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Abstract

We explore how generating a chain of thought—a series of intermediate reasoning
steps—significantly improves the ability of large language models to perform
complex reasoning. In particular, we show how such reasoning abilities emerge
naturally in sufficiently large language models via a simple method called chain-of-
thought prompting, where a few chain of thought demonstrations are provided as
exemplars in prompting.

Experiments on three large language models show that chain-of-thought prompting
improves performance on a range of arithmetic, commonsense, and symbolic
reasoning tasks. The empirical gains can be striking. For instance, prompting a
PalLM 540B with just eight chain-of-thought exemplars achieves state-of-the-art
accuracy on the GSM8K benchmark of math word problems, surpassing even
finetuned GPT-3 with a verifier.

Standard Prompting Chain-of-Thought Prompting
Model Input Model Input
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?
A: The answer is 11. A: Roger started with 5 balls. 2 cans of 3 tennis balls

each is 6 tennis balls. 5 + 6 = 11. The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
do they have?

Model Output Model Output

A: The answer is 27. x A: The cafeteria had 23 apples originally. They used
20 to make lunch. So they had 23 - 20 = 3. They
bought 6 more apples, so they have 3 + 6 =9. The
answeris 9. 4/

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.
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1 Introduction

The NLP landscape has recently been revolutionized by Finetuned GPT-3 175B

language models (Peters et al., 2018; Devlin et al., 2019; Prior best

Brown et al., 2020, inter alia). Scaling up the size of lan-  [] pa1.M 540B: standard prompting

guage models has been shown to confer a range of benefits, [ parm 540B: chain-of-thought prompting
such as improved performance and sample efficiency (Ka-

plan et al., 2020; Brown et al., 2020, inter alia). However, 100 -
scaling up model size alone has not proved sufficient for < 801
. < . . I3
achieving high performance on challenging tasks such as e 57
arithmetic, commonsense, and symbolic reasoning (Rae g 60 -
etal., 2021). E 40 -
This work explores how the reasoning ability of large 3 2| ] 18
language models can be unlocked by a simple method
motivated by two ideas. First, techniques for arithmetic 0
reasoning can benefit from generating natural language Math Word Problems (GSM8K)

rationales that lead to the final answer. Prior work has

given models the ability to generate natural language inter- Figure 2: PalLM 540B uses chain-of-
mediate steps by training from scratch (Ling et al., 2017) thought prompting to achieve new state-
or finetuning a pretrained model (Cobbe et al., 2021), in  of-the-art performance on the GSM8K
addition to neuro-symbolic methods that use formal lan- benchmark of math word problems.
guages instead of natural language (Roy and Roth, 2015; Finetuned GPT-3 and prior best are from
Chiang and Chen, 2019; Amini et al., 2019; Chen et al., Cobbe et al. (2021).

2019). Second, large language models offer the exciting

prospect of in-context few-shot learning via prompting. That is, instead of finetuning a separate
language model checkpoint for each new task, one can simply “prompt” the model with a few
input—output exemplars demonstrating the task. Remarkably, this has been successful for a range of
simple question-answering tasks (Brown et al., 2020).

Both of the above ideas, however, have key limitations. For rationale-augmented training and
finetuning methods, it is costly to create a large set of high quality rationales, which is much more
complicated than simple input—output pairs used in normal machine learning. For the traditional few-
shot prompting method used in Brown et al. (2020), it works poorly on tasks that require reasoning
abilities, and often does not improve substantially with increasing language model scale (Rae et al.,
2021). In this paper, we combine the strengths of these two ideas in a way that avoids their limitations.
Specifically, we explore the ability of language models to perform few-shot prompting for reasoning
tasks, given a prompt that consists of triples: (input, chain of thought, output). A chain of thought is
a series of intermediate natural language reasoning steps that lead to the final output, and we refer to
this approach as chain-of-thought prompting. An example prompt is shown in Figure 1.

We present empirical evaluations on arithmetic, commonsense, and symbolic reasoning benchmarks,
showing that chain-of-thought prompting outperforms standard prompting, sometimes to a striking
degree. Figure 2 illustrates one such result—on the GSM8K benchmark of math word problems
(Cobbe et al., 2021), chain-of-thought prompting with PaLM 540B outperforms standard prompting
by a large margin and achieves new state-of-the-art performance. A prompting only approach is
important because it does not require a large training dataset and because a single model checkpoint
can perform many tasks without loss of generality. This work underscores how large language models
can learn via a few examples with natural language data about the task (c.f. automatically learning
the patterns underlying inputs and outputs via a large training dataset).

