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Abstract

Modern deep neural networks (DNNs) have achieved state-of-the-art performances
but are typically over-parameterized. The over-parameterization may result in
undesirably large generalization error in the absence of other customized training
strategies. Recently, a line of research under the name of Sharpness-Aware Mini-
mization (SAM) has shown that minimizing a sharpness measure, which reflects
the geometry of the loss landscape, can significantly reduce the generalization
error. However, SAM-like methods incur a two-fold computational overhead of the
given base optimizer (e.g. SGD) for approximating the sharpness measure. In this
paper, we propose Sharpness-Aware Training for Free, or SAF, which mitigates
the sharp landscape at almost zero additional computational cost over the base
optimizer. Intuitively, SAF achieves this by avoiding sudden drops in the loss in the
sharp local minima throughout the trajectory of the updates of the weights. Specif-
ically, we suggest a novel trajectory loss, based on the KL-divergence between
the outputs of DNNs with the current weights and past weights, as a replacement
of the SAM’s sharpness measure. This loss captures the rate of change of the
training loss along the model’s update trajectory. By minimizing it, SAF ensures
the convergence to a flat minimum with improved generalization capabilities. Ex-
tensive empirical results show that SAF minimizes the sharpness in the same way
that SAM does, yielding better results on the ImageNet dataset with essentially
the same computational cost as the base optimizer. Our codes are available at
https://github.com/AngusDujw/SAF.

1 Introduction

Despite achieving remarkable performances in many applications, powerful neural networks [2, 5, 21,
26, 26, 27, 34, 35] are typically over-parameterized. Such over-parameterized deep neural networks
require advanced training strategies to ensure that their generalization errors are appropriately
small [2, 32] and the adverse effects of the overfitting are alleviated. Understanding how deep neural
networks generalize is perhaps the most fundamental and yet perplexing topic in deep learning.

Numerous studies expend significant amounts of efforts to understand the generalization capabilities of
deep neural networks and mitigate this problem from a variety of perspectives, such as the information
perspective [18], the model compression perspective [1, 9], and the Bayesian perspective [22, 24], etc.
The loss surface geometry perspective, in particular, has attracted a lot of attention from researchers
recently [4, 12–14, 28]. These studies connect the generalization gap and the sharpness of the
minimum’s loss landscape, which can be characterized by the largest eigenvalue of the Hessian
matrix∇2

θfθ [14] where fθ represents the input-output map of the neural network. In other words, a
(local) minimum that is located in a flatter region tends to generalize better than one that is located
in a sharper one [4, 13]. The recent work [8] proposes an effective and generic training algorithm,
named Sharpness-Aware Minimization (SAM), to encourage the training process to converge to a flat
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minimum. SAM explicitly penalizes a sharpness measure to obtain flat minima, which has achieved
state-of-the-art results in several learning tasks [2, 36].
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Figure 1: Accuracy vs training speed of SGD, SAM [8],
ESAM [6], GSAM [36], and SAF. GSAM is the state-of-
the-art among SAM’s follow-up works. Every connected
line represents a method that trains ResNet-50, ResNet-
101, and ResNet-152 models on ImageNet-1k. SAF
outperforms SAM and its variants yet requires no addi-
tional computational overhead.

Unfortunately, SAM’s computational cost is
twice that compared to the given base opti-
mizer, which is typically stochastic gradient de-
scent (SGD). This prohibits SAM from being de-
ployed extensively in highly over-parameterized
networks. Half of SAM’s computational over-
head is used to approximate the sharpness mea-
sure in its first update step. The other half is
used by SAM to minimize the sharpness mea-
sure together with the vanilla loss in the second
update step. As shown in Figure 1, SAM sig-
nificantly reduces the generalization error at the
expense of double computational overhead.

Liu et al. [20] and Du et al. [6] recently ad-
dressed the computation issue of SAM and
proposed LookSAM [20] and Efficient SAM
(ESAM) [6], respectively. LookSAM only mini-
mizes the sharpness measure once in the first of
every five iterations. For the other four iterations,
LookSAM reuses the gradients that minimizes
the sharpness measure, which is obtained by de-
composing the SAM’s updated gradients in the
first iteration into two orthogonal directions. As a result, LookSAM saves 40% computations com-
pared to SAM but unfortunately suffers from performance degradation. On the other hand, ESAM
proposes two strategies to save the computational overhead in SAM’s two updating steps. The first
strategy approximates the sharpness by using fewer weights for computing; the other approximates
the updated gradients by only using a subset containing the instances that contribute the most to the
sharpness. ESAM is reported to save up to 30% computations without degrading the performance.
However, ESAM’s efficiency degrades in large-scale datasets and architectures (from 30% on CIFAR-
10/100 to 22% on ImageNet). LookSAM and ESAM both follow SAM’s path to minimize SAM’s
sharpness measure, which limits the potential for further improvement of their efficiencies.

