A Proof of Theorem 1

Here we provide a detailed proof to show that SBM-Transformer is a universal approximator of
arbitrary sequence-to-sequence functions. Note that a trivial solution is to use a dense mask M equal
to the all-one matrix with rank 1, in which case SBM-Transformer becomes equivalent to the full
attention Transformer [[7] that is already known to achieve universal approximability [[13]. Instead,
we show that there also exists a solution with O(n) connections, leveraging previous analyses under
sparse attention by Yun et al. (2020) [[14] and Zaheer et al. (2020) [15].

For theoretical analysis, we consider a variant of SBM-Transformer that manually adds self-loops in
the bipartite graph such that M, = 1 for all <. While adding in self-loops help towards analyzing
expressibility, we find that it does not help empirically, and hence omit the modification in the our
main method during experimentation. A comparison on performance on the LRA benchmark can be
found below in Appendix [C]

Here we restate the necessary conditions from [14]. Let .A! C [n] denote the sparsity pattern of i-th
token in the [ attention pattern: j € A! if query i attends to key j in the I-th pattern. Then, the main
theorem of Yun et al.,(2020) [14] states that as long as the set of p sparsity patterns {Aé}f:l and the
probability mapping p (e.g., softmax) of the sparse Transformer model satisfy the two assumptions
below, then model achieves universal approximability with finite number of layers.

Assumption 1. The sparsity patterns { AL} satisfy the following:

1. Foralli € [n] andl € [p], we have i € Al

2. There exists a permutation y : [n] — [n] such that, for all i € [n — 1], v(3) € UleAﬁy(i+1).
3. There exists a finite s € N such that s = min{u | S} = [n| forall i € [n|} where S} is
defined recursively by S} = A} and S! = U, eatt-vmarir S

Assumption 2. For any ¢ > 0 and n € (0, 1], 3t > 0 such that, for any column input v satisfying
Vj+ — maxX;zj- v; > ( (where j* = argmax; v;), we have pltv]j- > 1 —nand y_, ;. p[tv]; <n

When viewing each attention pattern A’ as a directed graph G' = (V, E') with node set V := [n]
and edge set B! := {(j,)|j € AL Vi, j}, each item in Assumptioncan be equivalently written as

Condition 1: For all directed graphs G!, each node has a self-loop.

Condition 2: The aggregation of all p graphs G* = (V, UleEl) has a Hamiltonian path that spans
all n nodes.

Condition 3: In a finite aggregation of s graphs G** := (V,Us_, E'), there exists a path between all
possible pairs of nodes.

Because we use the same softmax probability mapping, which is already proven to satisfy Assump-
tion2]in [14], we are left to show that there exists a parameterization of SBM-Transformer such that
the expected attention mask patterns together satisfy the three conditions above. To do so, we first
show that a simple random ER-graph [[1]] can be expected to have at least one Hamiltonian cycle with
expected number of edges linear in the sequence length.

Lemma 1. Assume a directed Erdés-Rényi random graph G(n, p) where each directed edge exists
with probability p. Then, for any number of nodes n, there exists a probability p such that the expected
number of edges is O(n) and the expected number of Hamiltonian cycles in G(n, p) is greater than
orequal to I.

Proof. We start the proof by formulating the expected number of Hamiltonian cycles in G(n, p).
Assuming directed edges, there exist (n — 1)! permutations, each of which represent different possible

Hamiltonian cycles. Say we have (n — 1)! random variables {Xi}l(-"fl)! where each X; equals 1
when the corresponding Hamiltonian cycle exists in GG, 0 otherwise. By linearity of expectation, the

expected number of Hamiltonian cycles equals ZEZIDI E[X;]. Then, note the probability of X; = 1
equals p™ for all ¢ since we require n directed edges to exist for each cycle. Therefore, the total

expected number of Hamiltonian cycles equals Zgzgl)! E[X;] = p™(n — 1)L
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Figure 1: Three sparsity patterns with n = 16 and k = 4. Grey-colored blocks on the diagonal
indicate manually added self-loops. Any other color indicates a cluster.

