Appendix A. Proof of Theorem ]|

Here we provide a proof for Theorem For each ¢t € [T, let j; be the index of the bin that x;
belongs. Conditional on j1, j2, . . ., jr, the total regret can be decomposed as follows:
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where pY := Proj(p¥, [p, D), the first identity holds since ; and p; are independent of j; 11, . . ., jr,

the first and the third inequalities follow from Cauchy-Schwarz inequality, and the second inequality
is due to ——g(;j) € [p,p).

The first term on the RHS of (3) arises from approximating g(-) using a constant in each local bin,
and can be further upper bounded as follows due to Assumption
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The second term on the RHS of (3) is due to the estimation error of price sensitivity b because
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The third term on the RHS of (3)) represents the estimation error of E[g(z)|z € M;] using the SAA
method. We establish the following equation for this term whose proof is deferred to the end of this
section:
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The last term on the RHS of (3) comes from the regret of the random shock added to the greedy
policy for exploration, and can be bounded by O(til/ 2):
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As seen from Eq. (5) and Eq. (6)), the regret bound depends on the estimation error of b. To proceed,
we establish the following upper bound on the estimation error of b, whose proof can be checked at
the end of this section:

Bl(b— b)%/ja. ., je] = O ®

1
i)

Putting Eq. (3) to Eq. (8) together and after some calculation, we can then establish the following
upper bound on the total expected regret, whose detailed proof is also provided later in this section:
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t=1

By setting M = (Tﬁl, we obtain the upper bound O(v/T + Tﬁ) = OWTV Tﬁ) in
Theorem 11

Now, it suffices to prove Egs. (6), (8) and ().
Proof of Eq. (6). Note that for each ¢ > 1, when |D; ;,| > 1, we have

E |:(dt7jt —E[g(z)|z € th])2‘j1, ... ,jt]

1 A 2y |
=E (W E (dk *Pkbt) —Elg(z)|z € th]) ‘]1, T
LTI (2 prdi) €Dy,
1 A ” |
“E|(5— S (bt o) e —mibi) ~ Blo()le € My)) e
|77mjt|( y ,
L Tk,pk,dr) €Dz j,

§3]El(1 S ont-w) (2 Y (sl - Ege e M)

Dy Du;
| t’]t| (zk,Pr,di) €Dy 4, | tJt' (Tk,Pr,di) €Dy, 5,

1 2|, .

+( g Ek:) ‘jla"w]?ﬁ

|Dt7jt| (z d )
ksPk>dk)EDx 5,

0.2

(6(a2) = Elg(w)le € M, ))) -+ 75—

S3Elp2(b—6t)2+< jla"'ajt]7

(10)

|Dt7jt|

(z1,Pk,dK)EDy, 5,

where the first identity follows from the definition of a; ;, and the inequality follows from Cauchy-
Schwaz inequality.
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We then bound the second term on the RHS of (T0). Denoting the time indices when the feature
vector fallsinto M;, by 1 <51 <53 <... < 5|D, ;, | <t —1, we have
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Where the second identity holds since conditional on x5, € My, for each 1 < k < |Dy |,
|D N Z'D’ 4 (9(zs,.) — E[g(x)|z € Mj,]) is a mean zero random variable, the fourth iden-
t,J

tity holds since Zs,, Ty, - - - ' Ls)p, .| are i.i.d. random variables, and the first inequality follows
sJt
from Hoeffding’s lemma.

Therefore, we have the following upper bound on the third term of (3):
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where the first identity holds since if |D; j,| = 0, a constant loss is incurred since a ;,, b; and

Elg(z)|z € Mj,] are all bounded, and the inequality follows from (T0) and (TT) for |D; ;,| > 1. This
completes the proof of Eq. (6).
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Proof of Eq. (8). We next bound E[(b — b;)2|j1, . . ., j:] and prove Eq. (8). When ¢ > 2, we have
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where the first identity follows from plugging in the definition of by, the second identity holds
since 0, = s 2 by its definition, the third identity holds since when s # k, A is independent of
Ap(bp? + g(xs) + €5)(bp] + g(xk) + €x), and from E[A,] = 0, we have E[A Ay (bp? + g(xs) +
) (bp? + g(zx) + €)] = 0, the first inequality follows from A, € {—s~ 7,57} and Cauchy-
Schwarz inequality, and the last inequality holds since when ¢ > 2, Z -1 57z > tH s7sds =
2(y/t +1—1) > v/t. This completes the proof of Eq. (8).

Proof of Eq. (9). Before we proceed to bound the total regret an prove Eq. (9), we note the following
inequality on the summation for 1¢p, ; |>1} ﬁ:
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where the second inequality holds since geometric mean is less than the arithmetic mean, and the last
d
inequality holds since E;Vil |Dr ;| <T.

Combining (T2) and (T4), we then obtain
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where the first inequality follows from (12) and Zt 1 Lo, 1=01 < M?, and the second inequality
follows from (T4).
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Finally, putting Eqs. (B), @), (7). (12), (13) and (I3) together, we obtain the following upper bound
on the total regret conditional on j1, ..., jr:
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where ¢; = L4E(é »C2 = o2 (maxxe[o 1)@ (9(55))2 + 31’2), Cc3 = %(i maxx,ye[(),l]d(g(x) - 9(1/))2 +

o?) and cq = 3c2(b°p* + max, (o 134(9(x))? + o) + 4. This completes the proof of Eq. (©).