In this paper, we aim to perform sharpness-aware training with zero additional computations and
yet still retain superior generalization performance. Specifically, we introduce a novel trajectory
loss to replace SAM’s sharpness measure loss. This trajectory loss measures the KL-divergence
between the outputs of neural networks with the current weights and those with the past weights.
We propose the Sharpness-Aware training for Free (SAF) algorithm to penalize the trajectory loss
for sharpness-aware training. More importantly, SAF requires almost zero extra computations (SAF
0.7% v.s. SAM 100%). SAF memorizes the outputs of DNNs in the process of training as the targets
of the trajectory loss. By minimizing it, SAF avoids the quick converging to a local sharp minimum.
SAF has the potential to result in out-of-memory issue on extremely large scale datasets, such as
ImageNet-21K [15] and JFT-300M [25]. We also introduce a memory-efficient variant of SAF, which
is Memory-Efficient Sharpness-Aware Training (MESA). MESA adopts a DNN whose weights are
the exponential moving averages (EMA) of the trained DNN to output the targets of the trajectory
loss. As a result, MESA resolves the out-of-memory issue on extremely large scale datasets, at the
cost of 15% additional computations (v.s. SAM 100%). As shown in Figure 2, SAF and MESA
both encourage the training to converge to flat minima similarly as SAM. Besides visualizing the
loss landscape, we conduct experiments on the CIFAR-10/100 [16] and the ImageNet [3] datasets
to verify the effectiveness of SAF. The experimental results indicate that our proposed SAF and
MESA outperform SAM and its variants with almost twice the training speed; this is illustrated on
the ImageNet-1k dataset in Figure 1.

In a nutshell, we summarize our contributions as follows.

• We propose a novel trajectory loss to measure the sharpness to be used for sharpness-aware
training. Requiring almost zero extra computational overhead, this trajectory loss is a better
loss to quantify the sharpness compared to SAM’s loss.
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Figure 2: Visualizations of loss landscapes [2, 17] of the PyramidNet-110 model on the CIFAR-100 dataset
trained with SGD, SAM, our proposed SAF, and MESA. SAF encourages the networks to converge to a flat
minimum with zero additional computational overhead.

• We address the efficiency issue of current sharpness-aware training, which generally incurs
twice the computational overhead compared to regular training. Based on our proposed
trajectory loss, we propose the novel SAF algorithm for improved generalization ability in
this paper. SAF is demonstrated to outperform SAM on the ImageNet dataset, with the same
computational cost as the base optimizer.

• We also propose the MESA algorithm as a memory-efficient variant of SAF. MESA reduces
the extra memory-usage of SAF at the cost of 15% additional computations, which allows
SAF/MESA to be deployed efficiently (both in terms of memory and computation) on
extremely large-scale datasets (e.g. ImageNet-21K [15]).

2 Preliminaries

Throughout the paper, we use fθ to denote a neural network with weight parameters θ. We are given
a training dataset S that contains i.i.d. samples drawn from a natural distribution D. The training
of the network is typically a non-convex optimization problem which aims to search for an optimal
weight vector θ̂ that satisfies

θ̂ = argmin
θ

LS(fθ) where LS(fθ) =
1

|S|
∑
xi∈S

ℓ(fθ(xi)), (1)

where ℓ can be an arbitrary loss function, and we use xi to denote the pair (inputs, targets) of the i-th
element in the training set. In this paper, we take ℓ to be the cross entropy loss; We use ∥ · ∥ represents
ℓ2 norm; we assume that LS(fθ) is continuous and differentiable, and its first-order derivation is
bounded. In each training iteration, optimizers randomly sample a mini-batch Bt ⊂ S with a fixed
batch size.

