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A Proofs of Results in the Main Text

A.1 Proofs for Section 2.2

The HWI inequality of Otto and Villani [22] is a functional inequality relating the entropy (H),
quadratic transportation cost (W), and Fisher information (I), all defined w.r.t. a suitable reference
measure that has bounded curvature. In deriving the classic result, a more general version of the HWI
was established in [22]—one that is particularly well suited to the application in this paper, where
we consider the differences between two entropy terms. See also [23, Proposition 1.5] for a recent
derivation of the generalized inequality via a different argument based on an entropic interpolation of
Wasserstein geodesics.

The result reads as follows: let �� = N (0,�2Id) denote the isotropic Gaussian measure on R
d with

variance �
2 and consider µ, ⌫ 2 P2(Rd) with D(⌫k��) < 1 for some � > 0, then

D(µk��)� D(⌫k��)  W2(µ, ⌫)
p
J(µk��)�

1

2�2
W2

2(µ, ⌫). (5)

This HWI inequality is used to prove Lemma 1, from which the Lipschitz continuity in Proposition 1
readily follows.

Proof of Lemma 1. If µ has finite Fisher information then we have the well-known identities

D(µk��) =
n

2
log(2⇡�2) +

1

2�2
EµkXk2 � h(µ)

J(µk��) = J(µ)� 2n

�2
+

1

�4
EµkXk2.

Making the change of variables � = �
�2 and swapping the roles of µ and ⌫ leads to the following

bound on the difference in differential entropy:

h(µ)� h(⌫) 
�
J(⌫)� 2n�+ �

2
E⌫kXk2

� 1
2 W2(µ, ⌫)�

�

2
W2

2(µ, ⌫) +
�

2

�
EµkXk2 � E⌫kXk2

�
.

As the left-hand side (LHS) does not depend on �, by taking the � ! 0+ we obtain

h(µ)� h(⌫) 
p
J(⌫)W2(µ, ⌫) (6)

as desired. To see that the constant cannot be improved, evaluate the above bound for µ = �a and
⌫ = �b, and consider the limiting case of a/b ! 1+:

lim
a
b !1+

h(�a)� h(�b)p
J(�b)W(�a, �b)

= lim
a
b !1+

log
�
a
b

�
�
a
b � 1

� = 1.

Proof of Proposition 1. Because differential entropy is translation invariant we may assume without
loss of generality that µ has zero mean. From the definition of the 2-Wasserstein distance, we obtain

W2(p
A
] µ, p

B
] µ)  k⌃1/2

µ (A�B)kF. (7)

Combining this with (6) gives the first result.
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To obtain a uniform bound on the Lipschitz constant, we use the fact that JF(pB] µ) � B|JF(µ)B
for any matrix B with orthogonal columns (cf. [41, Equation (67)]). Thus, both kJF(pA] µ)kop and
kJF(pB] µ)kop are bounded from above by the sum of the k largest eigenvalues of JF(µ), and so

kJF(pA] µ)kop _ kJF(pB] µ)kop  kkJF(µ)kop.

Combining this with k⌃1/2
µ (A�B)kF  k⌃µkopkA�BkF in (7) completes the proof.

A.2 Proof of Proposition 2

Proof of 1. Non-negativity follows because k-SMI is an average of classic MI terms, which are
non-negative. Nullification of k-SMI between independent (X,Y ) is also straightforward, since
in this case (A|

X,B|
Y ) are independent for all (A,B) 2 St(k, dx) ⇥ St(k, dy), which implies

I(A|
X; B|

Y ) = 0, i.e., the integrand in the k-SMI definition is identically zero. For the opposite
implication, as will be shown below, we have SI(X;Y )  SIk(X;Y ), for any 1  k  dx ^ dy.
Hence, if SIk(X;Y ) = 0 then SI(X;Y ) = 0 and by Proposition 1 form [17] we have that (X,Y ) are
independent.

Proof of 2. Throughout this proof we use our standard matrix notation (non-italic letter, such as A)
to designate random matrices; for fixed matrices we add a tilde, e.g., Ã. Fix 1  k1 < k2  dx ^ dy

and let (A1,B1) ⇠ �k1,dx ⌦ �k1,dy and (A2,B2) ⇠ �k2,dx ⌦ �k2,dy . For each Ã2 2 St(k2, d),
represent it as Ã2 = [Ã21 Ã22], where Ã21 2 St(k1, d) and Ã22 2 St(k2 � k1, d), and similarly for
B̃2. We now have
SIk2(X;Y )

= I(A|
2X; B|

2Y |A2,B2)

= I(A|
21X; B|

21Y |A2,B2) + I(A|
22X; B|

2Y |A2,B2,A
|
21X) + I(A|

21X; B|
22Y |A2,B2,B

|
21Y )

� I(A|
1X; B|

1Y |A1,B1)

= SIk1(X;Y ),

where the inequality uses the non-negativity of (conditional) MI and the fact that
I(A|

21X; B|
21Y |A2,B2) = I(A|

21X; B|
21Y |A21,B21) = I(A|

1X; B|
1Y |A1,B1).

Indeed, the latter holds since (A22,B22) are marginalized out in the conditioning and because
(A21,B21)

d
= A1,B1) ⇠ �k1,dx ⌦ �k1,dy .

Lastly, supremizing the integrand in the k-SMI definition over all pair of matrices from the Stiefel
manifold, we further obtain

SIk2(X;Y ) = I(A|
2X; B|

2Y |A2,B2)  sup
(Ã,B̃)2St(k2,dx)⇥St(k2,dy)

I(Ã|
X; B̃|

Y ),

which concludes the proof.

Proof of 3. This follows because conditional mutual information can be expressed as

I(X;Y |Z) = EµZ

h
DKL

�
µX,Y |Z(·|Z)

��µX|Z(·|Z)⌦ µY |Z(·|Z)
�i
,

and because the joint distribution of (A|
X,B|

Y ) given {A = Ã,B = B̃}, for fixed (Ã, B̃) 2
St(k, dx)⇥ St(k, dy), is (pÃ, pB̃)]µX,Y , while the corresponding conditional marginals are pÃ] µX

and pB̃] µY , respectively. Hence,

SIk(X;Y ) = D
�
(pA, pB)]µXY

��(pA, pB)]µX ⌦ µY

��A,B
�
= D

�
µA,B,A|X,B|Y

��µA,B,A|X̃,B|Ỹ
�

where the second step follows from the relative entropy chain rule, with

(A,B,A|
X,B|

Y ) ⇠ µA,B,A|X,B|Y = �k,dx ⌦ �k,dy (p
A
, pB)]µXY

(A,B,A|
X̃,B|

Ỹ ) ⇠ µA,B,A|X̃,B|Ỹ = �k,dx ⌦ �k,dy (p
A
, pB)]µX ⌦ µY .

The variational form follows by applying the DV representation of relative entropy to the latter
expression for SIk(X;Y ) (see Section 4.2).
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Proof of 4. Recall the definition of marginal and conditional k-sliced entropies: shk(X) :=
h(A|

X|A) and shk(X|Y ) := h(A|
X|A,B,B|

Y ). Given the representation of k-SMI as a condi-
tional mutual information, we now have

SIk(X;Y ) = I(A|
X; B|

Y |A,B) = h(A|
X|A)� h(A|

X|A,B,B|
Y ),

where we have used independence of B and (A,A|
X) in the first conditional entropy term. The

other decompositions follow in a similar fashion.

Proof of 5. We only prove the small chain rule; generalizing to n variables is straightforward. Con-
sider:

SIk(X,Y ;Z) = I(A|
X,B|

Y ; C|
Z|A,B,C)

= I(A|
X; C|

Z|A,B,C) + I(B|
Y ; C|

Z|A,B,C,A|
X),

where the last equality is the regular chain rule. Since (X,Z,A,C) are independent of B, we have

I(A|
X; C|

Z|A,B,C) = I(A|
X; C|

Z|A,C) = SIk(X;Z),

while I(B|
Y ; C|

Z|A,B,C,A|
X) = SIk(Y ;Z|X) by definition.

Proof of 6. By definition,

SIk(X1, . . . , Xn;Y1, . . . , Yn)= SIk(A
|
1X1, . . . ,A

|
nXn; B

|
1Y1, . . . ,B

|
nYn|A1, . . . ,An,B1, . . . ,Bn),

where the Ai, Bi are all independent and uniform on the respective Stiefel manifolds. Now, by mutual
independence of the Ai, Bi and (Xi, Yi) across i and tensorization of MI, we have

I(A|
1X1, . . . ,A

|
nXn; B

|
1Y1, . . . ,B

|
nYn|A1, . . . ,An,B1, . . . ,Bn) =

nX

i=1

I(A|
i Xi; B

|
i Yi|Ai,Bi)

=
nX

i=1

SIk(Xi;Yi).

A.3 Proof of Theorem 1

The proof of Theorem 1 relies on the following technical lemmas concerning the Lipschitzness and
variance of the function iXY : St(k, dx)⇥ St(k, dy) ! R defined as iXY (A,B) := I(A|

X; B|
Y ).