By setting M = [Tﬁ] and taking the expectation with respect to jq, . . ., jo on both sides of (16),
we obtain the following upper bound on the total expected regret:

T
S Elr] < 6[p) ((01 +2%5(1+ InT)TT% + ey (2VT — 1)) = O(T VT#%),

t=1

which completes the proof of Theorem I}

Appendix B. Proof of Theorem 2]

The first lower bound Q(+/T) is directly implied from the existing results (e.g., Theorem 1 in [17])
by letting g(x) be a constant function (which belongs to G(53, d)). To show the second lower bound
Q(Tﬁ ), we first need to construct a series of Holder continuous functions that are “similar” to
each other and therefore difficult to distinguish. We partition the context space [0,1]¢ into M?
equally sized bins, denoted as M1, Mo, ..., M 4, by dividing each dimension of the context space
into M intervals of equal length. We then construct a series of functions gy (+) indexed by a tuple

w € {0, 1}Md, and the j-th component of w determines the value of g, () for z € M; as follows:

o] (p + D) w; =0
gw(z) = ¢ [0] (p+]3) +( (x OM;))?  w; =1 and D(z,0M;) < z7557 (17)

where OM; denotes the boundary of the bin M;, and D(x,M,) := inf{||x — y|| : y € OM,} denotes
the Euclidean distance between x and OM;. The following lemma shows that each g, is Holder
continuous, whose proof is more sophisticated than [28] and [8]], and deferred to Appendix B.1.

Lemma 1 For each w € {0, 1}Md, 9w (+) defined in belongs to G(B, d) with L = 2.

Let P be a uniform distribution on UJAZ {zr € M, : D(z,0M;) > 41/ﬁ‘M} By setting b = b,
whenever x falls into M ;, the optimal price p*(z) associated with any function gy (-) is

AL w; =0

p(z) = {pip 1 ’ (18)
= + sy Wi = 1.

We then consider two demand functions g(w_ ;) for w; = 0, 1, where we use (W_j,w;) to denote

an index w € {0,1}M * whose j-th coordinate is w; and the other coordinates are w_;. Eq.

indicates that if the price charged by an algorithm in period ¢ is greater than ¥ + m its

gap with the optimal price under demand function g _ o) is greater than ; and if the price

16M/j Dk
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charged by the algorithm is less than Bﬂ) + m, its gap with the optimal price under the other

function gy _, 1) is still greater than Wﬁ\bl' Bretagnolle-Huber inequality (see [6]]) guarantees

that the minimal error of making one type of the mistakes depends on how well the algorithm can
distinguish between the two demand functions. This is formalized in the following inequality:

7, B—i_ﬁ 1 7, t B—i_ﬁ 1
) M ]P) )
I(w_;.0) <pt 5 T 1607 B Te €M )+ Bl o \Pr< T3 T 16018 0]
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1 7, t 7, t
> S exp (fKL (Pg(wﬁyo) , Pg(wij’l)» : (19)
where P (t denotes the probability measure under policy 7 up to period ¢ when the true demand
=3 J
function is g(w_J .w;)- We then apply the chain rule of KL divergence to establish the following upper
bound on the KL divergence between Pg:! " and Pg(fv .

1
(]P)ﬂ' .t ]Pﬂ'r,t

Iiw_;,0)7 9<w,j,1)) < Wt' (20)

With a careful decomposition of the regret, by applying Eqgs. (I9) and 20) with M = fTﬁL we
will obtain the desired lower bound Q(Tﬁ ).

In the subsequent analysis, we fix the price elasticity to be b, the distribution of contexts to be a

uniform distribution on U;Vidl{a: € M, : D(z,0M;) > 47557} and the distribution of random
noise to be normal distribution. For the ease of presentation, we omit the dependency of the regret
and the expectation on these terms. For any policy 7, we establish the following lower bound on its
worst-case regret by restricting to the functions gy (-) constructed in (I7):

sup Ry(T) > sup Ry (T)
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21
where in the second and third identities, we use (w_;, w;) to denote an index w whose j-th coordinate
is w; and the other coordinates are w_;, and in the third identity, we use the fact that E_[(p* () —
pe)*Lmem;y] = B (0 (x¢) — pe)? | 21 € M]Pu(ze € M) and Py(z: € M;) = 5f7 by our
construction.

Noting the expression of the optimal price in Eq. (I8), we have the following lower bound on
Lo [(p*(x+) — pt)? | @+ € M) in the RHS of @I)): for each w; € {0, 1},

I(w_
1 2 p+p 1
\Y prt > =
e ] (16M5 bl) w30 <{pt =72 T1emP Ib}

(22)

EE(W—J',O) [(p* (xt) - pt)
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2 _
1 p+Dp 1
M| > (—sr | PO <= M;
e ]]<16Mﬁbl) 9=y <{p 2 *mMﬁw}%tE J)’

(23)
where ]P’;T (fv o denotes the probability measure for X1, Py, d, ..., X;, P;, d; under policy 7 and
demand function g(w_; u,)-

Due to the above Egs. (22)) and 23)) and Eq. (T9), to further bound the RHS of (Z1)), we next focus
on analyzing the KL-divergence between the two probability measures Pg;t x; € M;) and

(.
w_;,0)
]P)g{fv,j,l) (- | z+ € M), and prove Eq. (20). Noting the following identity

Pyt (Xlaplvdh'"7Xt7pt|xt€Mj)

I(w_j,wy)

_ mpm,t—1

=Py o (X1, Pryduy ooy X1, Pro1ydip—1) X m( Xy, Py [ 2 € My, Xa, Prydy, oo, Xyo1, o1, di-1),
and denoting (X, P; | zy € My, X1, P1,dy, -, X4—1, Pi_1,di—1) as ﬂf, we obtain

KL(PW’t ( | Tt € Mj),]P)ﬂ— .1)(. ‘ Tt € MJ))

.’J(w,j,o) g(w,j,

w,t—1 J w,t—1 J
L(IEDg(Wi]_‘0> X ”t’Pg(w,j,n X 77 )
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K

where the second identity follows from the chain rule of the KL divergence. Moreover, P (’t )
wW_j,wj

can be further decomposed as follows:
Pﬂ7t_1 j)(X17P13 d17 e 7Xt717 Pt717dt71)

g(w_j,w

=Pri=2  (Xy,Py,dy, o, Xi—2, Poo,di—2) X Pu(Xi—1)

T Gwojwy)
X ﬂ—(Ptfl | le Plu d17 e 7Xt727 Pt727 dt727 Xt*l) X Ng(wfj)w (dt71|Pt717 thl)' (25)
Denoting m(P,—y | X1, Pr,dy, -+, Xi—2, P2, di—2, X4 1) by 77, _, 2,_,, We get