Sharpness-Aware Minimization The conventional optimization and training focuses on minimiz-
ing the empirical loss of a single weight vector θ̂ over the training set S as stated in Equation 1. This
training paradigm is known as empirical risk minimization, and tends to overfit to the training set
and converges to sharp minima. Sharpness-Aware Minimization (SAM) [8] aims to encourage the
training to converge to a flatter region in which the training losses in the neighborhood around the
minimizer θ̂ are lower. To achieve this, SAM proposes a training scheme that solves the following
min-max optimization problem:

min
θ

max
ϵ:∥ϵ∥2≤ρ

LS(fθ+ϵ). (2)

where ρ is a predefined constant that constrains the radius of the neighborhood; ϵ is the weight
perturbation vector that maximizes the training loss within the ρ-constrained neighborhood. The
objective loss function of SAM can be rewritten as the sum of the vanilla loss and the loss associated
to the sharpness measure, which is the maximized change of the training loss within the ρ-constrained
neighborhood, i.e.,

θ̂ = argmin
θ

{
RS(fθ) + LS(fθ)

}
where RS(fθ) = max

ϵ:∥ϵ∥2≤ρ
LS(fθ+ϵ)− LS(fθ). (3)

The sharpness measure is approximated as RS(fθ) = LS(fθ+ϵ̂)− LS(fθ), where ϵ̂ is the solution to
an approximated version of the maximization problem where the objective is the first-order Taylor
series approximation of LS(fθ+ϵ) around θ, i.e.,

ϵ̂ = argmax
ϵ:∥ϵ∥2<ρ

LS(fθ+ϵ) ≈ ρ
∇θLS(fθ)

∥∇θLS(fθ)∥
. (4)
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Intuitively, SAM seeks flat minima with low variation in their training losses when the optimal
weights are slightly perturbed.

3 Methodology

The fact that SAM’s computational cost is twice that compared to the base optimizer is its main
limitation. The additional computational overhead is used to compute the sharpness term RS(fθ)
in Equation 3. We propose a new trajectory loss as a replacement of SAM’s sharpness loss RS(fθ)
with essentially zero extra computational overhead over the base optimizer. Next, we introduce the
Sharpness-Aware Training for Free (SAF) algorithm whose pseudocode can be found in Algorithm 1.
We first start with recalling SAM’s sharpness measure loss. Then we explain the intuition for the
trajectory loss as a substitute for SAM’s sharpness measure loss in Section 3.1. Next, we present the
complete algorithm of SAF in Section 3.2 and a memory-efficient variant of it in Section 3.3.

Algorithm 1 Training with SAF and MESA

Input: Training set S; A network fθ with weights θ; Learning rate η; Epochs E; Iterations T per
epoch; SAF starting epoch Estart; SAF coefficients λ; Temperature τ ; SAF hyperparameter Ẽ;
EMA decay factor β for MESA.

1: for e = 1 to E do ▷ e represents the current epoch
2: for t = 1 to T , Sample a mini-batch B ⊂ S do
3: if SAF then
4: Record the outputs: ŷei ← fθ(xi), where xi ∈ B
5: Load ŷ

(e−Ẽ)
i saved in Ẽ epochs ago for each xi ∈ B

6: Compute Ltra
B (fθ,Y(e−Ẽ)) ▷ Defined in Equation 9;

7: else if MESA then
8: Update EMA model weights: vt = βvt−1 + (1− β)θ
9: Compute Ltra

B (fθ, fvt) ▷ Defined in Equation 13
10: if e > Estart then ▷ Added the trajectory loss after Estart epoch
11: L = LB(fθ) + λLtra

B
12: else
13: L = LB(fθ)

14: Update the weights: θ ← θ − η∇θL
Output: A flat minimum solution θ̃.

3.1 General Idea: Leverage the trajectory of weights to estimate the sharpness

We first rewrite the sharpness measure RB(fθ) of SAM based on its first-order Taylor expansion.
Given a vector ϵ̂ (Equation 4) whose norm is small, we have

RB(fθ) = LB(fθ+ϵ̂)− LB(fθ) ≈ LB(fθ) + ϵ̂∇θLB(fθ)− LB(fθ)

= ρ
∇θLB(fθ)

⊤

∥∇θLB(fθ)∥
∇θLB(fθ) = ρ∥∇θLB(fθ)∥. (5)

We remark that minimizing the sharpness loss RB(fθ) is equivalent to minimizing the ℓ2-norm of the
gradient∇θLB(fθ), which is the same gradient used to minimize the vanilla loss LB(fθ).

