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Abstract

In this supplementary file, we introduce some implementation details in our work
and discuss the limitations and potential social impacts of our proposed dataset.
We also present a demo video at https://lisiyao21.github.io/projects/
AnimeRun to illustrate the dataset more comprehensively. A datasheet is provided
along with this supplementary file.

1 Implementation Details

1.1 Color Augmentation

An object in the frames of AnimeRun is rendered into flattened colors defined by the materials of this
object under “FLAT” lighting choice of Workbench engine in Blender. To make the luminance/color
distribution of AnimeRun closer to the that of real-world cartoons, we extract the representative colors
from ATD-12K [15] dataset and randomly assign these colors to existing materials for augmentation.
First, we manually cluster frames of ATD-12K to different groups based on subjective judgement on
the analogy of styles and colorization, and acquire 46 groups for Disney styles and 26 for Japanese
styles. Then, for each group g, we record all RGB colors that appear over a frequency of 0.05% {ci}g
as color candidates for this group as well as corresponding appearance times {Ni}g. To reduce the
storage for different RGB combinations, we quantize each color channel to 16 values during counting.
When applying color aggregation to a film cut in AnimeRun, we select a group g and sample colors
from {ci}g to materials by using random.choices function of Python with corresponding sampling
weights of ln(Ng

i /10). Examples of augmented frames and corresponding color sources are shown
in Figure 1.

Augmented frame Samples of corresponding color source
Figure 1: Examples of color augmented frames and the corresponding color source.
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1.2 Benchmark Experiments

Optical Flow. In our experiment, we finetune and evaluate four optical flow methods PWC-Net
[17], RAFT [18], GMA [6] and GMFlow [19]. Since the officially released code of PWC-Net
is incompatible to our environment settings, we use the implementation in [12], which achieves
comparable scores on the MPI-Sintel benchmark [2]. For other three methods, we exploit the official
model and pretrained weights as baselines. Similar to the training stage of “sintel” in [18], we
finetune these networks on different datasets mixed with FlyingThings3D [10], with a mixing rate of
around 10:1. During finetuning, images are cropped into the size of 368× 768 when finetuning on
Sintel and AnimeRun, and 480 × 480 for CreativeFlow+ [14]. Scale and color augmentations are
applied as the same as [18]. To train PWC-Net, we adopt L1 loss between the final predicted flow
and the ground truth, while for other three methods, we also supervise the intermediate flow after
each update using the sequential loss defined in [18]. We use AdamW optimizer [9] with weight
decay of 5× 10−5, and apply gradient clipping to range [−1, 1]. All flow networks are finetuned by
20, 000 iterations with a batch size of 12 on two NVIDIA V100 GPUs, with initial learning rate of
10−4. During evaluation, for RAFT [18] and GMA [6], we test after 32 flow updates .

Segment Matching. Since the official Animation Transformer (AnT) is not publicly available, we
implement a similar version referring to the description in [3]. AnT is composited of a CNN-based
segment descriptor, an MLP-based positional encoder, and a GNN-based feature aggregator realized
in Transformer structure as SuperGlue [13], where the final mapping is computed from the segment-
wise similarity matrix of aggregated features. Given a pair of input frames I0, I1 ∈ RH×W×3

and the corresponding segmentation labels S0, S1 ∈ RH×W , we first apply a three-layer CNN
to extract the feature of each frame and apply super-pixel pooling [8] on the features to obtain
region-wise feature F 0 ∈ RN×D and F 1 ∈ RM×D each segment S0 and S1, where N and M
are the segment numbers of S0 and S1 respectively, and D is the channel number (128 in our
experiment). Second, for each segment St

i (t = 0, 1) , we feed [xmin, ymin, xmax, ymax], which
represent the boundary of this segment, to an MPL to obtain positional encoding P t

i ∈ RD for
this segment. Third, we adopt a Transformer T implemented in [13] to aggregate the segment
features as F̂ 0, F̂ 1 = T (F 0 + P 0, F 1 + P 1). Next, we compute the correlation between features
of S0 and S1 to be the similarity matrix M = corr(F̂ 0, F̂ 1) ∈ RN×M . Finally, a softmax layer
is applied alongside the rows of to obtain M̂ = softmax(M, 1). We use weighted cross-entropy
loss L =

∑
i=0...N−1 wi · CE(M̂i,m0→1[i]) to train the network, where wi = |S0 = i|/(H ×W ).

During training, images are randomly cropped to 368 × 368. We use Adam optimizer [7] with
β1 = 0.9 and β2 = 0.99 to train the networks for 3, 000 iterations. The learning rate is set to
10−4. The whole training process is conducted on one NVIDIA V100 GPU. Code is available at
https://github.com/lisiyao21/AnimeRun/.

2 Limitations

In this work, we present a new dataset, AnimeRun, which to our knowledge is the first 2D animation
visual correspondence dataset composed from full scenes of industry-level 3D movies. Compared to
most existing datasets [1, 5, 11, 2, 4, 10, 16] that are built for natural scenarios, our dataset features
the style of 2D cartoons, including explicit contour lines and flat color pieces. Meanwhile, in contrast
to previous datasets [14] designed for 2D animations, AnimeRun not only resembles the real anime
more in image composition, but also possesses richer and more complex motion patterns.

Besides the advantages, it is worthy to note that for real cartoon films, different producers have their
unique painting styles on processing details (e.g., brightness and color distributions), and various
special effects including different 2D shading and lighting. The cartoon style in AnimeRun is designed
to standard capture the generic visual style of 2D animation instead of producer- or studio-specific
styles. Therefore, compared to real 2D cartoon films, the colored frames in AnimeRun are more like
an mid product after colorization stage of 2D animation pipeline without special effects as shown in
Figure 2. However, lacking of such effect does not mean AnimeRun cannot generalize to finished
animations – we show its usefulness for real cartoon frame interpolation in the Discussion section of
the main paper.

If there is need for the painting style of a particular studio, one can add special effects into our data in
the pre-processing for more robust industrial usage.
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Figure 2: Simplified diagram of making 2D animation. In AnimeRun data, contour lines in gray scale are
targeted towards -intermediate animation at the stage marked as green dot. While the colored frames resembles
those marked as blue dot after the colorization step. Special effects, including shading and 2D style lighting,
which are represented as the red dot are not included in AnimeRun.

3 Social Impacts

As to potential social impacts, since our data are made from public and open-source movies, Ani-
meRun is not subject to ethical risks, nor are its contents causing public discomfort. We believe the
proposed dataset could facilitate some crucial steps in the processing of 2D animation, benefiting the
development of relevant industries.

4 Demo Video

We present a video to demonstrate the content of our dataset and show its advantages compared to
existing correspondence datasets. We display the comparison between the original 3D movies and
the converted 2D cartoons side by side, and present the cartoon frames and the correspondence labels
to show both the rich image components and complex motion patterns of our data.
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