KL(IP’;T(’fN’l pri=t )

,j,o)’ 9(w_;.,1)

)

_ T, t—2 T, t—2 T,t—2
- KL(Pg<w7j,0)7Pg(w7j,1>) + ng_j,o[KL(,Pu X TFi—2,@t—1 X p#g(wfj,o)’lpu X TFi—2,t1 X :ug<w,j,1))]

= KL(Py;.? Pg(’j;jm) + Eg{f[i,o) [KL(Py X TF, 520 1sPu X TF sz 1))

_0’
=2
+ ]Eg(i,fj’o) [E'Pu XTF, _g,x4_1 [KL(Ng(w,j,o) ’ :ug(w,j 1) )]
4—2 =2 t—2
= KL(P;(fv,j,o) ) Pg(i,j,m) + E;r(fu,j,o) []Epu XTFy _g@s_1 [KL('U’Q(wfjﬁ) ’ lJ/g(ij’l) )]’ (26)

where the first and second identities follow from the chain rule of KL divergence. Since we have

assumed that ¢ follows a normal distribution with variance o2, the following equations hold:
KL(/‘WW_]. ,0) ( | DPt—1, $t,1), ,u'g(w_]. 1) ( | DPt—1, miﬁ*l))

2

1
952 (bJ7t71 + 9w, 0)(Te-1) = bpr—1 — g(w,j,l)(xtfl))

1 2
= 252 (g(W—j,O)(xtfl) - g(w_j,l)(%ﬂ))

1 1\?
= 902 \ 17 ) Moo
Wherg the. last inequality holds because 9(w_;,0) and g(w_; 1) only differ in M;. Plugging the above
equation into Eq. (26), we obtain
2
1 1
Tt 7T, t _ T,t—1 T, t—1
KL(Pg(w_j,m ) ]P)Q(w_j,n) - KL(Pg(w_j,o) ) IP)g(w_j,1)) + 202 Md <4MB>
1
= 73202Md+25t' (27)
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where the first identity is holds since Ep, xrr, . [lfz,_,em,;}] = 57a- and the second identity
follows by repeatedly applying the first identity. This completes the proof of Eq. (20).

Combining Egs. 1), (22), (1T9), @ and (27), we have

b < 2 1
R™(T) > I S
sotb (1) 2 2MdeZ 2 Z o o) <P\ 327

w_;€{0, 1pmd-1t=1

P (R S RN RS S
=5 \qeme ) P\ 32020528 )

By letting M = [T ﬁ} in the above inequality, we obtain the lower bound Q(T L= ).

B.1. Proof of Lemmal/l

We prove that for any ,y € [0, 1]%, [gw () — gw ()| < 2||z — y||? by considering two cases: x and
y fall into the same bin in case 1, and z and y fall into different bins in case 2.

Case 1: z,y € M; for some j € [M ], When z and y fall into the same bin M, we divide the proof
into four subcases.

Subcase 1.1: w; = 0, or w; = 1, D(x,0M;) > 77557 and D(y,0M;) > 5. In this subcase,
we have gw (z) = gw(y), and the result is trivial.
Subcase 1.2: w; = 1, D(z, 0M;) < 7557 and D(y, OM;) < 47557 Without loss of generality,

we assume that gy () < gw(y). Then we have the following equation:

|z = yl|” + gw(x) = |lz — || + (D(x,0M;))” + [b](p + D)
_ —_ 1B ; _ |8 b I
le=yll? + min |l ="+ 1bi(p-+)

— i _yllB _ 2|18 >
Jin (= yll” + [z = 2l17) + [bl(p + P)- (28)

If the following inequality holds: for 0 < 8 < 1,
[la -+l < llall” + [[o]|°, ¥a,b € RY, (29)
then we have from (28) that
lle = yl1” + gw (@) 2 oo 1z = yll” +[bl(p + B) = (D(y, OM,))” + [bl(p + ) = 9w (1),
(30)
which then implies |gw (z) — gw (¥)| < ||z — y||°.

We now show (29). Note that @[} is simply the triangle inequality when 8 = 1. When 0 < 3 < 1,
let 3 € R* be such that % 5 ta = 1. By applying Holder’s inequality, we have for any a,b € R,

’ 11 ﬁ
(a+0)° < (@8 +19)2 (07 +17)7) =251 @P +0%) < 0 + 47, G1)
Applying (3T) and the triangle inequality, we have for any a, b € R,
lla+0l1” < (lall + [1BI)* < [lal| + [[b]|”,
which finishes the proof of (29).

Subcase 1.3: w; = 1, D(x,0M;) <

D(z,0My) > p
b|(p +P) + 4]\/[% and

< 41//3M and D(y,OM;) > 41/[3M Let M = {z € M, :
}. Since Proj(x, M;) € M}, then we have gy (y) = gw(Proj(z, M;)) =

9w (@) — 9w (¥)] = |gw () — gw (Proj(z, M;))|. (32)

20



Since IM; = {z € M : D(z OM;) = 77557} and Proj(x M) € &M}, it then follows that

D(Proj(z, M), 0M;) = 4. Since D(z,dM;) <
result in subcase 1.2, we obtain

< 175 B 77 from the assumption, by applying the

|9w (@) = gw (Proj(z, M))| < ||z — Proj(z, My)[|¥ = min le =21 < llz—yll?,  (33)
z J

where the last inequality holds due to y € M;. Combining (32) with (33), we obtain |gy () —
gw ()] < [lz = yll°.

Subcase 1.4: w; = 1, D(z,0M;) > 77477 and D(y, OM;) <
similar to subcase 1.3, and is omitted for brevity.

<o /1[3 57+ The proof of this subcase is

Case 2: x € M,; and y € M, for 7 # j. When x and y fall into different bins, we divide the proof
into five subcases.

