
A Proofs

Proof of Theorem 5.4. We proceed in cases. For concision, we write ft for f(st, at, c) and f̃t for
f̃(ht, at), where (f, f̃) are the pairs defined in Assumption 5.1.

Online/Reward-matching. By the definition of the value function, we can write that

1

T
(J(πE)− J(π)) =

1

T

T∑
t=1

Eτ∼πE [r(st, at, c)]− Eτ∼π[r(st, at, c)] (21)

≤ sup
(f,f̃)∈Fr×F̃r

1

T

T∑
t=1

Eτ∼πE [ft − f̃t + f̃t]− Eτ∼π[ft − f̃t + f̃t] (22)

≤ 1

T

T∑
t=1

ϵrew(t) + sup
(f,f̃)∈Fr×F̃r

1

T

T∑
t=1

Eτ∼πE [ft − f̃t]− Eτ∼π[ft − f̃t] (23)

=
1

T

T∑
t=1

ϵrew(t) + δrew(t). (24)

Note that via Assumption 5.1,

lim
T→∞

1

T

T∑
t=1

δrew(t) = 0. (25)

We therefore can drop the latter term from our bound. By the definition of the lim sup, we know that
∀ϵ > 0, ∃T (ϵ) s.t. ∀t ≥ T (ϵ), ϵrew(t) ≤ ϵrew + ϵ. Let

S(ϵ) =

T (ϵ)∑
t=1

ϵrew(t) (26)

denote the prefix sum. Then, we know that ∀T ′ ≥ T (ϵ),
T ′∑
t=1

ϵrew(t) = S(ϵ) +

T ′∑
t=T (ϵ)

ϵrew(t) ≤ S(ϵ) + (T ′ − T (ϵ) + 1)(ϵrew(∞) + ϵ). (27)

Taking the average by dividing both sides by T ′, we arrive at

1

T ′

T ′∑
t=1

ϵrew(t) ≤
S(ϵ)

T ′ + (1− T (ϵ)− 1

T ′ )(ϵrew(∞) + ϵ). (28)

Taking limT ′→∞ tells us that averages converge to at most ϵrew(∞) + ϵ. Because this condition
holds for all ϵ > 0, we can take the limϵ→0 to prove that

lim
T ′→∞

1

T ′ (J(π
E)− J(π)) ≤ ϵrew(∞). (29)

Interactive/On-Q. We proceed similarly to the previous case. Via the Performance Difference
Lemma [Kakade and Langford, 2002], we can write that

1

T
(J(πE)− J(π)) =

1

T

T∑
t=1

Eτ∼π[Q
πE

(st, at, c)− Ea∼πE [QπE

(st, a, c)]] (30)

≤ sup
(f,f̃)∈FQE

×F̃QE

1

T

T∑
t=1

Eτ∼π[ft − f̃t + f̃t − Ea∼πE [ft − f̃t + f̃t]] (31)

≤ H

T

T∑
t=1

ϵon(t) + sup
(f,f̃)∈Fon×F̃on

H

T

T∑
t=1

Eτ∼π[ft − f̃t − Ea∼πE [ft − f̃t]]

=
H

T

T∑
t=1

ϵon(t) + δon(t). (32)
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The H factor comes from the scaling of Fon = {f/2H : f ∈ FQE
}. As before, via Assumption 5.1,

lim
T→∞

1

T

T∑
t=1

δon(t) = 0. (33)

By the definition of the lim sup, we know that ∀ϵ > 0, ∃T (ϵ) s.t. ∀t ≥ T (ϵ), ϵon(t) ≤ ϵon + ϵ. Let

S(ϵ) =

T (ϵ)∑
t=1

ϵon(t) (34)

denote the prefix sum. Then, we know that ∀T ′ ≥ T (ϵ),

T ′∑
t=1

ϵon(t) = S(ϵ) +

T ′∑
t=T (ϵ)

ϵon(t) ≤ S(ϵ) + (T ′ − T (ϵ) + 1)(ϵon(∞) + ϵ). (35)

Taking the average by dividing both sides by T ′, we arrive at

1

T ′

T ′∑
t=1

ϵon(t) ≤
S(ϵ)

T ′ + (1− T (ϵ)− 1

T ′ )(ϵon(∞) + ϵ). (36)

