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A Proofs of Results in the Main Text

A.1 Proofs for Section

The HWI inequality of Otto and Villani [22] is a functional inequality relating the entropy (H),
quadratic transportation cost (W), and Fisher information (I), all defined w.r.t. a suitable reference
measure that has bounded curvature. In deriving the classic result, a more general version of the HWI
was established in [22]—one that is particularly well suited to the application in this paper, where
we consider the differences between two entropy terms. See also [23l Proposition 1.5] for a recent
derivation of the generalized inequality via a different argument based on an entropic interpolation of
Wasserstein geodesics.

The result reads as follows: let v, = A/(0, 0214) denote the isotropic Gaussian measure on R? with
variance o2 and consider 1, v € Po(R?) with D(v/||7,) < oo for some ¢ > 0, then

D) — D) < Wal, )/ T — 53

This HWI inequality is used to prove Lemma[l] from which the Lipschitz continuity in Proposition ]
readily follows.

W3 (p,v). (5)

Proof of Lemmall} If p has finite Fisher information then we have the well-known identities

n 1
D(ullve) = 5 log(270®) + 55 EullX|* — h(u)
2n
o+

1
o) = J(k) = 25 + — Bl XIP.

ot
Making the change of variables A = o2 and swapping the roles of x and v leads to the following
bound on the difference in differential entropy:

1 A A
h(i) = h(v) < (J(v) = 20X+ NEy[|X[*) * W, v) = SW3 (1, v) + 5 (BullX* = By [ X]1%)
As the left-hand side (LHS) does not depend on ), by taking the A — 0" we obtain

h() — h(v) < VI Wa(p, v) ©)

as desired. To see that the constant cannot be improved, evaluate the above bound for ;1 = v, and
v = 7, and consider the limiting case of a/b — 17:

() —h(w) . log ()

lim = =1
§17 VIG)W (e, 1) 1% (5 - 1)

O

Proof of Proposition|l| Because differential entropy is translation invariant we may assume without
loss of generality that ¢ has zero mean. From the definition of the 2-Wasserstein distance, we obtain

Wa(pi e, pf ) < |/%(A - B)e. @)
Combining this with (6) gives the first result.



To obtain a uniform bound on the Lipschitz constant, we use the fact that J F(p? u) = BTJr(u)B
for any matrix B with orthogonal columns (cf. [41, Equation (67)]). Thus, both ||Jg (pfu) llop and
(| F(pnB )]|op are bounded from above by the sum of the & largest eigenvalues of Jp (1), and so

19 (P2 0) lop V 11 (P7 1) llop < Kl (10) llop-
Combining this with ||E},/2(A —B)|lr < |Z.llopllA — Bl in (7) completes the proof. O

A.2  Proof of Proposition

Proof of[1. Non-negativity follows because k-SMI is an average of classic MI terms, which are
non-negative. Nullification of k-SMI between independent (X,Y") is also straightforward, since
in this case (ATX,BTY") are independent for all (A,B) € St(k,d;) x St(k,d,), which implies
[((ATX;BTY) = 0, i.e., the integrand in the k-SMI definition is identically zero. For the opposite
implication, as will be shown below, we have SI(X;Y) < Sl (X;Y), forany 1 < k < d, A d,,.
Hence, if Sl (X;Y) = 0 then SI(X;Y") = 0 and by Proposition 1 form [17]] we have that (X,Y") are
independent.