Subcase 2.1: w; = w; = 0, or if w; = wj = 1, D(x, 0M;) > 57577 and D(y, OM;) > 7557 In
this subcase, we have gy () = gw(y) and the result is trivial.
Subcase 2.2: w; = 0 and w; = 1. In this subcase, we have
9w () = gw(y)| < (D(y, OM;))” (34)
< ||Proj(z, 0M;) — y/|” (35)
< ||Proj(z, 0M;) — |7 + [l — y||” (36)
= ||Proj(ar, M) — (| + [lz — y||” 37
<2flz —yll”. (38)
In the above equations, Eq. ([34) holds since under the assumption w; = 0 and w; = 1,
if D(y,0M;) < g7 l9w(@) — gw(y)|l = (D(y,0M;))?, and if D(y,0M;) > ;.

lgw (@) — gw ()| = 27 < (D(y,0M;))?. Eq. (33) follows from the definition of D(y, OM;)
and Proj(z,0M;) € OM;. Eq. (36) follows from (29). Eq. holds since if Proj(z, M) is an
interior point of M ;, since M} is a cubic, one can always construct a ball inside M ; with the center
Proj(z, M;), and the intersected point between the ball and the line connecting « and Proj(x, M)
has a strictly shorter distance to x than Proj(xz, M), leading to contradiction with the fact that
Proj(z, M) is the closest point in the bin M to x. Thus, Proj(z, M) must be at the boundary OM ;
and Proj(z, M;) = Proj(z, 9M;). Eq. (38) follows from y € M, and the definition of D(x, 0M;).

Subcase 2.3: w; = 1 and w; = 0. The proof of this subcase is similar to subcase 2.2 and is omitted.

Subcase 2.4: w; = w; = 1, D(x,0M,;) < 41/BM

ality, we assume gw (y) > gw(x). Then we have

and D(y,0M;) < Without loss of gener-

1
=~ 41/[1'M‘

B — m _ B _ 2B S mi T =
o= ll” + gw(@) = min (lo = yll® +11z = 2ll°) + bp+7) > min ||z yl|” + bl(p -+ P,

(39)
where the inequality follows from (29).
On the other hand, when K is sufficiently large, we have
_ . ] —
gwly) = v [lz—yll” + [bl(p+P)
— ; B _
= min z— + |b|(p + 40
o=l Bl ) o)
— ; 8 _
= min z— + [b|(p + 41
IS ) S 1z = yll” + 16l(p + D) (41)
< mi —y|)f D). 42
< min ||z —y[I” + [bl(p +P) (42)
In the above equations, Eq. (@0) holds since O([—K, K]¢ \ int((M;)) = 9([-K, K|%) U M},

and when K is sufficiently large, D(y,0M,) < D( y,0([-K, K]?)) and Proj(y,0(M;)) =
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Proj(y, 0([—K, K]%) U 0M;). Eq. @) holds due to the same reason as (37). Eq. (@2) holds
since d(M;) C [-K, K]% and O(M;) Nint(M,) = 0 imply that 9(M;) C [—K, K]¢\ int(M;).
Combining Egs. (39) and {@2)), we obtain |gw( ) — gw(x)] < ||z — y||°.

Subcase 2.5: w; = w; = 1, D(z,0M;) < and D(y,O0M;) >
have

1 .
< 41/13M LT In this subcase, we

gwl) — g (y)| = | (D, OM))? — | = = (D(2,0M))? < (D(y,0M,))” — (D(x, M)’

The remaining analysis is similar to subcase 2.4, and is omitted for brevity.

Appendix C. Proof of Theorem

We first establish the following lemma showing that the true demand function f(p) 4+ a ' 2 can be

well-approximated by the linear function Gt jcp( )+ a, ;& within price segment I; after running
Algorithm[3] This result is quite standard and can be obtained easily by modifying the analysis in [1]].
For completeness, we provide the details in Appendix C.1.

Lemma 2 For each j € [N|, with probability at least 1 — ¢, the following event holds: for any
tc[T),p€landx < 0,1]¢,

[£) +aTe = (0 0(0) +al,2) | < sy 0) TV o) 44 (@3)

Now we highlight our key idea for analyzing the regret in each period ¢t € [T]. Let p; :=
arg max,c(, 7 P(f(p) + a' ;) be the optimal price for period ¢ and i; € [N] denote the index

for the price segment p; belongs to. Conditioning on the events guaranteed by Lemma 2] for each
price segment ¢ € [N], we have

re=p; (f(p;)+a"x) —pe (F(pr) +a' )

< macp (Grsg 9(0) + (e 1) + g\ 900 20) TVt n) + ) =i (F(pi) + aTa0)

< lnel[é}\)é I;lg)i(p (<6t,i7 ©(p)) + (Gei, o) + ’Ym\/(b(p, xt)TVt;-lfib(p, xy) + A) — Dt (f(pt) + aTxt)

= pt <<ét,it7%@(pt)> + (at,i,, Te) + Vesi \/¢(pt, x) TV, Yo(pe, me) + A) pe (f(pe) +a"xy)

e Oy () + (i 2e) — (Fpe) +a @) |+ pe (%,it \/¢(Pt>$t) i d(pr, ) + A)

<2p <’Yt,z‘t \/¢(Pt» x) TV, Yo(pe, ) + A) (44)

where the first inequality follows from Eq. in Lemma[2|and p; € I} by definition, the second
equality is based on the design of our Algorithm [2](line 13), and the last inequality again follows
from Eq. in Lemma [2| Therefore, by optimizing the revenue within each price segment in
an optimistic way and choosing the price from all optimistic prices with the highest optimistic

revenue, we reduce estimating the regret in period ¢ to bounding -y, ;, \/ d(pe,xe) TV, 0 Lo(pe, m) + A.
The subsequent analysis requires applying the elliptical potential lemma (see, e.g., [1]]) to bound

\/ d(pe,xe) TV D Lé(py, ;) and carefully choosing the number of price segments N to balance the

bias of polynomial approximation for f(-) and learning efficiency within each price segment. The
details are given in Appendix B.1.