Taking limT ′→∞ tells us that averages converge to at most ϵon(∞) + ϵ. Because this condition holds
for all ϵ > 0, we can take the limϵ→0 to prove that

lim
T ′→∞

1

T ′ (J(π
E)− J(π)) ≤ Hϵon(∞). (37)

Offline/Off-Q. Via the Performance Difference Lemma [Kakade and Langford, 2002], we can write
that

1

T
(J(πE)− J(π)) =

1

T

T∑
t=1

Eτ∼πE [Qπ(st, at, c)− Ea∼πE [Qπ(st, a, c)]] (38)

≤ sup
(f,f̃)∈FQ×F̃Q

1

T

T∑
t=1

Eτ∼πE [ft − f̃t + f̃t − Ea∼π[ft − f̃t + f̃t]] (39)

≤ T

T

T∑
t=1

ϵoff(t) + sup
(f,f̃)∈Foff×F̃off

T

T

T∑
t=1

Eτ∼πE [ft − f̃t − Ea∼π[ft − f̃t]]

=

T∑
t=1

ϵoff(t) + δoff(t). (40)

The T factor comes from the scaling of Foff = {f/2T : f ∈ FQ}. Thus, we can write that

lim
T→∞

T∑
t=1

ϵoff(t) + δoff(t) = Σoff(∞), (41)

which implies that

lim
T→∞

1

T
(J(πE)− J(π)) ≤ Σoff(∞). (42)

Proof of Theorem 5.5. Consider the Cliff problem of Swamy et al. [2021]. There is no hidden context
in this problem so δoff(t) = 0. Let the learner take the action that puts them at the bottom of the cliff
at timestep t with probability 1

t+1 , giving us ϵoff(t) = 1
t+1 . Note that ϵoff(t) decays to 0 but Σoff(t)

does not as the harmonic series diverges. Once the learner falls off the cliff, they recieve no reward
for the rest of the horizon. This means that

1

T
(J(πE)− J(π)) =

1

T

T∑
t=1

T − t

t+ 1
=

T∑
t=1

1

t+ 1
(1− t

T
) =

T∑
t=1

ϵoff(t)(1−
t

T
). (43)
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The limit of the sum of the first term is Σoff(∞). For the second term,

lim
T→∞

1

T

T∑
t=1

t

t+ 1
= 1. (44)

Thus,

lim
T→∞

1

T
(J(πE)− J(π)) = Σoff(∞)− 1 ≳ Σoff(∞). (45)

Proof of Theorem 5.7. Define the infinite-horizon payoffs 2 for our moment-matching games as
follows:

Urew(π, f) = lim
T→∞

Eτ∼π[f(hT , aT )]− Eτ∼πE [f(hT , aT )], (46)

Uon(π, f) = lim
T→∞

Eτ∼π[f(hT , aT )]− Eτ∼π,a∼πE
[f(hT , a)]. (47)

Note that under Asymptotic Realizability (Assumption 5.1), there exists a policy π ∈ Π s.t. ∀f ∈ F̃ ,
Urew(π, f) = 0 and Uon(π, f) = 0.

Let πrew and πon denote ϵ-approximate Nash equilibrium strategies for the above two games (which
could be computed by, say, running a no-regret algorithm over Π against a no-regret or best-response
counterpart for the f player). By the definition of an approximate Nash equilibrium, we know that

sup
f∈F̃r

Urew(πrew, f)− ϵ ≤ inf
π∈Π

Urew(π, f) = 0, (48)

where the last step comes from our realizability assumption. This implies that

sup
f∈F̃r

Urew(πrew, f) = ϵrew(∞) ≤ ϵ. (49)

Similarly, we can write that

sup
f∈F̃on

Uon(πon, f) = ϵon(∞) ≤ ϵ. (50)

Plugging these expressions into Theorem 5.4 gives us the desired results.