2 Chain-of-Thought Prompting

Consider one’s own thought process when solving a complicated reasoning task such as a multi-step
math word problem. It is typical to decompose the problem into intermediate steps and solve each
before giving the final answer: “After Jane gives 2 flowers to her mom she has 10 . .. then after she
gives 3 to her dad she will have 7 . . . so the answer is 7.” The goal of this paper is to endow language
models with the ability to generate a similar chain of thought—a coherent series of intermediate
reasoning steps that lead to the final answer for a problem. We will show that sufficiently large



language models can generate chains of thought if demonstrations of chain-of-thought reasoning are
provided in the exemplars for few-shot prompting.

Figure 1 shows an example of a model producing a chain of thought to solve a math word problem
that it would have otherwise gotten incorrect. The chain of thought in this case resembles a solution
and can interpreted as one, but we still opt to call it a chain of thought to better capture the idea that it
mimics a step-by-step thought process for arriving at the answer (and also, solutions/explanations
typically come after the final answer (Narang et al., 2020; Wiegreffe et al., 2022; Lampinen et al.,
2022, inter alia)).

Chain-of-thought prompting has several attractive properties as an approach for facilitating reasoning
in language models.

1. First, chain of thought, in principle, allows models to decompose multi-step problems into
intermediate steps, which means that additional computation can be allocated to problems
that require more reasoning steps.

2. Second, a chain of thought provides an interpretable window into the behavior of the model,
suggesting how it might have arrived at a particular answer and providing opportunities
to debug where the reasoning path went wrong (although fully characterizing a model’s
computations that support an answer remains an open question).

3. Third, chain-of-thought reasoning can be used for tasks such as math word problems,
commonsense reasoning, and symbolic manipulation, and is potentially applicable (at least
in principle) to any task that humans can solve via language.

4. Finally, chain-of-thought reasoning can be readily elicited in sufficiently large off-the-shelf
language models simply by including examples of chain of thought sequences into the
exemplars of few-shot prompting.

In empirical experiments, we will observe the utility of chain-of-thought prompting for arithmetic
reasoning (Section 3), commonsense reasoning (Section 4), and symbolic reasoning (Section 5).

3 Arithmetic Reasoning

We begin by considering math word problems of the form in Figure 1, which measure the arithmetic
reasoning ability of language models. Though simple for humans, arithmetic reasoning is a task where
language models often struggle (Hendrycks et al., 2021; Patel et al., 2021, inter alia). Strikingly, chain-
of-thought prompting when used with the 540B parameter language model performs comparably with
task-specific finetuned models on several tasks, even achieving new state of the art on the challenging
GSMB8K benchmark (Cobbe et al., 2021).

3.1 Experimental Setup

We explore chain-of-thought prompting for various language models on multiple benchmarks.

Benchmarks. We consider the following five math word problem benchmarks: (1) the GSM8K
benchmark of math word problems (Cobbe et al., 2021), (2) the SVAMP dataset of math word
problems with varying structures (Patel et al., 2021), (3) the ASDiv dataset of diverse math word
problems (Miao et al., 2020), (4) the AQuA dataset of algebraic word problems, and (5) the MAWPS
benchmark (Koncel-Kedziorski et al., 2016). Example problems are given in Appendix Table 12.

Standard prompting. For the baseline, we consider standard few-shot prompting, popularized by
Brown et al. (2020), in which a language model is given in-context exemplars of input—output pairs
before outputting a prediction for a test-time example. Exemplars are formatted as questions and
answers. The model gives the answer directly, as shown in Figure 1 (left).