Lemma 2 (Lipschitzness of projected MI). For µXY 2 P2(Rdx ⇥ R
dy ) with J(µXY ) < 1, the

function iXY : St(k, dx) ⇥ St(k, dy) ! R is Lipschitz with respect to the Frobenius norm on the

Cartesian product of Stiefel manifolds, with Lipschitz constant

Lk(µXY ) = 3
q
2kkJF(µXY )kop

�
k⌃Xkop _ k⌃Y kop

�
.

Proof. Fixing (A1,B1), (A2,B2) 2 St(k, dx)⇥ St(k, dy), we have
��iXY (A1,B1)� iXY (A2,B2)

��


��h(A|

1X)� h(A|
2X)

��+
��h(B|

1Y )� h(B|
2Y )

��+
��h(A|

1X,B|
1Y )� h(A|

2X,B|
2Y )

��. (8)

The differences of marginal entropy terms (i.e., the first two terms on the right-hand side (RHS) above)
are controlled by

p
kk⌃XkopkJF(µX)kopkA1 � A2kF and

p
kk⌃Y kopkJF(µY )kopkB1 � B2kF,

respectively, by applying Proposition 1. For the difference of joint entropies, we shall use Lemma 1.
To that end, note that

W2
2

�
(pA1 , pB1)]µXY , (p

A2 , pB2)]µXY

�
 E

⇥
k(A1 �A2)

|
Xk2 + k(B1 � B2)

|
Y k2

⇤


�
k⌃Xkop _ k⌃Xkop

��
kA1 �A2k2F + kB1 � B2k2F

�
,

(9)

and observe that the Fisher information of the projected joint distribution can be controlled by the
operator norm of the corresponding Fisher information matrix. Indeed, the Fisher information data
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processing inequality (cf. [41, Equation (67)]) states that for any (A,B) 2 St(k, dx)⇥ St(k, dy), we
have

J
�
(pA, pB)]µXY

�
= tr

✓
A| 0
0 B|

�
JF(µXY )


A 0
0 B

�◆
 2kkJF(µXY )kop. (10)

Invoking Lemma 1, while using the above along with (9), gives
��h(A|

1X,B|
1Y )� h(A|

2X,B|
2Y )

��


⇣
2kkJF(µXY )kop

�
k⌃Xkop _ k⌃Y kop

�⌘1/2�
kA1 �A2k2F + kB1 � B2k2F

�1/2
.

Together with the marginal entropy bounds the fact that JF(µX) _ JF(µY ) � JF(µXY ) (which also
follows from the data processing inequality), this implies the result.

Lemma 3 (Variance bound). Let (A,B) ⇠ �k,dx ⌦ �k,dy , then we have the variance bound

Var
�
iXY (A,B)

�
 24L2

k(µXY )
�
d
�1
x + d

�1
y

�
,

where Lk(µXY ) is defined in Lemma 2.

Proof. Recall that the special orthogonal group SO(d) = {U 2 R
d⇥d : U|U = Id, det(U) = 1} is

the set of d⇥ d orthogonal matrices with determinant one. The following result is consequence of
concentration of measure on compact Riemannian manifolds (see Section 5 in [42]).

Lemma 4. Let f : SO(d) ! R be Lipschitz continuous with respect to the Frobenius norm with

Lipschitz constant L, i.e., |f(U) � f(V)|  LkU � VkF for all U,V 2 SO(d). If d � 3 and U is

distributed uniformly on SO(d) then f(U) is sub-Gaussian with parameter �
2 = 4L2

/(d� 2), i.e.,

logE
h
e
�(f(U)�Ef(U))

i
 �

2
�
2

2
, 8� > 0.

In particular, this implies that Var
�
f(U)

�
 �

2
.

For our purposes, this result provides concentration bounds with respect to functions defined on
the Stiefel manifold. Observe that if U = [u1 . . . ud] is uniform on SO(d) then the d ⇥ k matrix
A = [u1 . . . uk] is uniform on St(k, d). Thus, if g is a real-valued function on St(k, d) that is
Lipschitz continuous with constant L, we can apply the above result to f(U) = g(U[Ik, 0]|) to
conclude that g(A) is sub-Gaussian with parameter 4L2

/(d� 2), and hence

Var
�
g(A)

�
 4L2

d� 2
. (11)

Now, to bound the variance of iXY , recall that (A,B) ⇠ �k,dx ⌦�k,dy are independent and uniformly
distributed random matrices from the corresponding Stiefel manifold. By the Efron-Stein inequality
(cf. e.g., [43, Theorem 3.3.7]), the variance satisfies

Var
�
iXY (A,B)

�
 E

⇥
Var
�
iXY (A,B)

��B
�⇤

+ E
⇥
Var
�
iXY (A,B)

��A
�⇤
.

Since iXY (·, ·) is Lipschitz continuous in each of its arguments with the same constant, it follows
from Lemma 2 that the terms on the RHS are bounded from above by (2Lk(µXY ))2/(dx � 2) and
(2Lk(µXY ))2/(dy � 2), respectively.

As the above requires dx, dy > 2, we further note that for A0 an independent copy of A, we have

E
⇥
Var
�
iXY (A,B)

��B
�⇤

=
1

2
E

h��iXY (A,B)� iXY (A
0
,B)
��2
i

 L
2
k(µXY )

2
EkA1 �A2k2F  L

2
k(µXY )kdx.

Since k  dx � 1, it follows that

E
⇥
Var
�
iXY (A,B)

��B
�⇤


✓
d
2
x � dx ^ 4

dx � 2

◆
L
2
k(µXY ) 

12L2
k(µXY )

dx
,

and similarly for E
⇥
Var
�
iXY (A,B)

��A
�⇤

with dy replacing dx. The conclusion of Lemma 3 follows.
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Proof of Theorem 1. Since k-SMI is invariant to translation (due to bijection invariance of MI), we
may assume without loss of generality that X and Y are centered. The error is now decomposed as

E

h���SIk(X;Y )� bSI
m,n

k

���
i

 E

"�����SIk(X;Y )� 1

m

mX

i=1

iXY (Ai,Bi)

�����

#
+ E

"�����
1

m

mX

i=1

iXY (Ai,Bi)� bSI
m,n

k

�����

#
.

The first term on the RHS above corresponds to the MC error. By observing that SIk(X;Y ) =
E
⇥
1
m

Pm
i=1 iXY (Ai,Bi)

⇤
and using monotonicity of moments, we may upper bound it by

�
Var
�
iXY (A,B)

�
/m
�1/2. Lemma 3 then provides a bound on the variance.

The second term above is controlled by the k-dimensional MI estimation error �k(n) from Assump-
tion 1, since

E

"�����
1

m

mX

i=1

iXY (Ai,Bi)� bSI
m,n

k

�����

#
 sup

A2St(k,dx)
B2St(k,dy)

E

h���iXY (A,B)� Î
�
(A|

X)n, (B|
Y )n

����
i
 �k(n).

Combining the two bounds produces the result.

A.4 Proof of Theorem 2

The proof utilizes the result of Theorem 4 from [29] for relative entropy neural estimation along
with the sufficient conditions given in Proposition 7 therein (cf. [29, Section 4.1.1] for comments on
the applicability of their Theorem 4 to the DV variational form). For completeness, we first restate
those results. Denote kZk1 := supz2Z kzk1.

Proposition 3 (Sufficient conditions for relative entropy neural estimation (Theorem 4 and Proposi-
tion 2 of [29])). Fix d, b,M � 0 and set s = bd/2c+3,. Let Z ⇢ R

d
be compact, and µ, ⌫ 2 Pac(Z)

have densities fµ, f⌫ respectively. Suppose that D(µk⌫)  M and that there exist rµ, r⌫ 2 Cs
b(U)

for some open set U � Z , such that log fµ = r⌫ |Z and log fµ = r⌫ |Z . Then

E

h���D(µk⌫)� D̂G`
d,d

(Xn
, Y

n)
���
i
.M,b,kZk1 d

1
2 l

� 1
2 + d

3
2n

� 1
2 ,

where D̂G`
d,d

(Xn
, Y

n) := supg2G`
d,d

1
n

Pn
i=1 g(Xi, Yi)� log

�
1
n

Pn
i=1 e

g(Xi,Y�(i))
�
.

We use the above result to establish the following lemma that accounts for neural estimation of each
projected MI term. Given the lemma, the result of Theorem 2 follows by Theorem 1, with the RHS
of (12) in place of the �k(n) term therein.
Lemma 5 (Neural estimation of iXY (A,B)). Let µXY 2 Fk

dx,dy
(M, b). Then uniformly in (A,B) 2

St(k, dx)⇥ St(k, dy), we have the neural estimation bound

E

h���iXY (A,B)� Î`k,k
�
(A|

jX)n, (B|
jY )n

����
i
.M,b,k,kX⇥Yk k

1
2 `

� 1
2 + k

3
2n

� 1
2 . (12)

Proof. The lemma is proven by showing that densities of (pA, pB)]µXY and pA] µX ⌦ pB] µY satisfy
the conditions of Proposition 3, whenever µXY 2 Fk

dx,dy
(M, b).