Let np; = ZtT:l I,,c1, be the number of times for which prices p1, pa, . .., pr selected by our
algorithm fall into I;, and A denote the event that Eq. in Lemma 2| holds for any ¢ € [T] and
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i € [N]. When A holds, from Eq. {@4), the total regret can be bounded as follows:

T T
D1t <2y i 6wr o)y +2PAT

N T

=25 ) gl )|y -1 Ip,er, + 2pAT
j=1t=1 7
N T

< 2]32 YT, Z 6Pt )y, -1 Lpeery + 2PAT
j=1 t=1 -

N T
< QPZ’YTJ\/TT,J¢ > o, xo)ly-1 Ly, e, + 2PAT

nr. _
< E "y
2p ’YTJ\/TLT,J\/ )+d+1)In ( b(F) + d 1) + 2pAT, (45)

where the second 1nequahty holds since {7 ; : 1 < ¢t < T} is an increasing sequence for each
j € [N], the third inequality follows from Cauchy-Schwarz inequality, and the last inequality holds
due to Zt 1 llo(pe, xt)||v i Ip,er; < 2Indet(Vry;)/In(AI) from the elliptical potential lemma
(see, e.g., Lemma 11 in i) 'and Indet(Vp ;) < (b(k) +d+1)In(A(1 + b(k)+d+1)) from (31).

Since € = T2, we then have

o b(k) +d+1+nr;\ 1o _o\1 :
vT’j—U\/(b(k)—i-d—&-l)ln( b0k T d+1 ) 2Ine + A2 (Cy(b(k) +1) +a”)2 + Ay/nr;

< o/206(k) +d+ 1) In(T + 1) + A2 (C2(b(k) + 1) + @*)? + Aynr,,
and the first term in the RHS of (@3) is bounded by

N

N
Z’}/T}j‘/nT’j\/ +d+1 In (1+T’7)
j=1

b(k) +d+ 1

Jj=1

< 2¢/(b(k) +d+1)In(T +1) (max{a\/(b(k)+d+1)ln(T+l) A2 (C2k +a° %} Z./TTJJrAT)

< 2¢/(b(k) +d+1)In(T +1)

N
ma (k) +d+ 1) In(T + 1), A2 (C2(b(k) + %} JZnTJ JZPJFAT)
j=1

V6(k) +d+ 1) In(T + 1) (max{o\/(b(k)+d+1)ln(T+1) MH(CR(o(k) + 1) +a%)E - VTN
+AT>.

This, together with A = @(%) and (@3), implies

4 5T
=0 (\/(b(k) td+ 1)1nT) 0 <¢( (k) +d+ NTInT + Nk)

t=1

To balance the two terms \/(b(k) +d + 1)NT lnT and 15\77,: ,welet N = ((T(SQ)TIH] + 1. When

§ = O(T~2), N = ©(1) and thus we obtain V(6(k) +d+1)NT = ©(\/(b(k) + d+ 1)T) and
% = O(V/T). In this case, we get Zthl Ty = O((b(k‘) +d+1)yTInT). When § = Q(T~2),
N = @((T52)T1+1) and we obtain 23:1 re = O((b(k) +d + 1)5ﬁT2’%+11 InT). Combining

these two cases, we have 23:1 re = O((b(k) +d+ 1)((5Tk+1)T1+1 VVT)InT).
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Therefore, the total expected regret is upper bounded by

T T T
> Elr] = E[r|A] - P(A) + ) E[r| A% - P(A%)

T UVT)) + (g) (46)

where the second identity holds since from the union bound, P(A°) < & = 2 Since O(%) =
O(Tﬁﬁil 5%+1) and 6 = O(1), the first term in the RHS of @6)) dominates.

~-0 ((b(k) +d+1) ((5Tk+1)

C.1. Proof of Lemma|2]

In this proof, we consider an arbitrarily fixed I € (J; ¢y L;. Let Pr(p) be the first b(k) + 1 terms of
the Taylor expansion for function f(p) atp = I

Zf p—1), Vpel

It’s easy to verify that |f(p) — Pi(p)| < 6 Z(kl . For convenience, we label (z,p,d) in D as

{(xi,pi,d;)}t_; in chronological order. Let 3; := f(p;) — Pi(p;) for i € [t], then |3;] < A and
di = f(pi) +a' @i + e = Pr(pi) + o' i + € + .

Denote d = (d;)i<t, € = (€i)i<t» 3 = (Bi)i<+ as column vectors in R?. Let X = ((¢(ps, z:))i<t) €
ROX(e)d1) ge — (L2000 a) € REFIFAH Thus, d = X6 + € + 3. The Ridge

estimate 0 := (9T, a")T can be written as # = V= X T d. Note that we omit the dependency of 0,
V', X and d on the cardinality of D, i.e., ¢, for simplicity. By simple calculation, we have

0—60"=-AV1"+VIXT(e+ ).
Multiplying (6 — 6*) TV on both sides of the above equation, we have
(é—e*)TV(é—e*)
AG—0°)TO 4 (—0°)TX (e +B)
</\H @ =0, 1% ly—2 + |6 =), - | X el|, . +(6-6)"X"3
SO =)y 1071y + (10 = 0]y, - [| X Tellyos + AVE@ = 0], @D

where the first inequality follows from Cauchy-Schwarz inequality, and the second inequality holds
due to

0-0)"x8|< | Y 823 (6(pr,2r),8—6%))"

1<r<t 1<7<t

[ Y 82 0= [ D 6rw)dT (pryar) | (6 —67)
1<r<t 1<7<t

S 82\/(0-6)T (V- AD) (6 - 6%)

1<r<¢t

<AVE|(0-69),, -

Dividing both sides of Eq. by ||6 — 6

10 =6, < MOy + || X Tel|, s + AVE (48)
By applying the self-normalized bound for vector-valued martingales in Theorem 1 of [[L], we have
with probability at least 1 — e,

v we have

(49)

3 —1/2
wteT): || XTel|,_, < 202log<det(V) det(\I) )

€
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Since [|6* %, < m 16*]12 < 3 16*]12 < w, it follows from Egs. and
that