Chain-of-thought prompting. Our proposed approach is to augment each exemplar in few-shot
prompting with a chain of thought for an associated answer, as illustrated in Figure 1 (right). As most
of the datasets only have an evaluation split, we manually composed a set of eight few-shot exemplars
with chains of thought for prompting—Figure 1 (right) shows one chain of thought exemplar, and the
full set of exemplars is given in Appendix Table 20. (These particular exemplars did not undergo
prompt engineering; robustness is studied in Section 3.4 and Appendix A.2.) To investigate whether
chain-of-thought prompting in this form can successfully elicit successful reasoning across a range of
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Q: Roger has 5 tennis balls. He buys Q: How many keystrokes are needed Q: Sammy wanted to go to where the
2 more cans of tennis balls. Each can to type the numbers from 1 to 500? people were. Where might he go?
has 3 tennis balls. How many tennis Answer Choices: (a) 1156 (b) 1392 (c) 1480 Options: (a) race track (b) populated areas
balls does he have now? (d) 1562 (e) 1788 (c) desert (d) apartment (e) roadblock

A:

So the answer is (b).

A:
The answer is 11.
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Qnswer is (b).
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Q: Yes or no: Would a pear sink in Q: The concert was scheduled to be Q: Is the following sentence
water? on 06/01/1943, but was delayed by plausible? "Joao Moutinho caught the
one day to today. What is the date 10 screen pass in the NFC
A: days ago in MM/DD/YYYY? championship."
answer is no.
So the
So the answer is 05/23/1943. answer is no.
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Human: How would you bring me Q: Take the last letters of the words Q: A coin is heads up. Maybelle flips
something that isn’t a fruit? in “Lady Gaga” and concatenate the coin. Shalonda does not flip the

them. coin. Is the coin still heads up?
Plan: 1. find(energy bar) 2.

A:
pick(energy bar) 3. find(user) 4. So the answer

Qut(energy bar) 5. done(). ) \ ) \ls no. )

Figure 3: Examples of (input, chain of thought, output) triples for arithmetic, commonsense, and
symbolic reasoning benchmarks. Chains of thought are highlighted. Full prompts in Appendix G.

‘

So the

answer is ya.

math word problems, we used this single set of eight chain of thought exemplars for all benchmarks
except AQuA, which is multiple choice instead of free response. For AQuA, we used four exemplars
and solutions from the training set, as given in Appendix Table 21.

Language models. We evaluate five large language models. The first is GPT-3 (Brown et al.,
2020), for which we use text-ada-001, text-babbage-001, text-curie-001, and text-davinci-002, which
presumably correspond to InstructGPT models of 350M, 1.3B, 6.7B, and 175B parameters (Ouyang
et al., 2022).The second is LaMDA (Thoppilan et al., 2022), which has models of 422M, 2B, 8B,
68B, and 137B parameters. The third is PaLM, which has models of 8B, 62B, and 540B parameters.
The fourth is UL2 20B (Tay et al., 2022), and the fifth is Codex (Chen et al., 2021, code-davinci-002
in the OpenAlI API). We sample from the models via greedy decoding (though follow-up work shows
chain-of-thought prompting can be improved by taking the majority final answer over many sampled
generations (Wang et al., 2022a)). For LaMDA, we report averaged results over five random seeds,
where each seed had a different randomly shuffled order of exemplars. As LaMDA experiments
did not show large variance among different seeds, to save compute we report results for a single
exemplar order for all other models.

3.2 Results

The strongest results of chain-of-thought prompting are summarized in Figure 4, with all experimental
outputs for each model collection, model size, and benchmark shown in Table 2 in the Appendix.
There are three key takeaways. First, Figure 4 shows that chain-of-thought prompting is an emergent
ability of model scale (Wei et al., 2022b). That is, chain-of-thought prompting does not positively
impact performance for small models, and only yields performance gains when used with models of
~100B parameters. We qualitatively found that models of smaller scale produced fluent but illogical
chains of thought, leading to lower performance than standard prompting.



Second, chain-of-thought prompting has larger
performance gains for more-complicated prob-
lems. For instance, for GSM8K (the dataset
with the lowest baseline performance), perfor-
mance more than doubled for the largest GPT LaMDA GPT PaLM

—e— Standard prompting
—6— Chain-of-thought prompting
Prior supervised best

and PalLM models. On the other hand, for Sin- 60 | | |
gleOp, the easiest subset of MAWPS which only S

requires a single step to solve, performance im- X 740 | L L
provements were either negative or very small 5