Next, we show that Zngl)!E[Xi] > 1if p = f(n) where f(n) = O(%). Starting from
Z(n bt E[X;] = p™(n — 1)!, using the inequality n! > (n/e)™ leads to
phn -1t =2 > 2 (7
n n \e

Then, setting the RHS equal to 1 leads to
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p—(ﬁ) :1¢>nlnp+nln2:lnnélnpzlanrlnn%@p:En%
n \e e n n

For large n, % dominates n= and thus, the expected number of Hamiltonian cycle is larger than or
equal to 1 with expected number of edges n?p = O(n) O

Lemma 2. There exists a parameterization of SBM-Transformer such that the sparsity patterns
induced by the expected attention masks satisfy Assumption|[l]

Proof. Here we show that a finite number of attention patterns each representable by the SBM given
some number of clusters k achieves the three conditions from Assumption [I] Here we use p = 3
attention patterns together (shown in Figure|I)):

—{}u{ V:J V:Jv e[}}foranz‘e[n]

A?={iyu{n—k+1,...,n—1,n} foralli € [n]
{{z’} ifi<n—k

[n] ifi>n—k

Al

<

N

Intuitively speaking, A" clusters all tokens into non-overlapping k clusters, each with size %> and
connects tokens together if they are within the same cluster. The other two patterns A2 and A% adds
k global relay tokens for each cluster with edges going from and to all n nodes, respectively. Note
that all three patterns are easily representable from separate SBMs.

Then, we can show that these three patterns form directed graphs that together satisfy the three
required conditions. Condition 1 is easily satisfied due to the manually added self-loops in all patterns.
Condition 3 is also satisfied with s = 3 as we have k global relay tokens in both directions (A2
and A?), connecting all pairs of tokens indirectly or directly. Lastly, Condition 2 can be satisfied
by leveraging Lemma [I]and the global k relay tokens: Lemmal|I|states that each subgraph induced
by each individual cluster in A" has at least one Hamiltonian cycle with O(n) number of edges in
expectation. Then, a global Hamiltonian path can in G* can be constructed as follows:

» Traverse through the first induced subgraph using its Hamiltonian cycle in .A!, but without
going back to the starting node.

* Move to the n — k + 1 global relay token via the edge in A2, then move to any node in the
second induced subgraph from node n — k + 1 via an edge in A3.

* Traverse through the Hamiltonian cycle in the second induced subgraph, and repeat.



This way, we can construct a global Hamiltonian path that visits all n nodes, and all three conditions
are met with O(kn) number of edges in expectation. O

Combining Lemma [2] together with Theorem 1 of Yun et al. (2020) [[14] proves our main theorem
below which states that SBM-Transformer is a universal approximator in expectation.

Theorem 1. Let f € F be class of continuous sequence-to-sequence functions. Let 7?]’9%}7" denote
the class of SBM-Transformers with h attention heads, m head dimension, and r dimensions in
h,m,r

hidden layers. Then for any € > 0 and 1 < p < oo, there exists a function g € T, such that
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B Asymptotic Cost Analysis

Table[T|shows the asymptotic computational cost and memory footprint of each step an attention head
takes in SBM-Transformer given a single input. Assuming the number of clusters is significantly
smaller than the sequence length, we find that both time and memory cost is mostly dominated by the
computation of @ and K when the sampled graph is sparse (i.e., m = O(n)).

Computation | Time Memory
Inputs Q, K, V,and C' - O(nd + kd)
Node assignments Q and K O(nd? + nkd) O(nd + kd + nk)
Inter-cluster probabilities S O(k2d) O(k?)
Sampling from fastRG [6] O(m +n)! O(m + nk + k%)
Run GAT [8] with edge-softmax O(md) O(m + nd)?
Total | O(md + nd? + nkd + k*d)  O(m+ nd + nk + kd + k?)

Table 1: Asymptotic costs of individual steps within the attention module of SBM-Transformer. The
sequence length, number of edges, number of clusters, and head dimension are denoted as n, m, k,
and d, respectively.

A comparison of the overall cost of SBM-Transformer with those of other baselines is shown in
Table[2] While its complexities most resemble those of Nystromformer [12] when the sampled graphs
are sparse, the cost of SBM-Transformer can exceed those of full-attention when the graph is dense,
due to the additional computation in the MLP,_, 4 used to infer node-to-cluster memberships.