The learning rate η in the standard training (using SGD) is typically smaller than ρ as suggested by
SAM [8]. Hence, if the mini-batch B is the same for the two consecutive iterations, the change of the
training loss after the weights have been updated can be approximated as follow,

LB(fθ)− LB(fθ−η∇θLB(fθ)) ≈ η∥∇θLB(fθ)∥2 ≈
η

ρ2
RB(fθ)

2. (6)

We also remark that the change of the training loss after the weights have been updated is proportional
to RB(fθ)

2. Hence, minimizing the loss difference is equal to minimizing the sharpness loss of SAM
in this case.
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Figure 3: For the vanilla training loss
LB(fθ) (dashed lines), the blue arrows repre-
sent the trajectory during training. Left: A
sharp local minimum tends to have a large
trajectory loss. Right: By minimizing the tra-
jectory loss, SAF prevents the training from
converging to a sharp local minimum.

This inspires us to leverage the update of the weights in the
standard training to approximate SAM’s sharpness mea-
sure. Regrettably though, the samples in the mini-batches
Bt and Bt+1 in two consecutive iterations are different
with high probability, which does not allow the sharpness
to be computed as in Equation 6. This is precisely the
reason why SAM uses an additional step to compute ϵ̂ for
approximating the sharpness. To avoid these additional
computations completely, we introduce a novel trajectory
loss that makes use of the trajectory of the weights learned
in the standard training procedure to measure sharpness.

We denote the past trajectory of the weights as the itera-
tions progress as Θ = {θ2, θ3, . . . , θt−1}. Hence, θt repre-
sents the weights in the t-th iteration, which is also the cur-
rent model update step. We use SGD as the base optimizer
to illustrate our ideas. Recall that standard SGD updates the weights as θt+1 = θt − η∇θtLBt

(fθt).
We aim to derive an equivalent term of the sharpness RBt(fθt) that can be computed without addi-
tional computations. The quantity RBt(fθt) as defined in Equation 5 is always non-negative, and
thus we have

argmin
θt

RBt(fθt) = argmin
θt

γtRBt(fθt)RBt(fθt)

= argmin
θt

[γtRBt
(fθt)RBt

(fθt) + γiRBt
(fθi)RBi

(fθi)]

= E
θi∼Unif(Θ)

[γiRBt(fθi)RBi(fθi)], (7)

where θi ∼ Unif(Θ) means that θi is uniformly distributed in the set Θ, γi is defined as ηt

ρ2 cos(Φi),
where Φi is the angle between the gradients that are computed using the mini-batches Bi and Bt,
respectively. Note that for i ̸= t, γiRBt(fθi)RBi(fθi) is a constant with respect to the variable θt.
Therefore, when we traverse all the terms that satisfy i ̸= t, we obtain Equation 7. Hence, the
sharpness can therefore be alternatively estimated as follows:

E
θi∼Unif(Θ)

[γiRBt
(fθi)RBi

(fθi)] ≈ E
θi∼Unif(Θ)

[
ηi cos(Φi)∥∇θiLBt

(fθi)∥ ∥∇θiLBi
(fθi)∥

]
= E

θi∼Unif(Θ)

[
ηi∇θiLBt

(fθi)
⊤∇θiLBi

(fθi)
]
≈ E

θi∼Unif(Θ)

[
LBt

(fθi)− LBt
(fθi+1

)
]

=
1

t−1
[
LBt(fθ1)− LBt(fθt)

]
. (8)

Further details of the above derivation can be found in Appendix A.1. We remark that minimizing
the loss difference LBt(fθ1)− LBt(fθt) is equivalent to minimizing the SAM’s sharpness measure
RBt(fθt). Accordingly, requiring no additional computational overhead, the training loss difference
is a good proxy to SAM’s loss RBt(fθt) to quantify and penalize the sharpness.