(see Appendix Table 3). G220 - -
Third, chain-of-thought prompting via GPT-3 2 0 ,@&@/@? L I¢
175B and PaLM 540B compares favorably to

prior state of the art, which typically finetunes a 80 | I I
task-specific model on a labeled training dataset. g 60 | | |
Figure 4 shows how PaLLM 540B uses chain-of- E o

thought prompting to achieve new state of theart < 240} i i
on GSMS8K, SVAMP, and MAWPS (though note n % 20 | L K
that standard prompting already passed the prior @ ol | |

best for SVAMP). On the other two datasets,
AQuA and ASDiv, PaLM with chain-of-thought 100
prompting reaches within 2% of the state of the :

art (Appendix Table 2). 2 S5

To better understand why chain-of-thought % § 50

prompting works, we manually examined model- = Z25

generated chains of thought by LaMDA 137B - 0 S L
for GSMB8K. Of 50 random examples where the 04 8 137 04 7 175 8 62 54
model returned the correct final answer, all of o

the generated chains of thought were also log- Model scale (# parameters in billions)

ically and mathematically correct except two

that coincidentally arrived at the correct answer Figure 4:  Chain-of-thought prompting enables
(see Appendix D.1, and Table 8 for examples large language models to solve challenging math
of correct model-generated chains of thought). Pproblems. Notably, chain-of-thought reasoning
We also randomly examined 50 random sam- 1s an emergent ability of increasing model scale.
ples for which the model gave the wrong answer. Prior best numbers are from Cobbe et al. (2021)
The summary of this analysis is that 46% of the for GSMB8K, Jie et al. (2022) for SVAMP, and Lan
chains of thought were almost correct, barring ¢t al. (2021) for MAWPS.

minor mistakes (calculator error, symbol map-

ping error, or one reasoning step missing), and that the other 54% of the chains of thought had major
errors in semantic understanding or coherence (see Appendix D.2). To provide a small insight into
why scaling improves chain-of-thought reasoning ability, we performed a similar analysis of errors
made by PalLM 62B and whether those errors were fixed by scaling to PaLLM 540B. The summary
is that scaling PaLLM to 540B fixes a large portion of one-step missing and semantic understanding
errors in the 62B model (see Appendix A.1).

3.3 Ablation Study

The observed benefits of using chain-of-thought prompting raises the natural question of whether the
same performance improvements can be conferred via other types of prompting. Figure 5 shows an
ablation study with three variations of chain of thought described below.

Equation only. One reason for why chain-of-thought prompting might help is that it produces the
mathematical equation to be evaluated, and so we test a variation where the model is prompted
to output only a mathematical equation before giving the answer. Figure 5 shows that equation
only prompting does not help much for GSM8K, which implies that the semantics of the questions
in GSMS8K are too challenging to directly translate into an equation without the natural language
reasoning steps in chain of thought. For datasets of one-step or two-step problems, however, we find
that equation only prompting does improve performance, since the equation can be easily derived
from the question (see Appendix Table 6).



Variable compute only. Another intuition is that chain of
thought allows the model to spend more computation (i.e.,
intermediate tokens) on harder problems. To isolate the effect
of variable computation from chain-of-thought reasoning, we
test a configuration where the model is prompted to output a
only sequence of dots (. . .) equal to the number of characters in
the equation needed to solve the problem. This variant performs
about the same as the baseline, which suggests that variable
computation by itself is not the reason for the success of chain-
of-thought prompting, and that there appears to be utility from
expressing intermediate steps via natural language.

Chain of thought after answer. Another potential benefit of
chain-of-thought prompting could simply be that such prompts
allow the model to better access relevant knowledge acquired
during pretraining. Therefore, we test an alternative configura-
tion where the chain of thought prompt is only given after the
answer, isolating whether the model actually depends on the
produced chain of thought to give the final answer. This variant
performs about the same as the baseline, which suggests that
the sequential reasoning embodied in the chain of thought is
useful for reasons beyond just activating knowledge.