Proof of[2l  Throughout this proof we use our standard matrix notation (non-italic letter, such as A)
to designate random matrices; for fixed matrices we add a tilde, e.g., A. Fix 1 < k; < ky < d; A d,
and let (A1, B1) ~ ok, 4, ® 0,4, and (A2, Bz) ~ 0k, 4, ® Ok,.q,. For each A, € St(ks,d),
represent it as A, = [Agl Agg], where Ay € St(k1,d) and Aoy € St(ke — k1,d), and similarly for
Bg. We now have

Sli, (X3 Y)
= (AT X;BlY|A2, By)
= I(AL, X;BI,Y|A2,By) + (AL X; BIY|As, Bo, AT, X) + I(A], X; BLY Ay, By, B1Y)
> I(ATX: BIY|A;,By)
= Sly, (X3 Y),
where the inequality uses the non-negativity of (conditional) MI and the fact that
(AT, X;Bl,Y|A3,Bs) = I(A], X; BY, Y|Ag1,Ba1) = (AT X BTY|Ay, By).
Indeed, the latter holds since (Ao, Bag) are marginalized out in the conditioning and because
(A21,Ba1) il A1, B1) ~ 0k d, ® Oy d,-

Lastly, supremizing the integrand in the k-SMI definition over all pair of matrices from the Stiefel
manifold, we further obtain

Slk, (X;Y) = I(ATX;BIY|A2,By) < sup I(ATX;BTY),
(A,B)€St(ko,d, ) xSt(kz2,dy)

which concludes the proof.

Proof of[3} This follows because conditional mutual information can be expressed as
(X;Y|Z)=E,, {DKL(NX,Y\Z("Z)HNX|Z('|Z) ® NY|Z('|Z))}7
and because the joint distribution of (ATX,BTY’) given {A = A,B = B}, for fixed (A,B) €
St(k, d;) x St(k,dy),is (p*, pB)sux,y, while the corresponding conditional marginals are p? wx
and p?uy, respectively. Hence,
S(X;Y) =D((p™, p®)sxy || (0%, p®)spx ® py |A, B) = D(uasarxsry|[ia sars sry)
where the second step follows from the relative entropy chain rule, with
(A,B,ATX,BTY) ~ o BATX,BTY = Ok,d, ® Ok.d, (P, p®)spxy
(A,B,ATX,BTY) ~ i g arx.5r5 = Okidy @ Ok, (0™, 9%)s0x © pry.

The variational form follows by applying the DV representation of relative entropy to the latter
expression for Sl (X;Y) (see Section[4.2).



Proof of 4. Recall the definition of marginal and conditional k-sliced entropies: shy(X) :=
h(ATX|A) and sh(X|Y) := h(ATX|A,B,BTY). Given the representation of k-SMI as a condi-
tional mutual information, we now have

SI(X;Y) =1(ATX;BTY|A,B) = h(ATX|A) — h(ATX|A,B,BTY),
where we have used independence of B and (A, ATX) in the first conditional entropy term. The
other decompositions follow in a similar fashion.
Proof of|S| We only prove the small chain rule; generalizing to n variables is straightforward. Con-
sider:

SI(X,Y;Z)=1(ATX,BTY;CTZ|A,B,C)

=I1(ATX;C7Z|A,B,C)+ I(BTY;CTZ|A,B,C,ATX),
where the last equality is the regular chain rule. Since (X, Z, A, C) are independent of B, we have
I(ATX;CTZ|A,B,C) =I(ATX;CTZ|A,C) = SIk(X; Z),

while (BTY; CTZ|A,B,C,ATX) = Sl (Y; Z| X) by definition.

Proof of|6} By definition,
Slk(Xl,. . .,Xn;Yl,. . ,Yn):S|k(AIX1, . 7A:LXTL7BIY13 . -7BILYn|A17~ . -aAnth- . .,Bn),

where the A;, B; are all independent and uniform on the respective Stiefel manifolds. Now, by mutual
independence of the A;, B; and (X;,Y;) across ¢ and tensorization of MI, we have

I(ATX1,..., AT X, BIY:, ..., BIYa|Ay, ..., Ap, By, By) = Y I(ATX;; BIYi|A;, B;)

=1

= i:s'k(XiQYi)'
=1

A.3 Proof of Theorem[T]

The proof of Theorem [I]relies on the following technical lemmas concerning the Lipschitzness and
variance of the function i xy : St(k,d;) x St(k,d,) — R defined as ixy (A, B) := [(ATX;BTY).