Model ‘ Time Memory
Full-attention [7] \ O(n2d) O(n? + nd)
Linearized [4] O(nd?) O(nd + d?)
Reformer [5] O(nd + nk(4n/c)?) O(nd + nk(4n/c)?)
Performer [2] O(nkd + kd?) O(nk + nd)
Linformer [11] O(nkd + nk) O(nk + nd)
Nystromformer [12] O(nkd + nk? + k3) O(nk +nd + kd + k2)

SBM-Transformer (ours) | O(md + nd® + nkd + k*d)  O(m + nd + nk + kd + k?)

Table 2: Asymptotic computational costs of different attention mechanisms. The k term denotes
different parameters for each model: number of clusters for SBM-Transformer, number of hashing
rounds for Reformer [5], number of random features for Performer [2], the projection rank for
Linformer [11], and the number of landmarks for Nystromformer [12]. The additional ¢ term in
Reformer [3] indicates the number of hashing chunks, set to ¢ = (’)(%) as default.

"Walker’s Alias Method [9] used to sample nodes in fastRG requires O(m -+ nlogn) operations, but the
log n dependency is not visible in general. More information can be found in [6]

3We leverage highly optimized Generalized Sampled-Dense-Dense Matrix Multiplication (GSDDMM)
operators provided by the Deep Graph Library [10] that avoids the O(md) memory overhead.



C Experiments

For reproducibility, we list the model and training hyperparameter settings used for each task in
Table 3] Note that for SBM-Transformer, we initialize the cluster-embeddings C' using the kaiming
normal distribution [3], which results in an initial attention density of approximately 25%. Tables ]
and 5] provide the full LRA benchmark results with standard deviations in test-time accuracy and
sparsity. As mentioned in the main paper, we find that manually fixing the self-loops in the sampled
graphs slightly deteriorates performance, while it helps in proving theoretical expressibility.

Parameter | SYNTHETIC | LISTOPS ~ TEXT RETRIEVAL IMAGE PATHFINDER | BERT GLUE
# of layers 1 2 2 2 2 2 4 4
# of heads 1 2 2 2 2 2 8 8
Embedding dim. 32 64 64 64 64 64 512 512
Hidden dim. 32 128 128 128 128 128 2048 2048
Head dim. 32 32 32 32 32 32 64 64
Sequence len. 256 2048 3072 4096 1024 1024 512 512
Dropout 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Attn. dropout 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Pooling mode N/A MEAN MEAN MEAN MEAN MEAN N/A MEAN
# of classes 2 10 2 2 10 2 | 50265 2o0r3
Batch size 256 128 128 32 1024 1024 256 32
Learning rate le-3 Se-4 Se-4 le-4 Se-4 Se-4 le-4 3e-5
# of training epochs 2000 5000 20000 30000 35000 62400 50 5

Table 3: Hyperparameter settings used synthetic, LRA, and GLUE experiments. For methods other
than full attention [[7], we use 128 clusters for SBM-Transformer, 2 hashing rounds for Reformer [3],
256 landmarks for Nystromformer [[12]], and 256 dimensions for Linformer [11]] and Performer [2]].

Model Li1sTOPS(2K) TEXT(3K) RETRIEVAL(4K) IMAGE(1K) PATHFINDER(1K) \ Avg.

Fullattention [7] | 37.22+0.52 64931046 79.55+1.22 4038+0.76 74262057 | 59274044

Lincarized (4] 37.46+0.57 64901049 81.10+0.16 38.48+0.57 74615126 | 59.3140.15

Reformer [3] 22.0240.41 64.70-£0.12 77.2540.15 43.6540.16 70284145 | 55764029

Performer [2] 18.25+0.12 65.00-£0.50 79.01+1.66 39.80+0.46 7079+126 | 54.57+0.55

Linformer [11] 38.44.40.14 56.2841.06 78.0940.12 395340.57 67.6240.65 | 55.9940.14

Nystromformer [12] 37.20+0.51 65.46:£0.40 79.35-£0.40 43.0740.42 71974130 | 59.414£0.12
37.60+0.38 64.09+1.39 79.74:£0.27 40.64-£0.72 74.9340.32

SBM-Transformer (+0) |y 6455 29%)  (25.6440.64%) (24.264521%)  (24.54+3.98%)  (23.8443.59%) | >0-40+020
37451044 65.7940.27 80.0040.21 41314035 75.120.49

SBM-Transformer (+0) | 70091 1571%) (26.1040.01%) (29.4623.84%) (2049+11.43%) (18.56-0.52%) | >>-93+035

Table 4: LRA benchmark results. Bold and underlined results indicate best and 2nd best test accuracy
for each task, respectively. Numbers enclosed in parentheses for SBM-Transformer indicate the
density of graphs sampled during test time averaged across all attention heads. For the SBM-
Transformer models, (1) indicates that self-loops are manually fixed while (+0) indicates model
without the modification.