3.2 Sharpness-Aware Training for Free (SAF)

We elaborate our proposed training algorithm SAF in this subsection. To estimate the sharpness
precisely, SAF only takes the update trajectory in the past Ẽ epochs into consideration. When
simultaneously minimizing the vanilla loss and the training loss difference (as in Equation 8), the
second term −LBT

(fθT ) will unfortunately cancel out the vanilla loss. Therefore, we replace the
cross entropy loss with the Kullback–Leibler (KL) divergence loss to decouple the vanilla loss. We
also soften the targets of the KL divergence loss using a temperature τ . Accordingly, the trajectory
loss at e-th epoch is defined as follow

Ltra
B (fθ,Y(e−Ẽ)) =

λ

|B|
∑

xi∈B,ŷ(e−Ẽ)
i ∈Y(e−Ẽ)

KL

(
1

τ
ŷ
(e−Ẽ)
i ,

1

τ
fθ(xi)

)
, (9)

where Y(e−Ẽ) =
{
ŷ
(e−Ẽ)
i = f

(e−Ẽ)
θ (xi) : xi ∈ B

}
. We remark that ŷ(e−Ẽ)

i is the network output
of the instance xi in Ẽ epochs ago, as illustrated in Line 4 of Algorithm 1. The outputs of each
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instance xi will be recorded, and no additional computations are required during this procedure. The
trajectory loss will be deployed after a predefined epoch Estart (Line 10 of Algorithm 1), because the
outputs of the DNN are neither stable nor reliable at the first few epochs. Intuitively, the trajectory
loss slows down the rate of change of the training loss to avoid convergence to sharp local minima.
This is illustrated in Figure 3.

3.3 Memory-Efficient Sharpness-Aware Training (MESA)

The memory usage for recording the outputs is negligible for standard datasets such as CIFAR [16]
(57 MB). However, SAF’s memory usage is proportional to the size of the training datasets, which
may result in an out-of-memory issue on extremely large-scale datasets such as ImageNet-21k [15]
and JFT-300M [25]. Another limitation of SAF is that the coefficient γt will decay at the same rate
as the learning rate ηt since γt ∝ ηt as shown in Equation 8. Hence, the sharpness at the current
weights are quantified by smaller coefficients γt. For a SAF-like algorithm to be applicable on
extremely large-scale datasets and to emphasize the sharpness of the most current or recent weights,
we introduce Memory-Efficient Sharpness-Aware Training (MESA), which adopts an exponential
moving average (EMA) weighting strategy on the weights to construct the trajectory loss. The EMA
weight vt at the t-th iteration is updated as follows

vt = βvt−1 + (1− β)θt, (10)

where β ∈ (0.9, 1) is the decay coefficient of EMA. Given that v1 = θ1, and θt+1 = θt −
η∇θtLBt(fθt), the EMA weight in the t-th iteration, can be expressed as

vt = θ1 −
t−1∑
i=1

(1− βt−i)η∇θiLBi
(fθi) = θt +

t−1∑
i=1

βt−iη∇θiLBi
(fθi). (11)

More details of this derivation can be found in Appendix A.2. Therefore, the trajectory from θt to
vt is collected in the vector WEMA = (w2, w3, . . . , wt−1), where wi = wi−1 − βt−iη∇θiLBi

(fθi),
w1 = vt, and wt = θt. If we regard the outputs of EMA model fvt as the targets of the trajectory
loss, and substitute it into Equation 8,

1

t−1
[
LBt

(fvt)−LBt
(fθt)

]
= E

wi∼Unif(WEMA)

[
LBt

(fwi
)− LBt

(fwi+1
)
]

≈ E
wi∼Unif(WEMA)

[
βt−iγiRBt

(fwi
)RBt

(fθi)
]
. (12)

More details can be found in Appendix A.1. Hence, the EMA coefficients βt−i will place more
emphasis on the sharpness of the current and most recent weights since 0 < β < 1. The trajectory
loss of MESA is

Ltra
B (fθ, fvt) =

1

|B|
∑
xi∈B

KL

(
1

τ
fvt(xi),

1

τ
fθ(xi)

)
. (13)

We see that the difference between this and the trajectory loss Ltra
B (fθ,Y(e−Ẽ)) discussed in Sec-

tion 3.2 is that the target ŷ(e−Ẽ)
i at the t-iteration has been replaced by fvt(xi) for xi ∈ B.