Lemma 2 (Lipschitzness of projected MI). For pixy € Pa(R% x R%) with J(uxy) < oo, the
function ixy : St(k,dy) x St(k,d,) — R is Lipschitz with respect to the Frobenius norm on the
Cartesian product of Stiefel manifolds, with Lipschitz constant

Li(pxy) = 3\/2k||Jp(uxy)Hop(||ExHop VIZy llop)-

Proof. Fixing (A1,B1), (A2, B2) € St(k, d,) x St(k,d,), we have
lixy (A1, B1) —ixy (A, By
< |R(ATX) — h(ALX)| + [(BIY) — h(BY)| + [h(ATX, BTY) — h(AJX,BIY)|. (8)

The differences of marginal entropy terms (i.e., the first two terms on the right-hand side (RHS) above)

are controlled by \/k[[Xx [lop[|JF (1) [op [ A1 — Az[lr and \/K[[Sy [[op [TF (1y ) op[IB1 — BelE,
respectively, by applying Proposition|[I] For the difference of joint entropies, we shall use Lemmal ]
To that end, note that

W3 (P2, pB0) s uxy, (022, p52)puxy )

E [[I(A1 — A2)TX* + [|(Br — B2)TY 7]
(IBxllop V 1Exllop) (A1 = Azl + [B1 — Ballf),
(€))

and observe that the Fisher information of the projected joint distribution can be controlled by the
operator norm of the corresponding Fisher information matrix. Indeed, the Fisher information data

<
<



processing inequality (cf. [41] Equation (67)]) states that for any (A, B) € St(k,d,) x St(k, dy), we
have

AT 0 A0
J(™ pP)puxy) = tr <[ 0 BT ]JF(MXY) { 0 B D < 2k Jr(uxy)llop-  (10)
Invoking Lemmal[T} while using the above along with (9), gives
|h(ATX,B]Y) — h(ATX,BIY)|
1/2
< (2k190 Gy lop (IExllop V [ 5v lop) )~ (141 = Aal? + B — Bal3)

Together with the marginal entropy bounds the fact that Jg(ux) V Jr(py) = Jr(uxy) (which also
follows from the data processing inequality), this implies the result. O

1/2

Lemma 3 (Variance bound). Let (A, B) ~ 0.4, ® Oy,a,, then we have the variance bound
Var(ixy (A, B)) < 24L; (uxy) (dy " +d; "),

where Ly (uxy) is defined in Lemma

Proof. Recall that the special orthogonal group SO(d) = {U € R**4 : UTU = I4,det(U) = 1} is

the set of d x d orthogonal matrices with determinant one. The following result is consequence of
concentration of measure on compact Riemannian manifolds (see Section 5 in [42]).

Lemma 4. Ler f: SO(d) — R be Lipschitz continuous with respect to the Frobenius norm with
Lipschitz constant L, i.e., | f(U) — f(V)| < L|U = V||g for all U,V € SO(d). Ifd > 3 and U is
distributed uniformly on SO(d) then f(U) is sub-Gaussian with parameter o> = 4L?/(d — 2), i.e.,

A2g2
logE {e’\(f(U)*]Ef(U))} < — V> 0.

)

In particular, this implies that Var(f(U)) < o2

For our purposes, this result provides concentration bounds with respect to functions defined on
the Stiefel manifold. Observe that if U = [uy ... u4] is uniform on SO(d) then the d x k matrix
A = [uy...uy] is uniform on St(k,d). Thus, if ¢ is a real-valued function on St(k,d) that is
Lipschitz continuous with constant L, we can apply the above result to f(U) = g(U[I,0]T) to
conclude that g(A) is sub-Gaussian with parameter 4L2/(d — 2), and hence

412

Var(g(A)) < T3

. Y

Now, to bound the variance of i xy, recall that (A, B) ~ oy, 4. ® O,q, are independent and uniformly
distributed random matrices from the corresponding Stiefel manifold. By the Efron-Stein inequality
(cf. e.g., [43 Theorem 3.3.7]), the variance satisfies

Var(ixy(A,B)) < E[Var(ixy(A,B)|B)] + E[Var(ixy (A,B)|A)].