A \ LisTOPS(2K) TEXT(3K) RETRIEVAL(4K) IMAGE(1K) PATHFINDER(1K) \ Avg.

0 37.45+0.44 65.79+0.27 80.00£0.21 41.314+0.35 75.12+0.49 50.03-40.35

(20.09+15.71%) (26.10+0.01%) (29.46+3.84%) (20.49+11.43%)  (18.56+0.52%) | —————

104 37.76+0.60 65.48+0.86 79.934+0.16 41.3540.35 75.46+0.46 60.00-£0.36
(10.48+7.58%)  (26.26+0.53%)  (24.62+3.19%) (10.70+£8.49%) (5.16+1.17%) : i

10-3 38.23+0.63 65.18+0.46 80.00£0.99 41.174+0.53 74.49£0.74 50 81-0.48
(10.46+7.26%) (26.03+0.06%)  (21.7012.68%) (24.60+8.61%) (3.8240.52%) ' '

10-2 38.20£0.29 65.59+0.24 80.44+1.24 42.20+0.64 72.79£0.80 50.84-40.42
(2.9540.88%) (22.43+1.73%) (6.99+2.28%) (3.95+0.68%) (3.76+0.27%) ' '

10-1 37.76+0.83 64.48+0.58 79.46+0.47 41.35+0.40 73.79£0.07 50 3740.37
(1.154+0.15%) (10.6242.74%) (2.49£0.58%) (1.33£0.37%) (2.614+0.22%) ' '

Table 5: LRA benchmark results of SBM-Transformer with increasing density regularization weight
A. Applying a density regularizer helps in encouraging sparser attention patterns which induce less
computational cost, while retaining competitive performance.
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Figure 2: Attention density plots within individual attention heads given inputs from the LRA
PATHFINDER test set. All examples shown are from a subset of the test set that the model has
predicted correctly. For each set of 5 images, the leftmost image shows the original input image of
which the title shows the ground-truth label. To its right are attention density plots from two heads of
the first layer followed by those from two heads of the second layer. Above each plot is the actual
numeric attention density between 0 and 1. The color in each pixel indicates how many other pixels
attend to that particular pixel (a color closer to bright yellow indicates more attention).

Lastly, we qualitatively analyze which inputs lead to sparse or dense attention in SBM-Transformer.
For easy visualization of attention densities, we choose two image-based tasks in LRA, PATHFINDER
and IMAGE. We pick two model checkpoints that performed best on each of the two tasks under
graph density regularization, one trained with A\ = 10~* for PATHFINDER and another trained with
A = 1072 for IMAGE, and run predictions on the respective test sets. Figures I 2| and [3} I show the
head-wise attention densities per input at different levels.

In Figure 2] the second layer shows large variance in attention density across different PATHFINDER
inputs, while the first layer remains sparse overall. With some exceptions, we find that the attention
density of this layer is somewhat correlated with the difficulty of each input. Figure[2a]shows visually
easy inputs with near-perpendicular intersections or no intersection at all, allowing correct predictions
with less than 5% average attention density. On the other hand, Figure [2b[ shows examples with
harder difficulty, due to having more lines and convoluted intersections. We can see that the model
uses much denser attention in such cases, and thus conjecture that the model is adaptively choosing
to look at more pixel-to-pixel interactions in response to the complexity of the input.

Figure[3]also shows a clear distinction between images that induce different levels of attention density.
Under regularization, the first layer of SBM-Transformer focuses attention onto dark areas in the
image as shown in Figure [3b] using the contrast in the image for better prediction. When the image
has high overall intensity as in Figure [3a} however, the model uses less than 3% attention on average,
focusing most of the prediction onto the skip-connections, FFNs, and a small number of pixel-to-pixel
interactions. Considering that this model achieves a competitive 42.20% accuracy, this shows that
SBM-Transformer can well balance the tradeoff between computational cost vs. performance, further
supporting the power of our adaptively sparse attention module.
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Figure 3: Similar visualization as Figure [2|for the LRA IMAGE test set.
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