3.4 Robustness of Chain of Thought

Sensitivity to exemplars is a key consideration of prompt-
ing approaches—for instance, varying the permutation of
few-shot exemplars can cause the accuracy of GPT-3 on
SST-2 to range from near chance (54.3%) to near state of
the art (93.4%) (Zhao et al., 2021). In this final subsec-
tion, we evaluate robustness to chains of thought written
by different annotators. In addition to the results above,
which used chains of thought written by an Annotator
A, two other co-authors of this paper (Annotators B and
C) independently wrote chains of thought for the same

few-shot exemplars (shown in Appendix H). Annotator A §
also wrote another chain of thought that was more concise o
than the original, following the style of solutions givenin &
Cobbe et al. (2021).! 2
o
%)

Figure 6 shows these results for LaMDA 137B on GSM8SK
and MAWPS (ablation results for other datasets are given
in Appendix Table 6 / Table 7). Although there is variance
among different chain of thought annotations, as would be
expected when using exemplar-based prompting (Le Scao
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(] Standard prompting

[ Equation only

Variable compute only

2] Reasoning after answer

B Chain-of-thought prompting
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GSMBSK solve rate (%)
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Figure 5: Ablation study for dif-
ferent variations of prompting us-
ing LaMDA 137B and PalLM 540B.
Results for other datasets are given
in Appendix Table 6 and Table 7.

Standard prompting
Chain-of-thought prompting

- different annotator (B)

- different annotator (C)

- intentionally concise style

- exemplars from GSMS8K («)
- exemplars from GSMS8K (3)
- exemplars from GSMSK ()

DENEEEEC

40

20

GSMSK MAWPS

and Rush, 2021; Reynolds and McDonell, 2021; Zhao Figure 6: Chain-of-thought prompting
et al., 2021), all sets of chain of thought prompts outper- has variance for different prompt exam-
form the standard baseline by a large margin. This result ples (as expected) but outperforms stan-
implies that successful use of chain of thought does not dard prompting for various annotators as
depend on a particular linguistic style. well as for different exemplars.

To confirm that successful chain-of-thought prompting
works for other sets of exemplars, we also run experiments

with three sets of eight exemplars randomly sampled from the GSMS8K training set, an independent

'For instance, whereas original chain of thought uses several short sentences (“’There were originally 9
computers. For each of 4 days, 5 more computers were added. So 5 * 4 = 20 computers were added. 9 + 20 is
29.”), the concise chain of thought would read “5 * 4 = 20 new computers were added. So there are 9 + 20 = 29

new computers in the server room now”.



source (examples in this dataset already included reasoning steps like a chain of thought).” Fig-
ure 6 shows that these prompts performed comparably with our manually written exemplars, also
substantially outperforming standard prompting.

In addition to robustness to annotators, independently-written chains of thought, different exemplars,
and various language models, we also find that chain-of-thought prompting for arithmetic reasoning
is robust to different exemplar orders and varying numbers of exemplars (see Appendix A.2).

4 Commonsense Reasoning

Although chain of thought is particularly suitable for math word problems, the language-based nature
of chain of thought actually makes it applicable to a broad class of commonsense reasoning problems,
which involve reasoning about physical and human interactions under the presumption of general
background knowledge. Commonsense reasoning is key for interacting with the world and is still
beyond the reach of current natural language understanding systems (Talmor et al., 2021).

Benchmarks. We consider five datasets covering a diverse range of commonsense reasoning types.
The popular CSQA (Talmor et al., 2019) asks commonsense questions about the world involving
complex semantics that often require prior knowledge. StrategyQA (Geva et al., 2021) requires
models to infer a multi-hop strategy to answer questions. We choose two specialized evaluation sets
from the BIG-bench effort (BIG-bench collaboration, 2021): Date Understanding, which involves
inferring a date from a given context, and Sports Understanding, which involves determining whether
a sentence relating to sports is plausible or implausible. Finally, the SayCan dataset (Ahn et al.,
2022) involves mapping a natural language instruction to a sequence of robot actions from a discrete
set. Figure 3 shows examples with chain of thought annotations for all datasets.

Prompts. We follow the same experimental setup as the prior section. For CSQA and StrategyQA,
we randomly selected examples from the training set and manually composed chains of thought for
them to use as few-shot exemplars. The two BIG-bench tasks do not have training sets, so we selected
the first ten examples as exemplars in the evaluation set as few-shot exemplars and report numbers on
the rest of the evaluation set. For SayCan, we use six examples from the training set used in Ahn et al.
(2022) and also manually composed chains of thought.