Since ixy (-, -) is Lipschitz continuous in each of its arguments with the same constant, it follows
from Lemma |2 that the terms on the RHS are bounded from above by (2L (11xy))?/(d, — 2) and

(2Lk (kxvy))

As the above requires d, d, > 2, we further note that for A’ an independent copy of A, we have

(dy — 2), respectively.

E[Var(ixy (A, B)|B)] = %E [lixy(A.B) — ixy (A" B[

< L} (pxy)

<= El|A1 — Ag|lf < Li(pxy) kda.

Since k < d, — 1, it follows that

4 12L2
E[Var(ixy (A, B)[B)] < (di —du A d_g) Li(pxy) < %,
and similarly for E[Var (ixy (A, B)|A)] with d,, replacing d.,. The conclusion of Lemmafollows.

O



Proof of Theorem|l| Since k-SMI is invariant to translation (due to bijection invariance of MI), we
may assume without loss of generality that X and Y are centered. The error is now decomposed as

E [’SIk(X; Y) - SAIZWH
;i v(A;,B)) §|Z"”]

The first term on the RHS above corresponds to the MC error. By observing that Sl (X;Y) =

E [% S Xy(Ai7Bi)] and using monotonicity of moments, we may upper bound it by

SI(X;Y) — izzxy A;,B;)

m
=1

(Var(ixy(A,B))/m) 2 Lemmathen provides a bound on the variance.

The second term above is controlled by the k-dimensional MI estimation error dx(n) from Assump-
tion[1} since

1 & ~mn R
~ Y ixy(AuB) -S| < suwp E Hz‘Xy(A,B) —i(ATx)", B7Y)") || < d(n).
m = AeSt(k,dy)
BeSt(k,dy)
Combining the two bounds produces the result. O

A.4 Proof of Theorem

The proof utilizes the result of Theorem 4 from [29] for relative entropy neural estimation along
with the sufficient conditions given in Proposition 7 therein (cf. [29, Section 4.1.1] for comments on
the applicability of their Theorem 4 to the DV variational form). For completeness, we first restate
those results. Denote || Z|| := sup,cz |12/ co-

Proposition 3 (Sufficient conditions for relative entropy neural estimation (Theorem 4 and Proposi-
tion 2 of [29])). Fixd,b, M > 0and set s = |d/2]|+3,. Let Z C R? be compact, and 1, v € Pac(Z2)
have densities f,, f, respectively. Suppose that D(pu||v) < M and that there exist r,,,r, € C;(U)
for some open setU O Z, such that log f,, = r,|z and log f, = r,|z. Then

1

E[[D(ullv) - Bgy (X" Y™ Satpzie did +din s,

~

where Dge (X", Y™) i=supyege £ 31, g(Xi,Y;) —log (£ Yi, edXiYow)),

1=

We use the above result to establish the following lemma that accounts for neural estimation of each
projected MI term. Given the lemma, the result of Theorem 2] follows by Theorem [I] with the RHS
of in place of the 0y (n) term therein.

Lemma 5 (Neural estimation of i xy (A, B)). Let uxy € ng’dy (M, b). Then uniformly in (A,B) €
St(k,d,) x St(k,d,), we have the neural estimation bound

E HiXY(AaB) *ii,k((AJT*X) ,(BIY)" )H St sy K202 + k205 (12)

Proof. The lemma is proven by showing that densities of (p*, p®)spxy and pgux ® pPpuy satisfy
the conditions of Proposition whenever pxy € F, ij a, (M, b).