4 Experiments

We verify the effectiveness of our proposed SAF and MESA algorithms in this section. We first
conduct experiments to demonstrate that our proposed SAF achieves better performance compared to
SAM which requires twice the training speed. SAF is shown to outperform SAM and its variants
in large-scale datasets and models. The main results are summarized into Tables 1 and 3. Next, we
evaluate the sharpness of SAF using the measurement proposed by SAM. We demonstrate that SAF
encourages the training to converge to a flat minimum. We also visualize the loss landscape of the
minima converged by SGD, SAM, SAF, and MESA in Figures 2 and 5, which show that both SAF’s
and MESA’s loss landscapes are as flat as SAM.
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4.1 Experiment Setup

Datasets We conduct experiments on the following image classification benchmark datasets: CIFAR-
10, CIFAR-100 [16], and ImageNet [3]. The 1000-class ImageNet dataset contains roughly 1.28
million training images, which is the popular benchmark for evaluating large-scale training.

Models We employ a variety of widely-used DNN architectures to evaluate the performance and
training speed. We use ResNet-18 [11], Wide ResNet-28-10 [31], and PyramidNet-110 [10] for the
training in CIFAR-10/100 datasets. We use ResNet [11] and Vision Transformer [5] models with
various sizes on the ImageNet dataset.

Baselines We take the vanilla (AdamW for ViT, SGD for the other models), SAM [8], ESAM [6],
GSAM [36], and LookSAM [20] as the baselines. ESAM and LookSAM are SAM’s follow-up
works that improve efficiency. GSAM achieves the best performance among the SAM’s variants. We
reproduce the results of the vanilla and SAM, which matches the reported results in [2, 20, 36]. And
we report the cited results of baselines ESAM [6], GSAM [36], and LookSAM [20].

Implementation details We set all the training hyperparameters to be the same for a fair comparison
among the baselines and our proposed algorithms. The details of the training setting are displayed in
the Appendix. We follow the settings of [2, 6, 20, 36] for the ImageNet datasets, which is different
from the experimental setting of the original SAM paper [8]. The codes are implemented based
on the TIMM framework [29]. The ResNets are trained with a batch size of 4096, 1.4 learning
rate, 90 training epochs, and SGD optimizer (momentum=0.9) over 8 Nvidia V-100 GPU cards.
The ViTs are trained with 300 training epochs and AdamW optimizer (β1 = 0.9, β2 = 0.999). We
only conduct the basic data augmentation for the training on both CIFAR and ImageNet (Inception-
style data augmentation). The hyperparameters of SAF and MESA are consistent among various
DNNs architectures and various datasets. We set τ = 5, Ẽ = 3, Estart = 5 for all the experiments,
λ ∈ {0.3, 0.8} for SAF and MESA , respectively.

Table 1: Classification accuracies and training speeds on the ImageNet dataset. The numbers in parentheses
(·) indicate the ratio of the training speed w.r.t. the vanilla base optimizer’s (SGD’s) speed. Green indicates
improvement compared to SAM, whereas red suggests a degradation.

ResNet-50 ResNet-101

ImageNet Accuracy images/s Accuracy images/s

Vanilla (SGD) 76.0 1,627 (100%) 77.8 1,042 (100%)
SAM [8] 76.9 802 (49.3%) 78.6 518 (49.7%)

ESAM 1 [6] 77.1 1,037 (63.7%) 79.1 650 (62.4%)
GSAM 2 [36] 77.2 783 (48.1%) 78.9 503 (48.3%)
SAF (Ours) 77.8 1,612 (99.1%) 79.3 1,031 (99.0%)

MESA (Ours) 77.5 1,386 (85.2%) 79.1 888 (85.4%)

ResNet-152 ViT-S/32

ImageNet Accuracy images/s Accuracy images/s

Vanilla3 78.5 703 (100%) 68.1 5,154 (100%)
SAM [8] 79.3 351 (49.9%) 68.9 2,566 (49.8%)

LookSAM4 [20] - - 68.8 4,273 (82.9%)
GSAM2 [36] 80.0 341 (48.5%) 73.8 2,469 (47.9%)
SAF (Ours) 79.9 694 (98.7%) 69.5 5,108 (99.1%)

MESA (Ours) 80.0 601 (85.5%) 69.6 4,391 (85.2%)

4.2 Experimental Results

ImageNet Our proposed SAF and MESA achieve better performance on the ImageNet dataset
compared to the other competitors. We report the best test accuracies and the average training speeds