Let f be the density of µXY and set f✓, with ✓ := (✓1, ✓2) = (A,B) 2 St(k, dx)⇥ St(k, dy) as the
density of projection (pA, pB)]µXY which is supported on Z . Let A = [a1 . . . ak], where ai 2 S

dx�1

with hai, aji = 0, 8i 6= j, and denote Wx = {w 2 R
dx : hai, wi = 0, 8i = 1, . . . , k}. Similarly,

for B = (b1 . . . bk), set Wy = {w 2 R
dy : hbi, wi = 0, 8i = 1, . . . , k}.

The density f✓ is given by

f✓(zx, zy) =

Z

Wx

Z

Wy

f(Azx + wx,Bzy + wy) dwx dwy,

where we have denoted zx,i = hai, xi and zy,i = hbi, yi, for i = 1, . . . , k, and further defined
zx = [zx,1 . . . zx,k]| and zy = [zy,1 . . . zy,k]|
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Given µXY 2 Fk
dx,dy

(M, b), there exists r 2 Cs
b(U) with s = k + 3 for some open set U � X ⇥ Y ,

such that log f = r|X⇥Y . Choose U 0 � Z such that U 0
is the projection of the set U on to the

projection directions specified by A,B. Then also set

r1(zx, zy) = log

Z

Wx

Z

Wy

exp
�
r(Azx + wx,Bzy + wy)

�
dwx dwy.

which implies r1|Z = log f✓.

To evaluate the derivative, we use the short hand notation r1 := log
�R

exp(r)
�
, omit-

ting the arguments of the functions r, r1. Let v 2 {zx,1, . . . , zx,k, zy,1, . . . zy,k} and u 2
{x1, . . . , xdx , y1, . . . , ydy}, and consider

@
s

@sv
r1

(a)
=
X

Ps
m

s!

m1! m2! . . .ms!

(�1)Ms�1 (Ms � 1)!
� R

exp(r)
�Ms

sY

i=1

1

(i!)mi

⇣Z
@
i

@iv
exp(r)

⌘mi

(b)
=
X

Ps
m

s!

m1! m2! . . .ms!

(�1)Ms�1 (Ms � 1)!
� R

exp(r)
�Ms

⇥
sY

i=1

1

(i!)mi

⇣Z
exp(r)

X

Pi
l

i!

l1! l2! . . . li!

iY

k=1

1

(k!)lk

⇣
@
k

@kv
r

⌘lk⌘mi

(c)

X

Ps
m

s! (Ms � 1)!

m1! m2! . . .ms!

sY

i=1

1

(i!)mi

0

@
R
exp(r)

P
Pi

l

i!
l1! l2!...li!

Qi
k=1

1
(k!)lk

b
lk

R
exp(r)

1

A
mi

=
X

Ps
m

s! (Ms � 1)!

m1! m2! . . .ms!

sY

i=1

1

(i!)mi

0

@
X

Pi
l

i!

l1! l2! . . . li!

iY

k=1

1

(k!)lk
b
lk

1

A
mi

(d)
 cs(b _ b

s)

where:
(a) follows from Faà di Bruno’s formula with Ms =

Ps
i=1 mi and Ps

m as the set of all s-tuples of
non-negative integers mi satisfying

Ps
i=1 imi = s;

(b) uses the Faà di Bruno’s formula for the function exp(r), with Pi
l defined similarly to Ps

m;
(c) holds since | @k

@vk r
��  b, which comes from the fact that

�� @k

@vk r
��  | @k

@uk r
��  b for k  s; the

latter is a consequence of r being s-times differentiable with derivatives bounded by b and since�� @k

@vk u
��  1, which holds because x = Azx + wx, y = Bzy + wy and thus @

@vu is a constant (i.e.,
independent of v) upper bounded 1;
(d) identifies the dominating term as b

Ps
i=1

Pi
k=1 lkmi  b_b

s and uses cs for a constant that depends
only on s.

Conclude that r1 2 Cs
b?(U

0
) with b

? = cs(b _ b
s).

Consider a similar derivation for the product of marginal densities. Let f✓1 and f✓2 denote the
densities of pA] µX and pB] µY , respectively; the corresponding supports are Z1 and Z2, for which
Z = Z1 ⇥ Z2. Following steps as above, we can show that 9 r✓1 2 Cs

b?(U
0

1), r✓2 2 Cs
b?(U

0

2) with
U 0

1 � Z1,U
0

2 � Z2, such that log f✓1 = r✓1 |Z1 and log f✓2 = r✓2 |Z2 .

As the density of pA] µX ⌦ pB] µY is f✓1f✓2 , we choose r2(zx, zy) = r✓1(zx) + r✓2(zy). Accordingly,
log f✓1f✓2 = r2|Z , and for U 0

= U 0

1 ⇥ U 0

2 � Z , we have

kD↵
r2k1,U 0  kD↵

r✓1k1,U 0
1
+ kD↵

r✓2k1,U 0
2
 2b?.

This implies that r2 2 Cs
2b?(U

0
), whereby pA] µX ⌦ pB] µY 2 Fk

dx,dy
(M, 2b?).

Since Z ✓ R
2k and µXY 2 Fk

dx,dy
(M, b), the above shows that (pA, pB)]µXY and pA] µX ⌦ pB] µY

satisfy the smoothness requirement of Proposition 3 (the order should be at least s = k + 3), with
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an expansion of smoothness radius to 2ck+3(b _ b
k+3). For k = 1 which corresponds to SMI, the

expanded smoothness radius is 2b? = 154(b _ b
4).

Lastly, we note that kZk1  sup
(x,y)2X⇥Y

kA|
x,B|

yk  kX ⇥ Yk, where the last inequality is due

to sub-multiplicative property of `2-norm and


A| 0
0 B|

� 
A 0
0 B

�
= I2k,

which results in the corresponding operator norm being 1. This completes the proof of Lemma 5.

A.5 Proof of Theorem 3

We begin by recalling the setting of Theorem 3 as well as some basic properties of mutual information
for Gaussian distributions. Let (X,Y ) ⇠ �XY = N (0,⌃XY ) be jointly Gaussian random variables
with positive definite covariance matrix

⌃XY =

✓
⌃X CXY

C|
XY ⌃Y

◆

The assumption that the covariance is positive definite means that the singular values of the correlation
matrix defined by R := ⌃�1/2

X CXY ⌃
�1/2
Y are strictly less than one. The mutual information between

X and Y depends only on the correlation matrix and is given by

I(X;Y ) = �1

2
log det(Idx � RR|).

Moreover, for a dx ⇥ k matrix A and dy ⇥ k matrix B, both with linearly independent columns, the
mutual information between the k-dimensional Gaussian variables A|

X and B|
Y equals to

I(A|
X; B|

Y ) = �1

2
log det(Ik � R̃R̃|),

where R̃ = Ã|RB̃ is the correlation matrix of the projected distribution and

Ã = ⌃1/2
X A(A|⌃XA)�1/2

, B̃ = ⌃1/2
Y B(B|⌃Y B)

�1/2 (13)

The k-SMI is the expectation of this mutual information with respect to (A,B) drawn from the
uniform distribution on St(k, dx)⇥ St(k, dy)

Remark 7. If ⌃X and ⌃Y are approximately low rank then Ã and B̃ are concentrated low-

dimensional subspaces, which may or may not align with the dominant directions in the correlation

matrix R. Therefore, in contrast to the mutual information, the k-SMI depends not only on the

correlation matrix R but also the marginal distributions of X and Y .

Proof of Theorem 3. The proof relies on several technical lemmas whose statements and proofs are
deferred to the next section. The k-SMI for jointly Gaussian variables can be expressed as

SIk(X,Y ) = �1

2
E

h
log det(Ik � R̃R̃|)

i
(14)

where R̃ = Ã|RB̃ is the projected correlation matrix and (Ã, B̃) are defined as in (13) as a function
of matrices (A,B) drawn from the uniform distribution on St(k, dx)⇥ St(k, dx). Note that Ã and B̃
are both on the Stiefel manifold, and thus kÃkop = kB̃kop = 1. Accordingly, the correlation matrix
satisfies kR̃kop  kRkop  ⇢ a.s. Applying Lemma 6 (see next section) to the positive definite
matrix R̃R̃| and then taking expectation yields

0  SIk(X,Y )� 1

2
EkR̃k2F  EkR̃R̃|k2F

2(1� ⇢2)

To establish the desired result we will characterize the leading order terms in EkR̃k2F and then show
that the ratio between EkR̃R̃|k2F and EkR̃k2F converges to zero in the dx, dy ! 1 limit.
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By the independence of Ã and B̃, the expected squared Frobenius norm expands as

EkR̃k2F = E tr
⇣
ÃÃ|RB̃B̃|R|

⌘
= tr

⇣
E[ÃÃ|]RE[B̃B̃|]R|

⌘
. (15)

The matrices ÃÃ| and B̃B̃| are orthogonal projection matrices whose nonozero eigenvalues are
equal to one. In the special case where ⌃X and ⌃Y are isotropic (i.e. proportional to the identity
matrix), these matrices are distributed uniformly on the space of projection matrices of rank k. In the
non-isotropic setting, however, these matrices are biased towards the directions in the covariances
with large eigenvalues. An explicit expression for theirs means is provided in Lemma 8, and simplified
bounds are given in Lemma 9, which shows that for all ✏ > 0, there exits a number d = d(✏,, k)
such that for all dx, dy � d, we can write

E ÃÃ| =
k

tr(⌃X)
⌃X(Ik +�x), E B̃B̃| =

k

tr(⌃Y )
⌃Y (Ik +�y).

for matrices �x,�y that satisfy k�xkop, k�ykop  ✏. Combining these approximations with (15)
and recalling that ⌃1/2

X R⌃1/2
Y = CXY , we conclude that

EkR̃k2F =
k
2kCXY k2F

tr(⌃X)tr(⌃Y )

�
1 + o(1)

�
, dx, dy ! 1.