Proof of Corollary 5.8. Assume the learner is subject to an ϵexp > 0 probability of playing a different
action than intended (either as part of the dynamics or because of explicit exploration noise). Consider
the following function:

f̃(ht, at) = 1[at =
K

max
k

n+
k

nk
], (51)

where nk refers to the total number of pulls of arm k and n+
k refers to the number of pulls of arm k

that elicit positive feedback. We proceed by arguing that this function will converge to the reward
function of the problem. We specialize on the two-arm case as it is the most difficult for the learner.
W.l.o.g., let arm 1 be the correct arm. Note that r1 =

n+
1

n1
and r2 =

n+
2

n2
are both averages of Bernoulli

coin flips. Thus, via a Hoeffding bound, we know that

P (r2 ≥ r1) = P (r2 − E[r2] ≥ r1 − E[r2]) (52)
= P (r2 − ϵobs ≥ r1 − ϵobs) (53)

≤ exp (
−2(r1 − ϵobs)

2

n2
) = δ(t). (54)

Given that (r1 − ϵobs)
2 is bounded and w.h.p. not equal to 0, we can say that limt→∞ δ(t) = 0

as limt→∞ n2 = ∞ because of the exploration noise / dynamics. Thus, we know that eventually,
r1 < r2, which implies that f̃(ht, at) = 1[at = 1], which is the reward function of the problem. This

2When this limit exists, the average over timesteps of moment-matching error is equal to it.
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means that we are asymptotically reward-moment identifiable for the minimal reward-moment class,
Fr = {r}. As we made no restrictions on the action distribution for this problem, this means the
problem is trivially realizable. Thus, by Theorem 5.4, matching this moment in an on-policy fashion
is sufficient to achieve AVE.

B Experiments

B.1 Causal Bandit Experiments

The results we present are with K = 5 and after T = 2000 timesteps averaged across 100 trials. We
add explicit exploration noise in the form of an ϵexp chance of playing an arm other than the one the
learner chose. We start off all learners with a uniform prior and check and see if at t = T whether
they pick the correct arm with probability at least ϵexp − 0.12. If so, we add a green dot. Otherwise,
we add a red dot. We refer interested readers to our code for the precise expressions we used but,
roughly speaking, we perform Bayesian filering with or without treating the actions as evidence. As
argued above, this corresponds to assuming the on-policy or off-policy graphical models of Fig. 2.

B.2 PyBullet Experiments

We give the off-policy learners 25 demonstration trajectories, each of length 1000. As described
above, our non-sequential models are MLPs with two hidden layers of size 256 and ReLu activations.
Our sequential models are LSTMs with hidden size 256 followed by an MLP with one hidden layer
of size 256. We use a history of length 5 for all experiments and train all learners with a MSE loss
and an Adam optimizer [Kingma and Ba, 2014] with learning rate 3e− 4. Our sequence models are
given access to the last 5 states and the last 4 actions and are asked to predict the next action. We
evaluate MSE and J(π) by rolling out 100 trajectories and averaging.

HalfCheetah Experiments. As in Finn et al. [2017], we sample a target velocity for the agent from
U [0, 3], which is passed in as part of the state to the expert but hidden from the learner. We train an
expert for this task via Soft Actor Critic (SAC) [Haarnoja et al., 2018] – we refer interested readers to
our code for precise hyperparameters. The reward function we train the expert and evaluate learner
policies with is

1− |ẋt − c| − 0.05||ut||22, (55)
where c is the target velocity. We run behavioral cloning for 1e5 steps. For DAgger [Ross and
Bagnell, 2010], we train for 5e4 steps on the same set of 25 trajectories as were given to the off-policy
learners and then perform 9 iterations of rollouts/aggregation/refitting, sampling 20 trajectories and
training for 5e3 steps. Thus, both DAgger and BC are given the same compute budget – the only
difference is the data that is passed in.

Ant Experiments. We sample a target velocity for the agent from U [0, 1.5] and mask it for the first
200 timesteps and then reveal it to the learner. We train the expert policy using reward function

1− |ẋt − c| − 0.5||ut||22, (56)

where c is the target velocity. We filter demonstrations to only include expert trajectories that have
at least 500 environment steps. We use the same model classes as for HalfCheetah but add in
dropout to the input with p = 0.5 for the sequence models as it helps uniformly. We run behavioral
cloning for 1e5 steps. For DAgger [Ross and Bagnell, 2010], we train for 1e4 steps on the same
set of 25 trajectories as were given to the off-policy learners and then perform 9 iterations of
rollouts/aggregation/refitting, sampling 25 trajectories and training for 1e4 steps. Thus, both DAgger
and BC are given the same compute budget – the only difference is the data that is passed in.
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