is obtained. It is difficult to compare our

error rates to that achieved by existing multiclass boosting algorithm in the realizable setting because
our weak learning condition is different and potentially stronger. Nevertheless, our bounds are
sub-optimal to those in Mukherjee and Schapire [30] which only require setting T = O( 1

�2 log(
k
✏ ))

to achieve ✏ error.
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Table 1: Average accuracy and runtime of algorithms on 7 UCI datasets.

Dataset k Accuracy(%) Runtime(s)
Agn Opt Ada OCOR Agn Opt Ada OCOR

Balance 3 84.4 79.5 75.2 78.8 11.5 57.6 7.1 4.5
Cars 4 80.6 69.9 75.8 69.6 42.5 104.1 20.4 12.1

Landsat 6 67.0 80.8 56.9 79.6 1255.6 1814.3 81.8 440.4
Segment 7 75.0 78.9 68.6 79.3 647.2 2448.3 51.8 154.7

Mice 8 86.0 77.6 71.3 79.6 1025.8 1811.6 90.1 258.2
Yeast 10 42.3 39.8 41.7 47.6 348.3 1468.8 25.2 56.6

Abalone 28 22.1 24.9 19.2 22.0 4036.7 9775.3 108.0 248.2

5 Experiments

We performed experiments with Algorithm 1 on seven UCI datasets [13]. Since, to our knowledge,
there are no known online agnostic boosting algorithms for multiclass problems, we benchmark
performance against three online realizable multiclass boosting algorithms: the state-of-the-art
optimal (OnlineMBBM) and adaptive (Adaboost.OLM) online boosting algorithms by Jung et al.
[24], and the OCO-based online boosting algorithm alluded to in Section 4 (see Appendix B). For
weak learners, we used the implementation of the VeryFastDecisionTree from the River package
[29] and restricted the maximum depth of the tree to 1. We used Projected OGD [35] for the OCO
algorithm and set the number of weak learners, N , to 100 for each boosting algorithm.

Our experiments using Algorithm 1 are performed using fractional relabeling, a technique borrowed
from Kanade and Kalai [27]. That is, instead of passing just a single example-label pair (xt, y

i
t)

where y
i
t ⇠ p

i
t, we pass all k possible weighted example-label tuples {(xt, `, p

i
t[`])}k`=1 to weak

learner i in round t. Experiments with random relabeling showed that random relabeling runs faster
but performs worse than fractional relabeling.

Table 1 summarizes the average accuracy and runtime over five independent shuffles of each dataset
for each boosting algorithm. "Agn" refers to Algorithm 1, "Opt" to OnlineMBBM, "Ada" to
Adaboost.OLM, and "OCOR" to the OCO-based online realizable algorithm. Standard errors for
accuracies are provided in Appendix F. All algorithms except AdaBoost.OLM are parameterized by
an advantage parameter � 2 (0, 1). Thus, � was tuned separately for each respective cell of Table
1. See Appendix F for more experimental details. All code is available at https://github.com/
vinodkraman/OnlineAgnosticMulticlassBoosting.

Despite having the fastest overall runtime, Adaboost.OLM had the poorest performance. Compared
to OnlineMBBM, our OCO-based boosting algorithms achieve comparable performance at a fraction
of the runtime. Specifically, for three of our datasets, our online agnostic boosting algorithm achieves
the highest accuracy. For the remaining datasets, our OCO-based realizable boosting algorithm
achieves comparable accuracy to OnlineMBBM with shorter runtimes.

6 Discussion

We give the first weak learning conditions and algorithm for online agnostic multiclass boosting. Our
algorithm relies on a clean and simple reduction from boosting to online convex optimization. This
fruitful connection allows us to go beyond the online agnostic setting and design multiclass boosting
algorithms for all four regimes of statistical/online and agnostic/realizable learning. As future work,
we leave it open to identify the correct weak learning condition, construct adaptive versions of our
boosting algorithms, improve regret upper bounds/prove lower bounds, design agnostic boosting
algorithms under bandit feedback, and study the impact of the choice of weak learner and OCO
algorithm on the empirical performance of our OCO-based boosting algorithms.

Acknowledgements. AT acknowledges the support of NSF via grant IIS-2007055.
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