Finally, we need to show that ratio between EkR̃R̃|k2F and EkRk2F converges to zero. We begin by
considering the lower bound

kR̃kF � kA|CXY BkF
k(A|⌃XA)1/2kopk(B|⌃Y B)1/2kop

� kA|CXY BkF
k⌃Xk1/2op k⌃Y k1/2op

as well as the upper bound

kR̃R̃|kF  k(A|⌃XA)�1kopk(B|⌃XB)�1kopkA|CXY BB
|CXY AkF

 k⌃�1
X kopk⌃�1

Y kopkA|CXY BB
|C|

XY AkF.
Note that matrices A and B in these bounds are the unbiased projections, which are uniformly
distributed. Since EAA| = (k/dx)Idx and EBB| = (k/dy)Idy one obtains

EkA|CXY BB
|C|

XY AkF =
k
2

dxdy
kCXY k2F

Meanwhile, successive applications of Lemma 7, first with respect to AA| and then with respect to
BB|, leads to

EkA|CXY BB
|C|

XY Ak2F . k
4

d2xd
2
y

�
kCXY C

|
XY k

2
F + kCXY k4F

�
. k

4

d2xd
2
y

kCXY k4F

Combining these upper and lower bounds and recalling that the condition numbers of ⌃X and ⌃Y

are no greater than , we have

EkR̃R̃|k2F . 
4
⇣
EkR̃k2F

⌘2
.

In view of the fact that EkR̃k2F converges to zero, the proof is complete.

A.6 Auxiliary results for the proof of Theorem 3

Lemma 6. If M is a symmetric positive semidefinite matrix with kMkop < 1 then

0  � log det(I�M)� tr(M)  kMk2F
2(1� kMkop)

.

Proof. The log determinant is given by � log det(I�M)� tr(M) =
P

i � log(1� �i)� �i where
0  �i  kMkop are the eigenvalues of M. Each summand satisfies the double inequality

0  � log(1� �i)� �i =

Z �i

0

x

1� x
dx  �

2
i

2(1� kMkop)
.

Summing over both sides and noting that kMk2F =
P

i �
2
i completes the proof.
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Lemma 7. Let P = A|A where A is distributed uniformly over St(k, d). For any d⇥ d symmetric

matrix S, we have

E tr(PSPS) =
k(kd+ d� 2)

d(d� 1)(d+ 2)
tr(S2) +

k(d� k)

d(d� 1)(d+ 2)
tr(S)2

E tr(PS)2 =
2k(d� k)

d(d� 1)(d+ 2)
tr(S2) +

k(kd+ k � 2)

d(d� 1)(d+ 2)
tr(S)2.

Proof. Because the distribution of P is invariant to orthogonal transformation of its rows and columns
(i.e., P is equal in distribution to UPU| for any U 2 O(d)), the quantities of interest are unchanged
if S is replaced by a diagonal matrix containing its eigenvalues �1, . . . ,�n. In particular, we have

tr(PSPS)
d
= tr(Pdiag(�)Pdiag(�)) =

dX

i,j=1

�i�jP
2
ij

tr(PS)2
d
= tr(Pdiag(�))2 =

dX

i,j=1

�i�jPiiPjj .

A further consequence of the orthogonal invariance of P is that its second order moments satisfy
E[P2

ii] = E[P2
11], E[P2

ij ] = E[P2
12] and E[PiiPjj ] = E[P11P22] for all 1  i 6= j  d, and so the

expectations can be simplified as follows:

E tr(PSPS) = E[P2
11]
X

i

�
2
i + E[P2

12]
X

i 6=j

�i�j

=
�
E[P2

11]� E[P2
12]
�
tr(S2) + E [P2

12] tr(S)
2 (16)

E tr(PS)2 = E[P2
11]
X

i

�
2
i + E[P11P22]

X

i 6=j

�i�j

=
�
E[P2

11]� E[P11P22]
�
tr(S2) + E[P11P22] tr(S)

2 (17)

Finally, we can determine coefficients in these expressions by evaluating (16) and (17) for special
choices of S. Recall that P has k nonzero eigenvalues all of which are equal to one. Therefore, if
S = I, then tr(SP) = k and tr(SPSP) = k

2 a.s., and in view of (16) and (17), we obtain

k = dE[P2
11],+d(d� 1)E[P2

12] k
2 = dE[P2

11] + d(d� 1)E[P11P22].

Alternatively, if S = e1e2 + e2e
|
1 then E tr(SP)2 = E[(P12 +P21)2] = 4E[P2

12] and so (17) implies
that

2E[P12] = E[P2
11]� E[P11P22].

Solving these linear equations yields

E[P2
11] =

k(k + 2)

d(d+ 2)
, E[P2

12] =
k � d

d(d� 1)(d+ 2)
, E[P11P22] =

k(kd+ k � 2)

d(d� 1)(d+ 2)
.

Combining these expressions with (16) and (17) gives the desired result.

Lemma 8. Let P = ⌃1/2A(A|⌃A)�1A|⌃1/2
where ⌃ is an deterministic d⇥ d positive definite

matrix with spectral decomposition ⌃ =
P

i �iuiu
|
i and A is distributed uniformly on St(k, d). Then,

the mean of P is given by EP =
P

i ⌘iuiu
|
i where

⌘i = E


�iZ

|
i W

�1
i Zi

1 + �iZ
|
i W

�1
i Zi

�

with Z1, . . . ,Zd independent N (0, Ik) variables and Wi =
P

j 6=i �jZjZ
|
j .

Proof. It is straightforward to show (see e.g., [44, Theorem 3.2]) that the distribution of the n⇥ k

matrix ⌃1/2A(A|⌃A)�1/2 is unchanged if the random matrix A is replaced by Gaussian matrix
Z = [Z1, . . . ,Zn]| whose rows are independent N (0, Ik) variables. Thus, letting U = [u1, . . . , un]
and ⇤ = diag(�1, . . . ,�n) be the be the eigenvectors and eigenvalues of ⌃ we have

U|PU d
= ⇤1/2Z(Z|⇤Z)�1Z|⇤1/2

.
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In view of the above decomposition, we see that the ij-th entry of U|PU is equal in distribu-
tion to �

1/2
i �

1/2
j Z|

i (�iZiZ
|
i +Wi)

�1
Zj . For the off-diagonal entries, note that the distribution of

(Z1, . . . ,Zn) is equal to the distribution of (Z1, . . . ,Zi�1, SZi,Zi+1, . . . ,Zn) where S is an indepen-
dent random variable distributed uniformly on {�1, 1}. Making this substitution and then taking the
expectation with respect to S we see that the off-diagonal entries have mean zero. The expression for
the diagonal follows from applying the matrix inversion lemma to �iZ

|
i (�iZiZ

|
i +Wi)�1Zi.

Lemma 9. Consider the setting of Lemma 8. There exists an absolute positive constant C such that if

(2 + k)k⌃kop
tr(⌃)� k⌃kop

 ✏, C
k⌃kop
tr(⌃)

✓
k +

p
kd+ log

✓
2tr(⌃)k⌃�1kop

k✏

◆◆
 ✏

2 + ✏

for some ✏ > 0, then

����⌘i ·
tr(⌃)

k�i
� 1

����  ✏

for all 1  i  d.

Proof. We begin with a lower bound on ⌘i. For any nonzero vector v 2 R
k, the mapping M 7!

(v|M�1
v)/(1 + v

|M�1
v) is convex over the cone of k ⇥ k positive semidefinite matrices. By

Jensen’s inequality, the independence of Wi and Zi, and the fact that E[Wi] = ⌧iIk where ⌧i :=P
j 6=i �i = tr(⌃)� �i, we have

⌘i � E


�iZi(E[Wi])�1]Zi

1 + �iZi(E[Wi])�1Zi

�
= E


�ikZik2

⌧j + �ikZik2

�
.