_ det (V)2 det(\)~1/2
18— 69|, < \|20%10g ( et(V): 5 (D) ) + A (C2(b(k) +1) +a2)? + AVE. (50)
Moreover, let A1, A2, . .., Ap(k)+d+1 denote the eigenvalues of matrix V. Then we have

det V = [IERIHa+TN

b(k)+d+1
_ (S
“\bk)+d+1

b(k)+d+1
_ (H Yint |¢<pi7xi>||§>

b(k)+d+1

< A+ ————7

= ( - b(k)+d+1>

where the first equality follows from the fact that the determinant of a matrix equals the product of its

all eigenvalues, the second inequality follows from the inequality of arithmetic and geometric means,

the second equality follows from the fact that the sum of eigenvalues of a matrix equals its trace,
X . . . (u—1)2b k)

and the last inequality holds since ||¢(p;, =;)||? = Zs(:ko) (pi = )7 + ||@i]]* < % +d<

W+d:/\andt= |D|
Therefore, with probability at least 1 — ¢, forany t € [T], p € Iand x € [0,1]%,
F0)+aw = (0T p) +a"2)| < |Prp) +a w = (07 o) +a"2)| + |£(p) - Pi(p)]

<@ =6, o, 2)lly-s + A
<vllélp, 2y -1 + A,

where the first inequality follows from the triangle inequality, the second inequality follows from
Cauchy-Schwarz inequality, and the last inequality follows from Egs. (30) and (51)) and the definition
of 7.

5 ShH

Appendix D. Proof of Theorem 4]

The worst-case bound Q(+/T) is directly implied from Theorem 1 in [I8] by letting @ = 0 and
f(p) = a + Bp (which belongs to F*([p, p|; §) when a and /3 are appropriately defined to adapt to

9). To show the instance-dependent bound Q((diH)ﬁ ), we first construct a series of demand
functions and use the Kullback-Leibler (KL) divergence arguments to bound the regret. Note that the
smoothstep function adopted by [32] can not be used here because in our problem k is not necessarily
a constant. Besides, our analysis also differs from [32] in that the constructed demand functions need
to be instance-dependent such that the established lower bound achieves a tight dependency on 6.

Specifically, following from a similar idea of [15], we start with introducing an infinitely differentiable
function u(z) defined as

u(z) = exp{fﬁ} ifz €[0,1];
0 otherwise .

Consider S : RT — R* as follows:
1

S(z) = ( /U : u(t)dt> i [ ; u(t)dt. (52)

Note that S(z) is non-decreasing infinitely differentiable function satisfying S(z) = 0 on (—o0, 0]
and S(z) = 1 on [1,00). For any integer [ > 1, the I-th derivative of S(x) at z € [0, 1] is in the form
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of % exp (— ﬁ) which is bounded in the domain. Moreover, S® (1) = S()(0) = 0.
Besides, there exist a constant ¢y, such that for any z, 2’ € R |S0) () — SCED (/)] < |z —

a/[F=*(). Based on S(x), we can define g(-) : [0,2] = [0, -] as follows:
1
gr(z) = ?(S(I)l{x <1} +S2—2)1{z > 1}), (53)
k

where Zj, > 0 is a scaling parameter which makes the {-th derivatives of g («) uniformly bounded
by constant 1 on [0, 2] for each 0 < [ < b(k), and |g(b k))( ) — g,gb(k))(x’)\ < |z — 2'[F0®) for

any z, ' € R, e.g., Zp 1= maxo<p/ <k MaXyeo,1] |S®) ()| V ¢.. Since S(1) = 1, Z;, > 1 naturally
holds.

We partition the price range [p,p] into J segments of equal length, denoted by I, I,...,1;. We
construct a series of revenue functions rg, 1,72, ..., as following,

ri(p) == {

wheregzé/((Z?L%) b(ﬁ)!) (b(k)+1)2b( -1, BychoosingJ [4(b(k )+1)2b(k)5ﬁTT1+1]
and n = ((20) A

S

if p & Ij;

N . 54
5+77-gk(2J(p— aj)) ifpelj,

N = D]

23%+1 ) ok )+1)2h<k> 5%“ T 2k+1 we can have the following lemma on the

demand function f;(p) = £ilp) (p ) whose proof is provided in Appendix D.1.

Lemma 3 Foreach 0 < j < J, f;(p) € F*([p,D; 0).

Note that for each j € [J], the induced optimal price of f;(p) belongs to I and r;(p) differs from
ro(p) only in I;, with the maximum difference characterized by parameter 7). It’s important to note
that 7 is a crucial quantity that balances the tradeoff between making it a more challenging task for
the algorithm to distinguish between different demand functions (which requires 7 to be small) and
imposing a higher regret loss if the algorithm fails to identify the true demand environment (which
requires 7 to be large). For any policy 7, consider the random variable 7); denoting the number
of times the prices selected by 7 fall into segment I;. Similar to [32]], we establish the following
inequalities: for each j € [J],

1
ET(T;] — B3 [Ty]| < T\/KLIP’” DIEF (L)) < —\/E5[T3]Tn. (55)

In Eq. (59). the first inequality is obtained by bounding }E; [T;] — EF[T}]| via the total variation
of Pj and P7 and applying Pinsker’s inequality that relates the total variation of two probability
measures with the KL divergence, and the second inequality is due to our construction of r;. Letting
j* = argm1n1<J<J]EU [T;], we must have ET[T}] < % .Since we set ) = @((6T‘k)ﬁ) and
J = 6((8°T )2k+1 ), Bq. (53) guarantees that E7. [T)] < Z. This indicates that when the true
revenue function is r;«, there are at least 2 times when the selected prices do not fall into the “best”

segment I, leading to the regret loss Q(T'n) = Q(((ST’““)TIJrl ).
As discussed before, it suffices to prove the lower bound Q((67%+1) T ). Note that we also only

need to consider the case § > T_%, since otherwise, (6Tk+1) 241 < /T, and the desired lower

bound in (@) becomes Q(+/T'), which is again obtained. For simplicity, we assume [p, 7] = [1, 2] and
D is a standard normal distribution. B

Based on what we have constructed, for any given policy m, let T} be the number of times when the
prices selected by 7 fall into segment I;. We then claim the following inequality for any 1 < j < J:

[B§IT] - B (T3] < o /BT, (56)

where Ef[-] and ET[-] denote the expectation associated with the probability measure induced by
policy 7 under demand model 7o and r; respectively. The proof of (56) is deferred to the last part,
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and we now proceed to prove the regret lower bound based on (56). Consider the index j* € [J] that
minimizes EJ[T}+]. By Pigeonhole principle, we have Ef [T}+] < T'/J. From (36), we further have

1 1 /T T T
EZL [T < —/EF[Ty]Tn +EG[Tj<] < —1/=Tn+ - < —
5 (T3] < o VST )T + 5 [Ty ] < oo/ 5T+ 5 < 5, (57)

where the first inequality follows from (56)), the second inequality follows from the choice of j,
and the last inequality holds since 72 < (2087F 1T~ 701)2 = 4o T~ 7011 < 0?4 implies
/5Ty < 1T and § > T implies L= %5_%+1T% < 1T. Note that when the true
demand function is f;-(-), in any period when policy 7 charges a price out of I;, a revenue loss 7
will be incurred by the definition of r;(-). Hence, we have

1 X _1
sup Rﬂ',. (T, k, 6) > Rﬂ'_* (T‘7 k, (5) > (T —[E7, [T*])n > _Tn= QO 6Tk+1 2RFT )
Feliofois} Ji e 2 (< ) )

Finally, we complete the proof of Theorem [ by proving (36). For the sake of rigor, we define
a probability space as follows. Let Q = ([1,2] x R)T x {0,1,2,...,T} and B(f2) be the Borel
algebra on Q. For any ¢ € [T, let P, and D, be measurable functions on (£2, 5(£2)) that map each
w = (p1,d1,p2,do,...,pr,dr) € Qto p, and d; respectively. For any j € {0} U [J], let T} be a
measurable function on (2, B(€2)) that maps w = (p1,dy,p2,da, . .., pr,dr) € Q to the cardinality
of theset {1 <t < T : p, € I;}. We also define two functions pf : ([1,2] x R)T — R* and
v ([1,2] x R)T x {0,1,2,...,T} — RY as follows:

m T 1 _ o=t @e)?
l/j (p17d17p27d27"'7pT7dT):H M (pt|p17d17"'7pt71adt71)' € 202 3

=1 2mo

~+

1j (p1,di,p2,da, ..., pr,dr,t;) = vi(p1,di,p2,das ..., pr,dr) - 1, —1<t<T:p.e1;|}

where pu” (p¢|p1,da, - .., pi—1,di—1) is the p.d.f. for p; given (p1,ds,...,pi—1,ds—1). Let IP’;T() be
the following probability measure on (2, B(?)): for any B € B(Q2), P7(B) = [ pf (w)dw. Thus,
(2, B(£2), PT) constitute a probability space, and from the chain rule, v7 (-) and p7 (-) are the p.d.f.
for (P17 D]_7 PQ, DQ, ey PT; DT) and (P17D1, PQ, DQ, ey PJT7 DT7T}') respectively. With a Sllght
abuse of notation, we denote the distributions of Tj and (Py, D1, P, Do, ..., Pr, Dr) by PT(T})
and PT(Py, D1, P2, Da, ..., Pr, Dr) respectively, and the conditional probability distribution of
T; given (Pi, D1, P>, Do, ..., Pr,Dy) by PT(T}|P1, D1, P>, D5, ..., Pr, Dr). For any given 0 <
i< Jand 0 < j < J,ET[Tj] is then the expectation of 7; under PT.

Then we note that

T T
5 (T3] - EF[T]| < ¢ x [P§(t) = PF ()] <T x y_ [P5(t) — P] ()]
t=0 t=0

1 1 1
= Lripsm) - Bl < A1y SKLEs @I @), 6w

where the first identity follows from the property of the total variation distance for discrete random
variables, see, e.g., Proposition 4.2 in [[19], and the last inequality follows from Pinsker’s inequality.
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To further bound KL(PF (7})| UP’;F(Tj)), we note that
KL(B§(T)) || P}(T})) = KL(B§ (P, Dy, Py, Ds, .., Pr, Dr, T,) || P} (P, Dy, Py, D, .., Pr, D, T)))
- KL(]P’g(Pl, Dy, Py, Dy, ..., Pp, Dr|T}) || PT(Py, Dy, Py, Ds, ..., pr, DT|Tj))
< KL(IPg(Pl, Dy, Py, D, ..., Pp, D, T;) || PT(Py, Dy, Py, Ds, ... ,PT,DT,Tj))

/’Lg(P17D1’P27D27"'7PT7DT7Tj)
iu’;r(P17D17P27D2a'~'7PT5DTa1—Vj)

=EJ |Ej |log

‘(P17D17-~-,PT,DT)H

v§(P1, Dy, Py, Dy, ..., Pr,Dr)
V;(P1)D17P27D27---7PT7DT)

=Ej |log

T
% ZEZ}T [(Dy = f;(P)? = (Dy = fo(P:))?]
t=1

oz D [(o(P) — £5(P))?
t=1
1 T

= ZES [iper,y(fo(Pr) — f;(P:))?]

202
=1

BT max(fo(p) = f(p)*

1

= 5,2 B0 [T’ (59)
where the first identity follows from the chain rule for KL divergence, the first inequality follows from
the fact that the KL divergence between any two probability distributions is non-negative, the second
identity holds due to the definition of KL divergence and the law of total expectation, the third identity
holds since given (Pi, D1, P», Ds, ..., Pr, D7), T) takes the value [{1 <¢ < T : P, € I;}| with
probability one, and when T; = {1 <t<T:Pe€e IJ}|, /,I,ZT(Pl, Do, Py, Do, ..., Pr, DTyTj) =
v (P1, Dy, Py, Do, ..., Pr, Dr), the fifth identity holds since D; = fo(P;) + ¢, EJ[e:] = 0 and
P, is independent of ¢, and the sixth identity holds since fy and f; are only different in I;. Then
(36) is obtained by combining (38) with (39).