Results. Figure 7 highlights these results for PalLM (full results for LaMDA, GPT-3, and different
model scales are shown in Table 4). For all tasks, scaling up model size improved the performance
of standard prompting; chain-of-thought prompting led to further gains, with improvements appear-
ing to be largest for PaLM 540B. With chain-of-thought prompting, PaLLM 540B achieved strong
performance relative to baselines, outperforming the prior state of the art on StrategyQA (75.6% vs
69.4%) and outperforming an unaided sports enthusiast on sports understanding (95.4% vs 84%).
These results demonstrate that chain-of-thought prompting can also improve performance on tasks
requiring a range of commonsense reasoning abilities (though note that gain was minimal on CSQA).

CSQA StrategyQA Date Sports SayCan
100 80 100 100

) 80 60 80 —e— Standard prompting
2 80 —6— Chain of thought
&60 40 60 . .
° 60 Prior supervised best
g 40 20 40 = = = Human

20 50 L Ob_ . . 40 200

8 62540 8 62540 8 62540 8 62540 8 62540
Model scale (# parameters in billions)

Figure 7: Chain-of-thought prompting also improves the commonsense reasoning abilities of
language models. The language model shown here is PaLM. Prior best numbers are from the
leaderboards of CSQA (Talmor et al., 2019) and StrategyQA (Geva et al., 2021) (single-model only,
as of May 5, 2022). Additional results using various sizes of LaMDA, GPT-3, and PaLM are shown
in Table 4.

2We sample examples < 60 tokens to fit into our input context window, and also limit the examples to < 2
steps to solve for a fair comparison with the eight exemplars that we composed.



5 Symbolic Reasoning —« Standard prompting

—o— Chain-of-thought prompting
Our final experimental evaluation considers symbolic rea-
soning, which is simple for humans but potentially chal- Letter Concat: 2 Letter Concat: 4
lenging for language models. We show that chain-of- (in domain) (OOD)
thought prompting not only enables language models to
perform symbolic reasoning tasks that are challenging in
the standard prompting setting, but also facilitates length
generalization to inference-time inputs longer than those
seen in the few-shot exemplars.
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Tasks. We use the following two toy tasks.

. Coin Flip: 2 Coin Flip: 4
o Last letter concatenation. This task asks the model o =P o P

° (in domain) (O0OD)
to concatenate the last letters of words in a name (e.g., 100
“Amy Brown” — “yn”). It is a more challenging version S
of first letter concatenation, which language models can g\
already perform without chain of thought.> We generate 5
full names by randomly concatenating names from the 260
top one-thousand first and last names from name census 3
data (https://namecensus.com/). 40 ‘ ‘ \ \
o Coin flip. This task asks the model to answer whether 8 62 540 8 62 540
a coin is still heads up after people either flip or don’t Model scale (# parameters in billions)

flip the coin (e.g., “A coin is heads up. Phoebe flips the
coin. Osvaldo does not flip the coin. Is the coin still

Figure 8: Using chain-of-thought
heads up?” — “no”

prompting facilitates generalization to
As the construction of these symbolic reasoning tasks is longer sequences in two symbolic rea-
well-defined, for each task we consider an in-domain test SONINg tasks.

set for which examples had the same number of steps as

the training/few-shot exemplars, as well as an out-of-domain (OOD) test set, for which evaluation
examples had more steps than those in the exemplars. For last letter concatenation, the model only
sees exemplars of names with two words, and then performs last letter concatenation on names with 3
and 4 words.* We do the same for the number of potential flips in the coin flip task. Our experimental
setup uses the same methods and models as in the prior two sections. We again manually compose
chains of thought for the few-shot exemplars for each task, which are given in Figure 3.

Results. The results of these in-domain and OOD evaluations are shown in Figure 8 for PaLM,
with results for LaMDA shown in Appendix Table 5. With PaLM 540B, chain-of-thought prompting
leads to almost 100% solve rates (note that standard prompting already solves coin flip with PaLM
540, though not for LaMDA 137B). Note that these in-domain evaluations are “toy tasks” in the
sense that perfect solution structures are already provided by the chains of thought in the few-shot
exemplars; all the model has to do is repeat the same steps with the new symbols in the test-time
example. And yet, small models still fail—the ability to perform abstract manipulations on unseen
symbols for these three tasks only arises at the scale of 100B model parameters.

As for the OOD evaluations, standard prompting fails for both tasks. With chain-of-thought prompting,
language models achieve upward scaling curves (though performance is lower than in the in-domain
setting). Hence, chain-of-thought prompting facilitates length generalization beyond seen chains of
thought for language models of sufficient scale.