To remove remove the expectation with respect to kZik2, we bound the RHS from below using

E


�ikZik2

⌧j + �ikZik2

�
=

k�i

tr(⌃)
� �

2
i

tr(⌃)
E


kZik2( kZik2 � 1)

(⌧j + �ikZik2)

�
� k�i

tr(⌃)
� k(2 + k)�2

i

tr(⌃)(tr(⌃)� k⌃kop)
,

where the second step follows from EkZik2 = k and EkZik4 = k(k + 2).

Next we consider an upper bound. If we let Li := min{u|
Wu : u 2 S

k�2} be the minimum
eigenvalue of k ⇥ k symmetric matrix Wi and then we can write

⌘i  E


�iL

�1
i kZik2

1 + �iL
�1
i kZik2

�
 E


k�i

Li + k�i

�

where the second step follows from the Jensen’s inequality and the independence of Zi and Li. By
concentration of Lipschitz functions of Gaussian measure, one finds that that L1/2

i is sub-Gaussian
with variance proxy maxj 6=i �j  k⌃kop and this implies a sub-exponential tail bound for Li of the
form

P

⇣
Li  E[Li]� C

0k⌃kopt
⌘
 2e�t

.

for some absolute constant C 0
> 0. To obtain a lower bound on the expectation of Li, recall that

E[Wi] = ⌧iIk where ⌧i =
P

j 6=i �j . Noting that

⌧i � Li  |Li � ⌧i|  �kWi � E[Wi]kop,

and then taking the expectation of both sides leads to E[Li] � ⌧i � EkWi � E[Wi]kop. At this point,
we can apply Theorem 3.13 in [45], which gives

E
��Wi � E[Wi]

��
op

.
s

k

X

j 6=i

�2
j + kmax

j 6=i
�j  k⌃kop(k + 1 +

p
dk),

Combining these bounds and recalling that ⌧i = tr(⌃)� �i yields

ELi � tr(⌃)� C
00k⌃kop(k +

p
dk),
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for some absolute constant C 00
> 0. Putting the pieces together, we have for all t > 0,

⌘i  E


k�i

Li + k�i
{Li�E[Li]+C0k⌃kopt}

�
+ E


k�i

Li + k�i
{Li<E[Li]+C0k⌃kopt}

�

 k�i

E[Li]� C 0k⌃kopt+ k�i
+ 2e�t

 k�i

tr(⌃)� C 00k⌃kop(k +
p
dk)� C 0k⌃kopt+ k�i

+ 2e�t
.

where the last two lines hold provided that the denominator is strictly positive. Hence, if t =
log(2tr(⌃)k⌃�1kop/(k✏)) and

tr(⌃)� C
00k⌃kop(k +

p
dk)� C

0k⌃kopt �
tr(⌃)

1 + ✏/2
,

then

⌘i  (1 + ✏/2)
k�i

tr(⌃)
+

✏k

2tr(⌃)k⌃�1kop
 k�i

tr(⌃)
(1 + ✏)

Simplifying the conditions leads to the stated bound.

A.7 Proof of Decomposition in Equation (4)

Fix ✓ := (✓1, ✓2) = (A,B) 2 St(k, dx)⇥ St(k, dy) and let f✓, f✓1 , and f✓2 denote, respectively, the
densities of (A|

X,B|
Y ), A|

Z, and B|
Y , where (X,Y ) ⇠ µXY . Similarly, we use '✓, '✓1 , and

'✓2 , for the densities when (X,Y ) are replaced with their Gaussian approximation (X⇤
, Y

⇤) ⇠ �XY .
We may now decompose

I(A|
X; B|

Y ) =

Z
f✓(s, t) log

✓
'✓(s, t)

'✓1(s)'✓2(t)

f✓(s, t)

'✓(s, t)

'✓1(s)'✓2(t)

f✓1(s)f✓2(t)

◆
ds dt

= EµXY


log

✓
'✓

'✓1'✓2

◆�
+ D

�
(pA, pB)]µXY

��(pA, pB)]�XY

�

� D
�
(pA, pB)]µX ⌦ µY

��(pA, pB)]�X ⌦ �Y

�
.

Observing that log
⇣

'✓

'✓1'✓2

⌘
depends only on the 2nd moment on the random variables and since

the Gaussian approximation (X⇤
, Y

⇤) ⇠ �XY was chosen to have the same covariance matrix as
(X,Y ) ⇠ µXY , we may replace the distribution µXY w.r.t. which the expectation is taken with �XY .
Doing so and taking an average over (A,B) 2 St(k, dx)⇥ Stk, dy , we obtain

SIk(X;Y ) = SIk(X
⇤;Y ⇤) + E

⇥
�(A,B)

⇤

where �(A,B) is as defined under Equation (4) in the main text.

B Bounds on Residual Term from Equation (4)

Throughout this appendix we interchangeably denote information measures in terms of probability dis-
tribution or the corresponding random variables. For instance, we write J(X) or J(µ) for the Fisher in-
formation of X ⇠ µ, and W2(X,Y ) or W2(µ, ⌫) for the 2-Wasserstein distance between X ⇠ µ and
Y ⇠ ⌫. We also define ↵(X) := 1

dX
E
⇥��kXk2 � EkXk2

��⇤ and �r(X) := 1
dx

�
E
⇥��hX1, X2i

��r⇤�1/r,
for r = 1, 2, where X1 and X2 are independent copies of X ⇠ µX . The quantities ↵(Y ) and �r(Y )
are defined analogously. Note that �1(X)  �2(X) = 1

dx
k⌃XkF.

Due to translation invariance of k-SMI we may assume that X and Y are centered. Define the
shorthand notation ⇥ = A � B and Z = (X|

Y
|)|. Accordingly, µZ = µXY and we set

�Z = �XY = N (0,⌃XY ) for the corresponding Gaussian; the Gaussian vector with distribution �Z

is denoted by Z⇤ = (X|
⇤ Y

|
⇤ )|. Slightly abusing notation we define p⇥(z) = ⇥|

z = (x|A y
|B)|.

To control the residual from (4), we first bound it in terms of a certain MI term. Let A⇤ and B⇤ be
matrices of dimension dx⇥ k and dy ⇥ k with entries i.i.d. according to N (0, 1/dx) and N (0, 1/dy),

11



respectively. Define ⇥⇤ = A⇤�B⇤ and let W = ⇥|
⇤Z+

p
tN , where N ⇠ N (0, I2k). The following

bound controls the residual in terms of I(⇥⇤;W ), plus a term that vanishes when t is small and dx, dy

are large. The proof is deferred to Appendix B.1.
Lemma 10 (Residual bound via noisy MI). Under the above model with dx ^ dy > k + 1 and for

any t > 0, we have

E
⇥
D(p⇥] µZkp⇥�Z)

⇤
 I(⇥⇤;W )

+k

q
2kJF(µZ)kop

 s

t

✓
dx

dx�k+1
+

dy

dy�k+1

◆
+

s

↵(X)+↵(Y )+
2dx�2

2(X)

tr(⌃X)
+

2dy�2
2(Y )

tr(⌃Y )

!
.

Next, we bound the noisy MI term I(⇥⇤;W ). Let �x = 1
dx
EkXk2 and �y = 1

dy
EkY k2, and for

simplicity of presentation, henceforth assume that � = �x = �y. This is without loss of generality
since k-SMI is scale invariant.6 Note that if � 2 (0,1), then we have 0  ↵(X)  2� and �/

p
dx 

�2(X)  � (cf. [32]). Lastly, set ↵̄ = max{↵(X),↵(Y )} and �̄r = max{�r(X),�r(Y )}, for
r = 1, 2. We prove the following result in Appendix B.2.
Lemma 11 (Noisy MI bound). For any t > 0 and ✏ 2 (0, 1], we have

I(⇥⇤;W )  Ck log

✓
1 +

�

t

◆
↵̄

✏�
+ C

✓
1 + ✏

1� ✏

◆ k
4

 
k

3
4

r
�̄1

�
+ k

1
4

✓
1 +

2(1 + ✏)�

t

◆ k
2 �̄2

�

!
.

where C is an absolute constant (in particular, C = 3 is sufficient).

Combining Lemmas 10 and 11, yields a bound on E
⇥
D(p⇥] µZkp⇥�Z)

⇤
in terms k, dx, dy, �, ↵̄, �̄

and (arbitrary) t > 0 and ✏ 2 (0, 1]. To further simplify the subsequent expressions, suppose that
(�̄2/�)2/(k+1)  1

2 , and set7

t
⇤ = 2(1 + ✏)�

 ✓
�̄2

�

◆� 2
k+1

� 1

!�1

 4(1 + ✏)�

✓
�̄2

�

◆ 2
k+1

.

Inserting into the said bound, we obtain

E
⇥
D(p⇥] µZkp⇥�Z)

⇤

 Ck log

 
1 +

1

2(1 + ✏)

 ✓
�̄2

�

◆� 2
k+1

� 1

!!
↵̄

✏�

+ C

✓
1 + ✏

1� ✏

◆ k
4

 
k

3
4

r
�̄1

�
+ k

1
4

✓
�̄2

�

◆ 1
k+1

!