IN

D.1. Proof of Lemma[3

The result for j = 0 is trivial. When 1 < j < J, from the properties (1) and (2) of S(z), gx(x) is
infinitely differentiable. Now we check the property of f;b(k)) (p)-

(b(k)) (b(k))
;P VY
f;(k)(Pl) - f;(k)(PQ)‘ = <]( 1)) - (j( 2))
4! P2
b(k) (b(k)—1) b(k) (b(k)—1)
b(k)\ [ 1 (i) b(k)\ (1 ()
= E < i >(p1) T (pl)—z i P2 L (p2)
=0 =0
b(k) (4) (%)
. T T
_ Z(Wﬂ))(_l)(b(k)z)(b(k,)_i)!< bJ‘(Pll) 1y (p2) )
i (k)—i+1 b(k)—i+1
i=0 Dy P
b(k) (4) (2)
b(k)! r;'(p1) oy (p2)
= Z 7! 0<Izr'1<ab}%k) b(k)—i+1  b(k)—i+1 |’ (60)
i=0 == Py P2

where the second identity follows the general Leibniz rule. Now we turn to the RHS of Eq. (60). In
the following, we discuss in three cases: (1) p1,p2 € 1, (2) p1 € I and py ¢ I;, and (3) p1,p2 ¢ 1;.
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Case 1: p1 € I; and p3 € 1;.

If 0 <4 < b(k) — 1, we have

rp) ()

b(k 1 b(k)—it+l
]91()H 192()ZJr

7"§“ (p1) r](‘i) (p2)

b(k)—i+1 b(k)—i+1
pl()z+ pl()z+

Tj(‘i) (p2) Tg'i) (p2)

b(k)—i+1 b(k)—i+1
pl()z+ pz()l+

<

b(k)—i+1 b(k)—i+1
p1() i —pz() @

b(k)—i+1_b(k)—i+1
P1() i p2() i

IN

(@) (@) (@)
[ 0) =) |+ mas [0

b(k)—i

(z+) ’|p1 ol Z piph R —ia
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IN

(@)™ 4 (v(k) — i+ 1)n(27)2°07) |py
2n(2J )”llpl pal, ©61)

IN

where the third inequality follows from mean value theorem, the existence of the ¢ + 1-th derivatives,
p1 > 1,p2 > 1and the fact that p} ™ =" — pS® =+ = (5 — po) (08 T pips =) the
fourth inequality holds due to p; < 2 and p, < 2, the fifth inequality holds by our construction that
maxge(o,2] ‘g,(:)(x)‘ < 1, the last inequality follows from (b(k) + 1)2°(*) < 2.J. Then, for i = b(k),

k k
T](‘h( ))(Pl) - T§»b( ))(pz)‘

P1 D2
k k k k

e et I [ oY A
o P1 P1 1 P2
< 77(2J b(k ‘g 2J(p1 — a])) (b(k))(QJ(pz - aj))’ —+ |p1 *Z)Q‘plél[&%};] ?”Jb(k)(p)‘

< (20)°® |20 (py — p2))[" " * + 0(20) ) |py — py]

< (n2J)* +5(20)°®)) |py — pof 7P

< 20(2J)" [p1 — po|F 70| (62)

0 pa) o)

where the second inequality holds  because o o <
p% - p% maxye1,2) |7 (p)‘ < |p1 — palmaxpep g |7 " (p)|, the third inequality fol-

lows that g(®®)(.) is (k — b(k))-Holder continuous, the fourth inequality holds because of
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|p1 — p2] <1landk — b(k) < 1. Then, Eq. can be simplified

;(k)(pl) - f;(k) (pz)‘

b(k)
< b(k)! max max 277(2J)i+1 |p1 — po| 217(2J)k |p1 —p2|kfb(k)
“\= 7l 0<i<b(k)—1 ’
b(k)
b(k)! _
= (z'l) maX{QW(QJ)b(k) [p1 = pal , 20(27)" |p1 — pol* b(k)}
i=0 '
b(k)
b(k)!
= (302 (an 2 i — ol )
i=0
<8 lpy— ol (63)

o7

where the last inequality holds due to 27(2J)% < 25+ @ (k)+1)2h(k> 2FT (8(b(k) +

1)20 ) §ormT T e )k = 4,
Case 2: p; € I and po ¢ 1.

(6(k))
Note that Eq. (6I) still hold in this case. What we need to derive is the bound for |77(pl) —

(0 (k)
¢| (i.e., Eq. (62) can not be directly applied here). Define p, := Proj(p2, I;). Note that p/ is

either a; or bj, r;(a;) = r;(b;) = 15 and r(l)(a]) = r(z)(b ) =0forall 1 <i < b(k). Thus, we
can have

bk b(k b(k b(k
Tj(' ( ))(pl) - 7“§ ( ))(pz) rj(_ ( ))(pl) - T; ( ))(p/2)
n b2 p1 P2
< 29(20)*|py = ph|* " < 2n(20) 1 = pof TP, (64)
where the first equality holds due to rj(-b(k)) (p2) = r](-b(k)) (p5) = 0, the first inequality follows from

Eq. (62) because p; and p) are both in I;, and the second inequality holds due to the projection
process. Together with Eqgs. (60), (61)) and (64), by the same calculation of Eq. (63)), we can know

55 00 = 155 @2)] < 8o = pal T,
Case 3: p; ¢ I and py ¢ 1.

When p; and p, are not in I;, r( )(pl) (-i) (p2) =0, forall 1 < i < b(k). From the first two lines
of Eq. (60), we can have

ri(py) _ ri(pe)
b(k)+1 b(k)+1
PO T ol

7P = 17 (2| =

IN

%5 p?(k)Jrl _ pg(k)ﬂ‘

b(k)

§*5|P1 2| ZP1P2 -
q=0

1. .
< 50(b(k) + 1)2°P|py = po

< 3|py — po| "R,

where the third inequality holds due to p; < 2 and py < 2, and the last inequality follows from
6 <3/((b(k) +1)2°0) —1).

Together with the above three cases, we draw the conclusion that for any p1,ps € [1,2], we have
12E (1) = £ (p2)] < 6 Jp1 — p2]* ™). We finish the proof.
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