Let f be the density of ;1 xy and set fy, with 6 := (01, 62) = (A,B) € St(k, d) x St(k,d,) as the
density of projection (p*, pB); 1 xy which is supported on Z. Let A = [ay ... ax), where a; € S%~1
with {a;,a;) = 0, Vi # j, and denote W, = {w € R% : (a;,w) = 0, Vi = 1,...,k}. Similarly,
for B = (by...bg),set W, = {w € R% : (b;,w) =0, Vi=1,...,k}

The density fy is given by
fo(2z,2y) = / / f(Azy + wg, Bzy + wy) dw, dwy,

where we have denoted z,; = (a;,x) and z,; = (b;,y), for i = 1,...,k, and further defined
Zp = [2p1 .. Ze gt and 2z, = (21 ... 2y k)7



Given uxy € -ng,dy (M, b), there exists r € C§(U) with s = k + 3 for some opensetif O X x Y,

such that log f = r|xxy. Choose U > Z such that U is the projection of the set I on to the
projection directions specified by A, B. Then also set

1 (22, 2y) = log/ / exp (r(Azy + wg, Bzy + wy)) dw, dw,.
wW. y

which implies 71|z = log fo.

To evaluate the derivative, we use the short hand notation r; := log ( Ik exp(r)), omit-
ting the arguments of the functions r,7. Let v € {zp1,..., 20k 2y15--- 2y k)t and u €
{x1,...,24,,91,...,Ya,} and consider

o @ s! (DML (M, - D)y L / o g
Erie S Z mil mal ... mg! T))MS LL iy ( p exp(r))

= malmalm ([ exp( ;
) s (=Mt (M — 1)
% my!l mal. .. ms! ([exp(r))™
s 1 1 L\ m;
X H nm ( eXp(T)Z ! lg H (k1) ( ) )
=1 Pll k=1

(e) s (Mg —1)! s 1 fexp( )ZP@ Tl 0! 2 1 (ku)lk bl
Z my! | H (i!

P2 (i)m [ exp(r)

cs(bV b%)

where:

(a) follows from Faa di Bruno’s formula with M, = Zle m; and P;, as the set of all s-tuples of
non-negative integers m; satisfying > ;_, im; = s;

(b) uses the Faa di Bruno’s formula for the function exp(r), with P} defined similarly to Pg,;

(c) holds since \%r‘ < b, which comes from the fact that ]%r’ < \%r‘ < bfor k < s; the
latter is a consequence of r being s-times differentiable with derivatives bounded by b and since
] 9 ku’ < 1, which holds because * = Az, + w,,y = Bz, + w, and thus -2 55U is a constant (i.e.,
1ndependent of v) upper bounded 1;

(d) identifies the dominating term as b2i=1 2k=1 lemi < b\ bS and uses ¢, for a constant that depends
only on s.

Conclude that 7 € C§, (U') with b* = ¢, (b V b®).

Consider a s1m11ar derlvatlon for the product of marginal densities. Let fy, and fy, denote the
densities of pﬁ wx and pﬁ [y, respectively; the corresponding supports are Z; and Z, for which
Z = Z, x Z,. Following steps as above, we can show that 3 rg, € C;. (U, ), 79, € C. (Uy) with
Uy D Z1,Uy D 25, such that log fy, = rg, |z, and log fg, = re,|z,.
As the density of Pfﬂx ® pfuy is fo, fo,, we choose ra(2z, 2y) = 79, (22) + 76, (2y). Accordingly,
log fo, f9, = 2|z, and for U = U, x Uy D Z, we have

1D Pl ez < ID76, g + 1D 78, ll g < 2%

This implies that ry € C5;. U'), whereby p?ux ® p?py € fgx’dy (M, 2b™).