1We report in [6], as ESAM only release their codes in Single-GPU environment.
2We report the results in [36], but failed to reproduce them using the officially released codes.
3We use base optimizers SGD for ResNet-152 and AdamW for ViT-S/32.
4The authors of LookSAM have not released their code for either Single- or Multi-GPU environments; hence

we report the results in [20]. LookSAM only reports results for ViTs and there are no results for ResNet.
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(a) Training loss vs Epochs of SAF.
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Figure 4: Left: The change of the vanilla loss (exclude the trajectory loss) in each epoch. SAF does not affect
the convergence of the training. Right: The change of sharpness, which is the measurement proposed by SAM
with ρ = 0.05. SAF and MESA decrease the sharpness measure of SAM significantly.

in Table 1. The experiment results demonstrate that SAF incurs no additional computational overhead
to ensure that the training speed is the same as the base optimizer—SGD. We observe that SAF and
MESA perform better in the large-scale datasets. SAF trains DNN at a douled speed than SAM
(SAF 99.2% vs SAM 50%). MESA achieves a training speed which is 84% to 85% that of SGD.
Concerning the performance, both SAF and MESA outperform SAM up to (0.9%) on the ImageNet
dataset. More importantly, SAF and MESA achieve a new state-of-the-art results of SAM’s follow-up
works on the ImageNet datasets trained with ResNets.

CIFAR10 and CIFAR100 We ran all the experiments three times with different random seeds for
fair comparisons. We summarize the results in Table 3, in the same way as we do for the experiments
on the ImageNet dataset. The training speed is consistent with the results on ImageNet. Similarly,
SAF and MESA outperform SAM on large-scale models—Wide Resnet and PyradmidNets.

4.3 Discussion

Memory Usage We evaluate the additional memory usage of SAF and MESA on the ImageNet
dataset with the ResNet-50 model. We only present the results on the ImageNet in Table 2, because
the memory usage of SAF on the CIFAR dataset is negligible (57 Mb). MESA saves 99.3% memory
usage compared to SAF, which allows MESA to be deployed on extremely large-scale datasets.

Table 2: The additional memory used by
SAF and MESA on the ImageNet dataset.

Algorithms Extra Memory Usage

SAF 14,643 MB
MESA 98 MB

Convergence Rate Intuitively, SAF minimizes the trajec-
tory loss to control the rate of training loss change to obtain
flat minima. A critical problem of SAF may be SAF’s influ-
ence on the convergence rate. We empirically show that the
change of the sharpness-inducing term in SAF and MESA
(compared to SAM) will not affect the convergence rate
during training. Figure 4a illustrates the change of the train-
ing loss in each epoch of SGD, SAM, SAF, and MESA. It
shows that SAF and MESA converge at the same rate as
SGD and SAM.

Sharpness We empirically demonstrate that the trajectory loss can be a reliable proxy of the sharpness
loss proposed by SAM. We plot the sharpness, which is the measurement of SAM in Equation 6,
in each epoch of SAM, SGD, SAF, and MESA during training. As shown in Figure 4b, SAF and
MESA minimize the sharpness as SAM does throughout the entire training procedure. Both SAF’s
and MESA’s sharpness decrease significantly at epoch 5, from which the trajectory loss starts to be
minimized. SAM’s sharpness is lower than SAF’s and MESA’s in the second half of the training. A
plausible reason is that SAM minimizes the sharpness directly. However, SAF and MESA outperform
SAM in terms of the test accuracies, as demonstrated in Table 1.

Visualization of Loss Landscapes We also demonstrate that minimizing the trajectory loss is an
effective way to obtain flat minima. We visualize the loss landscape of converged minima trained
by SGD, SAM, SAF, and MESA in Figures 2 and 5. We follow the method to do the plotting
proposed by [17], which has also been used in [2, 6]. The x- and y-axes represent two random
sampled orthogonal Gaussian perturbations. We sampled 100× 100 points with random Gaussian
perturbations for visualization. The visualized loss landscape clearly demonstrate that SAF can
converge to a region as flat as SAM does.
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Figure 5: Loss landscapes visualization of the Wide ResNet-28-10 model on the CIFAR-100 dataset trained
with SGD, SAM, our proposed SAF and MESA.

Table 3: Classification accuracies and training speed on the CIFAR-10 and CIFAR-100 datasets. The numbers
in parentheses (·) indicate the ratio of the training speed w.r.t. the vanilla base optimizer’s (SGD’s) speed. Green
indicates improvement compared to SAM, whereas red suggests a degradation.