+ k

q
2kJF(µZ)kop

 ✓
�̄2

�

◆ 1
k+1

s

4(1 + ✏)�

✓
dx

dx � k + 1
+

dy

dy � k + 1

◆

+

s

2↵̄+
2dx�2

2(X)

tr(⌃X)
+

2dx�2
2(Y )

tr(⌃Y )

!
.

We can now complete the bound on the residual term E[�XY (A,B)] from (4). Recall the definition
of ⇥ = A� B and Z = (X|

Y
|)|, we have

E
⇥
�XY (A,B)

⇤
 E

h
D
�
(pA, pB)]µXY

��(pA, pB)]�XY

�i

6This scaling does affect the ↵, � factors in the lemma but will not change their convergence properties so
long as �x and �y scale at the same rate.

7Our bounds only need t
⇤ to be strictly positive, which is always the case under the considered setting. Indeed,

by the the Cauchy-Schwartz inequality �̄2  �, with equality having probability zero since two independent
copies of a continuous random variables are a.s. not linearly aligned.
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 Ck log

 
1 +

1

2(1 + ✏)

 ✓
�̄2

�

◆� 2
k+1

� 1

!!
↵̄

✏�

+ C

✓
1 + ✏

1� ✏

◆ k
4

 
k

3
4

r
�̄1

�
+ k

1
4

✓
�̄2

�

◆ 1
k+1

!

+ k

q
2kJF(µZ)kop

 ✓
�̄2

�

◆ 1
k+1

s

4(1 + ✏)�

✓
dx

dx � k + 1
+

dy

dy � k + 1

◆

+

s

2↵̄+
2dx�2

2(X)

tr(⌃X)
+

2dx�2
2(Y )

tr(⌃Y )

!
.

Observe that this will typically converge to zero with increasing dx, dy. To better instantiate this
regime, we revisit the concept of weak dependence, i.e. random vectors with weakly dependent
entries [32] (essentially, a notion of approximate isotropy). The following proposition, whose proof
is straightforward and hence omitted, provides explicit convergence rate for the residual subject to
the weak dependence assumption.
Proposition 4 (Convergence rate under weak dependence). Suppose that �, k, kJF(µZ)kop,

dx
tr(⌃X) ,

dy

tr(⌃Y ) are O(1) with respect to dx and dy , and that there exists an absolute C < 0 such that

↵(X)

�
 Cp

dx
,

↵(Y )

�
 Cp

dy
,

�2(X)

�
 Cp

dx
,

�2(Y )

�
 Cp

dy
.

Then, up to log factors,

E[�XY (A,B)] .
k

✏

⇣
d
� 1

2
x +d

� 1
2

y

⌘
+

✓
1 + ✏

1� ✏

◆ k
4
✓
k

3
4

⇣
d
� 1

4
x +d

� 1
4

y

⌘
+k

1
4

✓
d
� 1

2(k+1)
x +d

� 1
2(k+1)

y

◆◆

+ k

✓
d
� 1

2(k+1)
x + d

� 1
2(k+1)

y

◆
+ k

⇣
d
� 1

4
x + d

� 1
4

y

⌘
,

which, for dx = dy = d increasing, decays to zero as Õ

⇣
d
� 1

4 + d
� 1

2(k+1)

⌘
.

B.1 Proof of Lemma 10

We can represent the residual term from (4), as

E
⇥
D(p⇥] µZkp⇥�Z)

⇤
= I(⇥;⇥|

Z) + h(⇥|
Z

⇤|⇥)� h(⇥|
Z)

 I(⇥;⇥|
Z) + h(⇥|

Z
⇤)� h(⇥|

Z) (18)

For the latter entropy difference we use the Wasserstein continuity result from Lemma 1, to obtain

h(⇥|
Z

⇤)� h(⇥|
Z) 

p
J(⇥|Z)W2(⇥

|
Z,⇥|

Z). (19)

For the Fisher information term we use the data processing inequality [41, Proposition 5]8 and the
fact that ⇥ is an orthogonal matrix (i.e., ⇥|⇥ = I2k) to obtain

J(⇥|
Z) 

Z
J(✓|Z)d(�k,dx ⌦ �k,dy )(✓)


Z

tr
�
✓JF(Z)✓|

�
d(�k,dx ⌦ �k,dy )(✓)

8The Fisher information J(W ) is related to the parametric Fisher information J#(W ) :=
Var

�
@
@# log p#(W )

�
as follows: if # 2 R

d is a location parameter, i.e., p#(w) = p(w + #), then
J(W ) = J#(W � #). Proposition 5 of [41] states that if # $ W $ fW form a Markov chain, then
J#(fW )  J#(W ). Take W = (#+⇥|

Z,⇥) and fW = #+⇥|
Z, which clearly satisfy the said Markov chain,

and invoke that result to obtain J(⇥|
Z) = J#(fW )  J#(W ) =

R
J(✓|Z)d(�k,dx ⌦ �k,dy )(✓). The latter

equality is since @
@# log p#+⇥|Z,⇥(·, ·) = @

@# log p#+⇥|Z|⇥(·|·).
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 2kkJF(Z)kop. (20)

To treat the 2-Wasserstein distance, note that by orthogonal invariance of the projections, we see that
the (unconditional) distribution of ⇥|

Z satisfies

⇥|
Z =

✓
A|

X

B|
Y

◆
d
=

✓
A1kXk
B1kY k

◆

where A1 and B1 are the first rows of A and B, respectively. The same decomposition holds for
⇥|

Z
⇤. Hence,

W2(⇥
|
Z,⇥|

Z
⇤) = W2

✓✓
A1kXk
B1kY k

◆
,

✓
A1kX⇤k
B1kY ⇤k

◆◆


p
kW2

✓✓
kXk/

p
dx

kY k/
p
dy

◆
,

✓
kX⇤k/

p
dx

kY ⇤k/
p

dy

◆◆
,

where the inequality follows from restricting to a coupling with the same (A1,B1) and recalling that
the entries of A1 and B1 have second moments of 1/dx and 1/dy , respectively.

For any coupling of (X,Y ) and (X⇤
, Y

⇤), we have

E

����

✓
kXk/

p
dx

kY k/
p
dy

◆
�
✓
kX⇤k/

p
dx

kY ⇤k/
p
dy

◆����
2

 2

dx
E

���kXk �
p
tr(⌃X)

���
2
�
+

2

dx
E

���kX⇤k �
p
tr(⌃X)

���
2
�

+
2

dx
E

���kY k �
p
tr(⌃Y )

���
2
�
+

2

dy
E

���kY ⇤k �
p

tr(⌃Y )
���
2
�

where we have used the inequality (a+ b)2  2a2 + 2b2. Note that for any random positive random
variable W we have

E

���W �
p
EW 2

���
2
�
 E

"���W �
p
EW 2

���
2
✓
1 +

Wp
EW 2

◆2
#
=

Var(W 2)

EW 2

Since (X⇤
, Y

⇤) are Gaussian, their squared Euclidean norms can be expressed as the weighted sum
of independent chi-squared variables, and one finds that E[kX⇤k2] = tr(⌃X) and Var(kX⇤k2) =
2k⌃Xk2F, and similarly for Y ⇤. Putting everything together, we obtain

W2
2(⇥

|
Z,⇥|

Z
⇤)  2k

✓
↵(X) + ↵(Y ) +

2dx�2
2(X)

tr(⌃X)
+

2dy�2
2(X)

tr(⌃Y )

◆
(21)

where ↵(X) and ↵(Y ) are defined in Lemma 10.

It remains to transform the MI term I(⇥;⇥|
Z) in (18) into I(⇥⇤;⇥

|
⇤Z+

p
tN), where N ⇠ N (0, I2k)

and ⇥⇤ = A⇤ � B⇤ with A⇤ and B⇤ matrices of dimension dx ⇥ k and dy ⇥ k and entries i.i.d.
according to N (0, 1/dx) and N (0, 1/dy), respectively. Using the polar decomposition of Gaussian
matrices, we know that A⇤

d
= A(A|

⇤A⇤)1/2, where A ⇠ �k,dx , i.e., it is uniformly distributed over
St(k, dx). A similar claim holds for B⇤. By invariance of MI to invertible transformations (A|

⇤A⇤
and B|

⇤B⇤ are a.s. invertible), we have

I(⇥;⇥|
Z) = I(A,B;A|

X,B|
Y ) = I(A⇤,B⇤; A

|
⇤X,B|

⇤Y ) = I(⇥⇤;⇥
|
⇤Z).