Since Z C R?* and puxy € ]—"sz’dy (M, b), the above shows that (p*, p®); 1 xy and p?ux ® p}fuy
satisfy the smoothness requirement of Proposition [3 (the order should be at least s = k + 3), with



an expansion of smoothness radius to 2cy 3(b Vv b*+3). For k = 1 which corresponds to SMI, the
expanded smoothness radius is 2b* = 154(b \V b*).

Lastly, we note that || Z]|oc <  sup  [|[ATz,BTy|| < ||X x V||, where the last inequality is due
(z,y)eX XY

to sub-multiplicative property of £2-norm and
AT 0 A 0| I
0 BT 0 B |
which results in the corresponding operator norm being 1. This completes the proof of Lemma[5] [J

A.5 Proof of Theorem[3

We begin by recalling the setting of Theorem 3]as well as some basic properties of mutual information
for Gaussian distributions. Let (X,Y) ~ yxy = N (0, X xy) be jointly Gaussian random variables
with positive definite covariance matrix

Sy = Xx Cxy
Chy Xy
The assumption that the covariance is positive definite means that the singular values of the correlation

matrix defined by R := 2;(1/ 2Cxy E;l/ ? are strictly less than one. The mutual information between
X and Y depends only on the correlation matrix and is given by

I(X:Y) = —% log det(I5, — RRT).

Moreover, for a d,, x k matrix A and d,, x k matrix B, both with linearly independent columns, the
mutual information between the k-dimensional Gaussian variables ATX and BTY equals to

1 -
I(ATX;BTY) = ~5 log det(I — RRT),
where R = ATRB is the correlation matrix of the projected distribution and

A=x{PAATExA)"2 B =x{/’B(BTEyB)" /2 (13)

The k-SMI is the expectation of this mutual information with respect to (A, B) drawn from the
uniform distribution on St(k, d,) x St(k, d,)

Remark 7. If Xx and Xy are approximately low rank then A and B are concentrated low-
dimensional subspaces, which may or may not align with the dominant directions in the correlation
matrix R. Therefore, in contrast to the mutual information, the k-SMI depends not only on the
correlation matrix R but also the marginal distributions of X and'Y .

Proof of Theorem[3] The proof relies on several technical lemmas whose statements and proofs are
deferred to the next section. The k-SMI for jointly Gaussian variables can be expressed as

SI(X,Y) = —%E [log det(I, — RRT)} (14)

where R = ATRB is the projected correlation matrix and (A, B) are defined as in as a function
of matrices (A, B) drawn from the uniform distribution on St(k, d,) x St(k, d,). Note that A and B
are both on the Stiefel manifold, and thus ||A||,, = ||B|lop = 1. Accordingly, the correlation matrix
satisfies |R|lop < |[Rlop < p a.s. Applying Lemma 6 (see next section) to the positive definite
matrix RRT and then taking expectation yields

E|RRT|Z

1 ~
0< Slk(X, Y) — §EHR”12-7 < 2(1 _ p2)

To establish the desired result we will characterize the leading order terms in E||R||Z and then show
that the ratio between E||RRT||% and E||R||% converges to zero in the d,;, d,, — oo limit.



By the independence of Aand B, the expected squared Frobenius norm expands as
E|R|2 = Etr (AATRBBTRT) = tr (IE[AAT]RE[BBT]RT> . (15)

The matrices AAT and BBT are orthogonal projection matrices whose nonozero eigenvalues are
equal to one. In the special case where X x and Yy are isotropic (i.e. proportional to the identity
matrix), these matrices are distributed uniformly on the space of projection matrices of rank k. In the
non-isotropic setting, however, these matrices are biased towards the directions in the covariances
with large eigenvalues. An explicit expression for theirs means is provided in Lemma|g] and simplified
bounds are given in Lemma E, which shows that for all € > 0, there exits a number d = d(¢, k, k)
such that for all d;, d, > d, we can write

. k - - k
EAAT = ——%x(I A EBBT = ——3%y (I Ay).
tr(EX) X( k+ :C)v tI‘(Zy) Y( k+ ZI)
for matrices A, A, that satisfy || A ||op, ||Ayllop < €. Combining these approximations with
and recalling that E¥2RE§/ 2_C xv, we conclude that
k[ Cxy |l

<
]E”R”F B tI‘(ZX)tI‘(Zy)

(1 + 0(1)), dg,d, — oo.