6 Discussion

We have explored chain-of-thought prompting as a simple mechanism for eliciting multi-step rea-
soning behavior in large language models. We first saw that chain-of-thought prompting improves
performance by a large margin on arithmetic reasoning, yielding improvements that are much stronger
than ablations and robust to different annotators, exemplars, and language models (Section 3). Next,

3We tested 10 common names using GPT-3 davinci and it got all but one correct.
*For names of length longer than 2 words, we concatenate multiple first and last names together.
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experiments on commonsense reasoning underscored how the linguistic nature of chain-of-thought
reasoning makes it generally applicable (Section 4). Finally, we showed that for symbolic reasoning,
chain-of-thought prompting facilitates OOD generalization to longer sequence lengths (Section 5). In
all experiments, chain-of-thought reasoning is elicited simply by prompting an off-the-shelf language
model. No language models were finetuned in the process of writing this paper.

The emergence of chain-of-thought reasoning as a result of model scale has been a prevailing theme
(Wei et al., 2022b). For many reasoning tasks where standard prompting has a flat scaling curve, chain-
of-thought prompting leads to dramatically increasing scaling curves. Chain-of-thought prompting
appears to expand the set of tasks that large language models can perform successfully—in other
words, our work underscores that standard prompting only provides a lower bound on the capabilities
of large language models. This observation likely raises more questions than it answers—for instance,
how much more can we expect reasoning ability to improve with a further increase in model scale?
What other prompting methods might expand the range of tasks that language models can solve?

As for limitations, we first qualify that although chain of thought emulates the thought processes of
human reasoners, this does not answer whether the neural network is actually “reasoning,” which
we leave as an open question. Second, although the cost of manually augmenting exemplars with
chains of thought is minimal in the few-shot setting, such annotation costs could be prohibitive for
finetuning (though this could potentially be surmounted with synthetic data generation, or zero-shot
generalization). Third, there is no guarantee of correct reasoning paths, which can lead to both correct
and incorrect answers; improving factual generations of language models is an open direction for
future work (Rashkin et al., 2021; Ye and Durrett, 2022; Wiegreffe et al., 2022, inter alia). Finally,
the emergence of chain-of-thought reasoning only at large model scales makes it costly to serve in
real-world applications; further research could explore how to induce reasoning in smaller models.

7 Related Work

This work is inspired by many research areas, which we detail in an extended related work section
(Appendix C). Here we describe two directions and associated papers that are perhaps most relevant.

The first relevant direction is using intermediate steps to solve reasoning problems. Ling et al. (2017)
pioneer the idea of using natural language rationales to solve math word problems through a series
of intermediate steps. Their work is a remarkable contrast to the literature using formal languages
to reason (Roy et al., 2015; Chiang and Chen, 2019; Amini et al., 2019; Chen et al., 2019). Cobbe
et al. (2021) extend Ling et al. (2017) by creating a larger dataset and using it to finetune a pretrained
language model rather than training a model from scratch. In the domain of program synthesis,
Nye et al. (2021) leverage language models to predict the final outputs of Python programs via
first line-to-line predicting the intermediate computational results, and show that their step-by-step
prediction method performs better than directly predicting the final outputs.

Naturally, this paper also relates closely to the large body of recent work on prompting. Since the
popularization of few-shot prompting as given by Brown et al. (2020), several general approaches
have improved the prompting ability of models, such as automatically learning prompts (Lester et al.,
2021) or giving models instructions describing a task (Wei et al., 2022a; Sanh et al., 2022; Ouyang
et al., 2022). Whereas these approaches improve or augment the input part of the prompt (e.g.,
instructions that are prepended to inputs), our work takes the orthogonal direction of augmenting the
outputs of language models with a chain of thought.

8 Conclusions

We have explored chain-of-thought prompting as a simple and broadly applicable method for enhanc-
ing reasoning in language models. Through experiments on arithmetic, symbolic, and commonsense
reasoning, we find that chain-of-thought reasoning is an emergent property of model scale that allows
sufficiently large language models to perform reasoning tasks that otherwise have flat scaling curves.
Broadening the range of reasoning tasks that language models can perform will hopefully inspire
further work on language-based approaches to reasoning.
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