Next, we introduce the noise into the latter MI as follows. Denote the distribution of ⇥⇤ by � and
consider

I(⇥⇤;⇥
|
⇤Z)� I(⇥⇤;W ) = h(⇥|

⇤Z)� h(W ) + h(W |⇥⇤)� h(⇥|
⇤Z|⇥⇤)


Z

h(W |⇥⇤ = ✓)� h(⇥|
⇤Z|⇥⇤ = ✓)d�(✓)


Z p

J(✓|Z)W2

�
✓
|
Z, ✓

|
Z +

p
tN
�
d�(✓)



s

2kt

Z
J(✓|Z)d�(✓), (22)
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where the first inequality follow since h(W ) � h(W |N) = h(⇥|
⇤Z) (as conditioning cannot increase

differential entropy), the second inequality follows from Lemma 1, while the last step upper bounds
the 2-Wasserstein distance by

�
E[k

p
tNk2]

�1/2
=

p
2kt and applies Jensen’s inequality.

To bound the expected Fisher information, let ✓† denote the pseudo-inverse of ✓. Using the data
processing inequality once more, we have

Z
J(✓|Z)d�(✓) 

Z
tr
�
✓
†JF(Z)(✓†)|

�
d�(✓)

=

Z
tr
�
JF(Z)(✓✓|)�1

�
d�(✓)

= kJF(Z)kop E
⇥
tr
�
(⇥|

⇤⇥⇤)
�1
�⇤

= kJF(Z)kop
⇣
dxE

⇥
tr
�
(Ã|

⇤Ã⇤)
�1
�⇤

+ dyE
⇥
tr
�
(B̃|

⇤B̃⇤)
�1
�⇤⌘

,

where Ã⇤ and B̃⇤ are random Gaussian matrices of dimensions dx ⇥ k and dy ⇥ k, respectively,
with i.i.d. N (0, 1) entries. Consequently, note that Ã|

⇤Ã⇤ and B̃|
⇤B̃⇤ follow the k ⇥ k Wishart

distribution with dx and dy degrees of freedom, respectively. For dx > k + 1 the mean of the inverse
is E

⇥
(A|

⇤A⇤)�1
⇤
= 1

dx�k�1 I2k and so E
⇥
tr
�
(A|

⇤A⇤)�1
�⇤

= k
dx�k�1 ; cf. e.g., [46] (and similarly

for B̃⇤). Inserting this into (22) and combining with (19) and (21) yields the result.

B.2 Proof of Lemma 11

The following bounds follow by the exact same argument of Lemmas 4 and 5 from [32], respectively.
Lemma 12. We have

I(⇥⇤;W )  

Z

R2k

q
Var(pW |⇥⇤(w|⇥⇤))dz

where  = supx2(0,1) log(1 + x)/
p
x ⇡ 0.80474.

Lemma 13. Let f : Rd ! R�0 be a non-negative integrable function and denote its pth moment by

⌘p[f ] :=
R
kzkpf(z)dz. If ⌘d�1[f ], ⌘d+1[f ] < 1, then

Z p
f(z)dz 

s
2⇡

d
2+1

�
�
d
2

�
�
⌘d�1[f ]⌘d+1[f ]

� 1
4
,

where �(z) is the Gamma function.

Let 't denote the density of N (0, tId); the dimension is suppressed and should be understood from
the context, while the subscript is omitted when t = 1. Define the following quantities:

mp(W,⇥⇤) :=

R
R2k kwkpVar

�
pW |⇥⇤(w|⇥⇤)

�
dw� R

Rk '
2(w)dw

�� R
Rk kwkp'2(w)dw

�

M(W,⇥⇤) :=
p
m2k�1(W,⇥⇤)m2k+1(W,⇥⇤).

The following lemma is adapted from Lemma 6 of [32] to accommodate our M(W,⇥⇤), definition
which slightly differs from theirs.
Lemma 14. If the conditional distribution of W given ⇥⇤, pW |⇥⇤ , is absolutely continuous w.r.t.

Leb and M(W,⇥⇤) < 1, we have

I(W ;⇥⇤)  

✓
3⇡k

8

◆ 1
4 p

M(W,⇥⇤),

where  is as defined in Lemma 12.

Proof. Lemmas 12 and 13 together imply

I(W ;⇥⇤)  

s
2⇡k+1

�(k)

⇣
⌘2k�1

⇥
Var
�
pW |⇥⇤(w|⇥⇤)

�⇤
· ⌘2k+1

⇥
Var
�
pW |⇥⇤(w|⇥⇤)

�⇤⌘ 1
4
,
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= 

s
2⇡k+1

�(k)

s

M(W,⇥⇤)

Z

Rk

'2(w)dw

⇥
✓Z

Rk

kwk2k�1
'
2(w)dw

Z

Rk

kwk2k+1
'
2(w)dw

◆ 1
4

,

= 

p
M(W,⇥⇤)

p
21�2k⇡

 
�( 3k�1

2 )�( 3k+1
2 )

�2(k2 )�
2(k)

! 1
4

,

 

p
M(W,⇥⇤)(6k⇡

2)
1
4

 
2�2k �( 3k�1

2 )

�(k2 )�(k)

! 1
2

,

 

2

p
M(W,⇥⇤)(6k⇡)

1
4 ,

where we have substituted in M(W,⇥⇤) as defined above, have noted that
R
kwkp'2(w)dw =

(4⇡)�
k
2 �(k+p

2 )/�(k2 ). The last step observes that 2�2k �( 3k�1
2 )

�( k
2 )�(k)

is a decreasing in k � 1. This
can be verified by by using the fact that that as �(z + 1) = z�(z), increasing k by 2 will decrease
2�2k �( 3k�1

2 )

�( k
2 )�(k)

.

Given the bound in Lemma 14, we next bound the moment M(W,⇥⇤). To that end, we control
⌘p(W,⇥⇤). For convenience of notation, we set Z = (Z|

1 Z
|
2 )

|, i.e., Z1 = X , and Z2 = Y , and
d1 = dx, d2 = dy. We consider two independent copies of Z, denoted by Z

(1) and Z
(2). With this

notation, we have the following lemma.
Lemma 15. For any p � 0, we have

mp(W,⇥⇤) = E

2

4(Va,1 �R1)
� 1

2 (Va,2 �R2)
� 1

2

0

@
 
V

2
g,1 �R

2
1

Va,1 �R1

! p
2

+

 
V

2
g,2 �R

2
2

Va,2 �R2

! p
2

1

A

3

5

� E

2

4V � 1
2

a,1 V
� 1

2
a,2

0

@
 
V

2
g,1

Va,1

! p
2

+

 
V

2
g,2

Va,2

! p
2

1

A

3

5 ,

where

Va,i = t+
1

2di
kZ(1)

i k2 + 1

2di
kZ(2)

i k2,

Vg,i =

s✓
t+

1

di
kZ(1)

i k2
◆✓

t+
1

di
kZ(2)

i k2
◆
,

Ri =
1

di
hZ(1)

i , Z
(2)
i i.

Proof. By the definition of W , we have pW |⇥⇤(w|✓) = E
⇥
't(w � ✓

|
Z)
⇤
, whereby

p
2
W |⇥⇤

(w|✓) = E
⇥
't(w � ✓

|
Z

(1))'t(w � ✓
|
Z

(2))
⇤
.

Taking the expectation over the distribution of ⇥⇤ and swapping the order of expectation yields

E
⇥
p
2
W |⇥⇤

(w|⇥⇤)
⇤
= E

⇥
⌫(w,Z(1)

, Z
(2))
⇤

where ⌫(y, z(1), z(2)) = E['t(w �⇥|
⇤z

(1))'t(w �⇥|
⇤z

(2))]. Note that since z
(1)

, z
(2) are fixed,


⇥|

⇤z
(1)

⇥|
⇤z

(2)

�
⇠ N (0,⌃)
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where

⌃ =

2

666664

kz(1)1 k2/d1 0 hz(1)
1 ,z(2)

1 i
d1

0

0 kz(1)2 k2/d2 0 hz(1)
2 ,z(2)

2 i
d2

hz(1)
1 ,z(2)

1 i
d1

0 kz(2)1 k2/d1 0

0 hz(1)
2 ,z(2)

2 i
d2

0 kz(2)2 k2/d2

3

777775
⌦ Ik.

The proof of Lemma 7 from [32] shows that

⌫(w, z(1), z(2)) = (2⇡)2k |⌃+ t I4k|�
1
2 exp

 
�1

2

����(⌃+ t I4k)
� 1

2


w

w

�����
2
!
. (23)

It is convenient to transform ⌃ into a block-diagonal form. To that end, let us consider the (orthonor-
mal) permutation matrix

P =

2

64

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

3

75 ,

and set ⌃0 = (P⌦ Ik)⌃(P⌦ Ik)|. This gives

⌃0 =

2

666664

kz(1)1 k2/d1 hz(1)
1 ,z(2)

1 i
d1

0 0
hz(1)

1 ,z(2)
1 i

d1
kz(2)1 k2/d1 0 0

0 0 kz(1)2 k2/d2 hz(1)
2 ,z(2)

2 i
d2

0 0 hz(1)
2 ,z(2)

2 i
d2

kz(2)2 k2/d2

3

777775
⌦ Ik.