Finally, we need to show that ratio between E||RRT||% and E[R||3 converges to zero. We begin by
considering the lower bound

IRl > |[ATCxyBlr o _IATCxy Bk
T IATEX A2 [lop |(BTEyB) 2 lop — ||Sx (|02 1Sy || 242

as well as the upper bound
IRRT[|e < [[(ATExA) ™ [lopl(BTExB) ™ [lop [|ATCxy BBTCxy Al
< I=X Nlop 123 lopATCxy BBTCRy Allp.

Note that matrices A and B in these bounds are the unbiased projections, which are uniformly
distributed. Since EAAT = (k/d, )14, and EBBT = (k/d, )14, one obtains

k2
E[[ATCxyBBTCLy Allr = 7= [Cxr 7
=Yy

Meanwhile, successive applications of Lemma[7] first with respect to AAT and then with respect to
BBT, leads to
T TOT 2 < K T |12 4) < k! 4
E[ATCxyBBTCyyAllF S 52 (ICxy Cxy lIf + ICxv ) < 2 ICxy e
%y %y

Combining these upper and lower bounds and recalling that the condition numbers of ¥ x and Xy
are no greater than x, we have
.~ N2
EIRRT|Z < «* (EIRIE) .
In view of the fact that || R||3 converges to zero, the proof is complete. O

A.6 Auxiliary results for the proof of Theorem 3]

Lemma 6. If M is a symmetric positive semidefinite matrix with | M||o, < 1 then

0 < —logdet(I - M) — tr(M) < _ My
- = 2(1— [M]|op)

Proof. The log determinant is given by — log det(I — M) — tr(M) = >, —log(1 — A;) — A; where
0 < \; <||M||op are the eigenvalues of M. Each summand satisfies the double inequality

Aoy A2
Og—log(l—/\i)—/\i:/ ——dr < ————.
o l—=x 2(1 = [IM]lop)

Summing over both sides and noting that || M ||% = Y, A? completes the proof. O



Lemma 7. Let P = ATA where A is distributed uniformly over St(k, d). For any d x d symmetric
matrix S, we have

o k(kd+d—2) ., k(d— k) )
Etr(PSPS) = Ad-Dd+D r(S%) Ad—Dd+2) 1)(d+2)tr(S)
o 2k(d—F) oo k(kd+k—2) )

Proof. Because the distribution of P is invariant to orthogonal transformation of its rows and columns
(i.e., P is equal in distribution to UPUT for any U € O(d)), the quantities of interest are unchanged
if S is replaced by a diagonal matrix containing its eigenvalues )\1, ..+, An. In particular, we have

tr(PSPS) £ tr(Pdiag(\)Pdiag() Z AN P2,
4,j=1
d
tI‘(PS)Q i tr(Pdlag()\))Q = Z /\iAjPiinj-
i,j=1
A further consequence of the orthogonal invariance of P is that its second order moments satisfy
E[P?] = E[P},]. E[P},] = E[P},] and E[P;;P;] = E[P1,Pg] forall 1 < i # j < d, and so the
expectations can be simplified as follows:

E tr(PSPS) = E[P%] Z AP HEPL] DA

i#£j
= (E[P%ﬂ — E[P1,]) tx(S?) + E [PT,] tr(S)? (16)
E tr(PS)? ZA2+EP11P22 DA
i#]
= (E[P%l] - ]E[P11P22]) tI‘(S2) + E[PllPQQ] tl"(S)2 (17)

Finally, we can determine coefficients in these expressions by evaluating and for special
choices of S. Recall that P has k nonzero eigenvalues all of which are equal to one. Therefore, if
S =1, then tr(SP) = k and tr(SPSP) = k? a.s., and in view of and (17), we obtain

k= dE[P},], +d(d — DE[P%] K = dE[P})] +d(d — 1)E[P1, Pa).