CIFAR-10 CIFAR-100

ResNet-18 Accuracy images/s Accuracy images/s

Vanilla (SGD) 95.61± 0.02 3,289 (100%) 78.32± 0.02 3,314 (100%)
SAM [8] 96.50± 0.08 1,657 (50.4%) 80.18± 0.08 1,690 (51.0%)

SAF (Ours) 96.37± 0.02 3,213 (97.6%) 80.06± 0.05 3,248 (98.0%)
MESA (Ours) 96.24± 0.02 2,780 (84.5%) 79.79± 0.09 2,793 (84.3%)

ResNet-101 Accuracy images/s Accuracy images/s

Vanilla (SGD) 96.52± 0.04 501 (100%) 80.68± 0.16 501 (100%)
SAM [8] 97.01± 0.32 246 (49.1%) 82.99± 0.04 249 (49.7%)

SAF (Ours) 96.93± 0.05 497 (99.2%) 82.84± 0.19 497 (99.2%)
MESA (Ours) 96.90± 0.23 425 (84.8%) 82.51± 0.27 426 (85.0%)

Wide-28-10 Accuracy images/s Accuracy images/s

Vanilla (SGD) 96.50± 0.05 732 (100%) 81.67± 0.18 739 (100%)
SAM [8] 97.07± 0.11 367 (50.1%) 83.51± 0.04 370 (50.0%)

SAF (Ours) 97.08± 0.15 727 (99.3%) 83.81± 0.04 729 (98.6%)
MESA (Ours) 97.16± 0.23 617 (84.3%) 83.59± 0.24 625 (84.6%)

PyramidNet-110 Accuracy images/s Accuracy images/s

Vanilla (SGD) 96.66± 0.09 394 (100%) 81.94± 0.06 401 (100%)
SAM [8] 97.25 ± 0.15 194 (49.3%) 84.61± 0.06 198 (49.4%)

SAF (Ours) 97.34± 0.06 391 (99.2%) 84.71± 0.01 397 (99.0%)
MESA (Ours) 97.46± 0.09 332 (84.3%) 84.73± 0.14 339 (84.5%)

5 Other Related Works

The first work that revealed the relation between the generalization ability and the geometry of the
loss landscape (sharpness) can be traced back to [12]. Following that, many studies verified the
relation between the flat minima and the generalization error [4, 7, 13, 14, 17, 19, 23] . Specifically,
Keskar et al. [14] proposed a sharpness measure and indicated the negative correlation between the
sharpness measure and the generalization abilities. Dinh et al. [4] further argued that the sharpness
measure can be related to the spectrum of the Hessian, whose eigenvalues encode the curvature
information of the loss landscape. Jiang et al. [13] demonstrated that one of the sharpness-based
measures is the most correlated one among 40 complexity measures by a large-scale empirical study.

SAM [8] solved the sharp minima problem by modifying training schemes to approximate and
minimize a certain sharpness measure. The concurrent works [30, 33] propose a model to adver-
sarially perturb trained weights to bias the convergence. The aforementioned methods lead the
way for sharpness-aware training despite the computational overhead being doubled over that of
the base optimizer. Subsequently, LookSAM [20] and Efficient SAM (ESAM) [6] were proposed
to alleviate the computational issue of SAM. Apart from efficiency issues, Surrogate Gap Guided
Sharpness-Aware Minimization (GSAM) [36] was proposed to further improve SAM’s performance.
GSAM places more emphasis on the gradients that minimize the sharpness loss to achieve the best
generalization performance among all the research that followed SAM.
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6 Conclusion and Future Research

In this work, we introduce a novel trajectory loss as an equivalent measure of sharpness, which
requires almost no additional computational overhead and preserves the superior performance of
sharpness-aware training [6, 8, 20, 36]. In addition to deriving a novel trajectory loss that penalizes
sharp and sudden drops in the objective function, we propose a novel sharpness-aware algorithm SAF,
which achieves impressive performances in terms of its accuracies on the benchmark CIFAR and
ImageNet datasets. More importantly, SAF trains DNNs at the same speed as non-sharpness-aware
training (e.g., SGD). We also propose MESA as a memory-efficient variant of SAF to avail sharpness-
aware training on extremely large-scale datasets. In future research, we will further enhance SAF
to automatically sense the current state of training and alter the training dynamics accordingly. We
will also evaluate SAF in more learning tasks (such as natural language processing) and enhance it to
become a general-purpose training strategy.
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