Note that since P is a permutation matrix, the eigenvalues of ⌃ and ⌃̃ are equal, hence |⌃+ tI| =���⌃̃+ tI
��� = (v2g,1 � r

2
1)

k(v2g,2 � r
2
2)

k. We also obtain

1

2

����(⌃+ t I4k)
� 1

2


w

w

�����
2

=
1

2

�������
(⌃̃+ t I4k)

� 1
2

2

64

w1

w1

w2

w2

3

75

�������

2

=

 
va,1 � r1

v2g,1 � r21

!
kw1k2+

 
va,2 � r2

v2g,2 � r22

!
kw2k2,

where (va,i, vg,i, ri) are as defined in the lemma statement and we have observed that P|P = I4 and

(P⌦ Ik)


w

w

�
=

2

64

w1

w1

w2

w2

3

75. Substituting into (23) and simplifying yields

⌫(w,Z(1)
, Z

(2)) = (Va,1 �R1)
� k

2 (Va,2 �R2)
� k

2 U
k
2
1 U

k
2
2 '

2
k,1(U

� 1
2

1 y1)'
2
k,1(U

� 1
2

2 y2)

where Ui = (V 2
g,i �R

2
i )/(Va,i �Ri). Then the pth moment of ⌫ with respect to w is (using change

of variables) is give by

⌘p

⇥
E
⇥
p
2
W |⇥⇤

(w|⇥⇤)
⇤⇤

= E

Z
kwkp⌫(w,Z(1)

, Z
(2))dw

�

= E


(Va,1 �R1)

� k
2 (Va,2 �R2)

� k
2

Z
w

p
1U

k
2
1 U

k
2
2 '

2
1(U

� 1
2

1 w1)'
2
1(U

� 1
2

2 z2)dw

+(Va,1 �R1)
� k

2 (Va,2 �R2)
� k

2

Z
w

p
2U

k
2
1 U

k
2
2 '

2
k,1(U

� 1
2

1 w1)'
2
k,1(U

� 1
2

2 w2)dw

�

= ⌘0['
2]⌘p['

2]E

2

4(Va,1 �R1)
� k

2 (Va,2 �R2)
� k

2

0

@
 
V

2
g,1 �R

2
1

Va,1 �R1

! p
2

+

 
V

2
g,2 �R

2
2

Va,2 �R2

! p
2

1

A

3

5.

(24)

17



Next, we find the pth moment of the unconditional squared density p
2
W . First, as in the conditional

case, we write p
2
W (w) = E[⌫̃(w, z(1), z(2))], where

⌫̃(w) = E
⇥
't(w �⇥(1)

⇤ z
(1))'t(w �⇥(2)

⇤ z
(2))
⇤

with ⇥(i)
⇤ , for i = 1.2, being independent copies of ⇥⇤. This independence in turn decorrelates

⇥(1)
⇤ z

(1) and ⇥(2)
⇤ z

(2), i.e., "
⇥(1)

⇤ z
(1)

⇥(2)
⇤ z

(2)

#
⇠ N

�
0, diag(⌃)

�
.

Proceeding as in the correlated case above yields

⌘p

⇥
E[p2W (w)]

⇤
= ⌘0['

2]⌘p['
2] = E

2

4V � k
2

a,1 V
� k

2
a,2

0

@
 
V

2
g,1

Va,1

! p
2

+

 
V

2
g,2

Va,2

! p
2

1

A

3

5 ,

and combining this with (24) gives

mp(W,⇥⇤) =
⌘p

⇥
Var
�
p
2
W |⇥⇤

(w|⇥⇤)
�⇤

⌘0['2]⌘p['2]

= E

2

4(Va,1 �R1)
� k

2 (Va,2 �R2)
� k

2

0

@
 
V

2
g,1 �R

2
1

Va,1 �R1

! p
2

+

 
V

2
g,2 �R

2
2

Va,2 �R2

! p
2

1

A

3

5

� E

2

4V � k
2

a,1 V
� k

2
a,2

0

@
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It remains to bound the expectation in Lemma 15. We start with the following bound.
Lemma 16. For any p � 0, we have

mp(W,⇥⇤)  E


V

� k
2

a,2 V
� k�p

2
a,1 gp

✓
R1

Va,1
,
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◆
+ V

� k
2

a,1 V
� k�p

2
a,2 gp

✓
R2
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,
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◆�
,

where gk,p : (�1, 1) ! R is given by gk,p(u, v) := (1� v)�
k
2 (1� u)�

k
2 (1 + u)

p
2 � 1.

Proof. Note that for i, j = 1, 2 with i 6= j, we have

(Va,j �Rj)
� k
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i
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2
✓
1� Ri
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✓
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2
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✓
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,
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◆
V

� k
2

a,j V
� k�p

2
a,i ,

where we have noted that Vg,i  Va,i since the geometric mean is upper bounded by the arithmetic
mean. Substituting into Lemma 15 completes the proof.

To make the expectation of gp tractable we next upper bound it by a quadratic function.
Lemma 17. For any t > 0 and (r1, r2) such that |r1|  c1, |r2|  c2, for some c1, c2, we have

gp

✓
ri

t+ ci
,

rj

t+ cj

◆
 k + p

2

ri

t+ ci
+

k

2
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p
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k�p
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k
2

 
r
2
i + r

2
j

c2i ^ c2j

!
,

where i, j = 1, 2 with i 6= j.
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Proof. Since gp(0, 0) = 0, we decompose

gp(u, v) =
�
rgp(0, 0)

�|


u

v

�
+ hp(u, v)(u

2 + v
2),

where hp(u, v) =

✓
gp(u, v)�rgp(0, 0)|


u

v

�◆
/(u2 + v

2). It can be verified that hp is non-

negative and nondecreasing in both arguments. Hence, for all �1 < u  zu < 1, �1 < v  zv < 1,
we have

gp(u, v)  rgp(0, 0)
|


u

v

�
+ hp(zu, zv)(u

2 + v
2).

Furthermore, for zu, zv > 0,

hp(zu, zv) 
gp(zu, zv)

z2u + z2v

=
1

z2u + z2v

(1� zv)
� k

2 (1� zu)
� k

2 (1 + zu)
p
2 .

Using zu = ci/(t+ ci), zv = cj/(t+ cj), we obtain

hp(zu, zv) 
1

2min(z2u, z
2
v)

t
�k(t+ cj)

k
2 (t+ ci)

k�p
2 (t+ 2ci)

p
2 ,

from which the result follows.

Next, we provide a bound on M(W,⇥⇤) subject to a.s. boundedness assumption on the squared
norms of the random variables. The subsequently presented Lemma 19 then relaxes this assumption
to a bound on the MI term of interest.
Lemma 18. Suppose that �min  kXk2

dx
^ kYk2

dy
 kXk2

dx
_ kYk2

dy
 �max a.s. Then
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#
.

Proof. Using Lemma 17 and the definitions of �r
r , Ri, and Va,i, for p = 2k � 1, we have

E
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2
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.

By Lemma 16, this yields

m2k�1(W,⇥⇤)  (t+ �min)
� k
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Similarly for p = 2k + 1,
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By the definition of M(W,⇥⇤) =
p
m2k�1(W,⇥⇤)m2k+1(W,⇥⇤), we obtain

M(W,⇥⇤)  2
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where we have used the fact that the geometric mean is upper bounded by the arithmetic mean.
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The derivation is concluded by adapting Lemma 12 of [32] to our notation and setting.
Lemma 19. Let E ✓ R

dx+dy be measurable. Then

I(W ;⇥⇤) 
k

2
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✓
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�

t

◆✓
µZ(Ec) +
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�

◆
+ µZ(E)I(W ;⇥⇤|Z 2 E).

Proof. Letting U = 1E(Z), the MI chain rule gives

I(W,U ;⇥⇤) = I(W ;⇥⇤) + I(U ;⇥⇤|W ) = I(W ;⇥⇤|U) + I(U ;⇥⇤).

Since I(U ;⇥⇤) = 0, we have I(W ;⇥⇤)  I(W ;⇥⇤|U), and expanding the conditioning yields
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Recall that W = ⇥|
⇤Z +

p
tN , where ⇥⇤ and N are independent Gaussians. Therefore, conditioned

on Z, (W,⇥⇤) is jointly Gaussian and we have
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where the last inequality follows from Lemma 19 of [32]. Combining expressions yields the lemma.

To use the bound on M(W,⇥⇤) from Lemma 18, we therefore let
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⇢
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�
,

where ✏ 2 (0, 1]. Markov’s inequality implies µZi(Ec
i )  2

✏�↵(Zi). Define E = E1 ⇥ E2, so that by
the union bound µZ(Ec)  µZ1(Ec
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✏�↵(Z1) _ ↵(Z2). Let Z 0 be drawn according to
the conditional distribution of Z given Z 2 E , and set W 0 = ⇥|
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tN . By Lemma 18, we have
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Hence
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and applying Lemma 19, while noting that �r
r (Z

0
i) 

�r
r (Zi)

µ2
Zi

(Ei)
 �r

r (Zi)
µ2
Z(E) , for i = 1, 2 and r = 1, 2,

yields the result of Lemma 11.
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