Alternatively, if S = ejes + eae] then Etr(SP)? = E[(P12 + P21)?] = 4E[P%,] and so implies
that

2E[P13] = E[P2,] — E[P11P2s].
Solving these linear equations yields

k(k+2) k—d k(kd+k —2)

E P2 = — 7 2 = - E[P{1P - .
[P7] d(d+2)’ [P1] d(d—1)(d+2) [P11P2s] d(d—1)(d +2)
Combining these expressions with (16) and (17) gives the desired result. O

Lemma 8. Let P = XY/2A(ATSA)~YATSY2 where X is an deterministic d x d positive definite
matrix with spectral decomposition ¥ = Y. \;u;u] and A is distributed uniformly on St(k, d). Then,
the mean of P is given by EP = . n;u;u; where

n—E [ NZIW 17, }
' 1+ NZITW 'z,

with Zq, . .., Zq independent N'(0,1},) variables and W; = > Z;Z7.

J;ﬁz J

Proof. 1t is straightforward to show (see e.g., [44, Theorem 3.2]) that the distribution of the n X k
matrix ©'/2A(ATXA)~1/? is unchanged if the random matrix A is replaced by Gaussian matrix
Z =|Z1,...,7Z,)7 whose rows are independent A/(0, I;,) variables. Thus, letting U = [uq, . . ., uy]
and A = diag(Aq, ..., A,) be the be the eigenvectors and eigenvalues of 3 we have

UTPU £ AY27(7TAZ) ' ZTAY2,



In view of the above decomposition, we see that the ¢j-th entry of UTPU is equal in distribu-
tion to )\}/ 2)\}/ 2ZiT (NZ;Z] + \7\/,5)71 7. For the off-diagonal entries, note that the distribution of
(Z1,...,Zy) is equal to the distribution of (Z1,...,Z;—1,5%;,Zi+1,. .., Zy,) where S is an indepen-
dent random variable distributed uniformly on {—1, 1}. Making this substitution and then taking the
expectation with respect to .S we see that the off-diagonal entries have mean zero. The expression for
the diagonal follows from applying the matrix inversion lemma to \;Z] (\;Z;Z] + W,;)~'Z,. O

Lemma 9. Consider the setting of LemmalS| There exists an absolute positive constant C such that if

2+ K)[[Z]lop [12]]op 2tr(3)[|Z " Hlop €
~— 2P L k 1 <
o) = s = “u(m) o+ Vhd + log ke S 9he

for some € > 0, then

forall1l <i <d.

Proof. We begin with a lower bound on 7,. For any nonzero vector v € R, the mapping M —
(vTM =) /(1 + vTM~ 1) is convex over the cone of k x k positive semidefinite matrices. By
Jensen’s inequality, the independence of W; and Z;, and the fact that E[W;] = ;1 where 7; :=
D jzi A = tr(E8) — A;, we have

7. N—-17. N7 12
ME{ NiZi(B[Wi]) ]2 ]:E[AZ}
1+ NZi(E[W,])~1Z; i + Xi||Zi||?

To remove remove the expectation with respect to || Z; |2, we bound the RHS from below using

[ AillZi|? }_ ki A IE{ZiIQ( ||Z¢||21)} S kA k(2 + k)A
ANIZIP] T w(E) w®@) L (4 NZP)

— () w(E) () = [Ellop)”
where the second step follows from E||Z;||? = k and E||Z;||* = k(k + 2).

Next we consider an upper bound. If we let L; := min{uTWu : u € S¥~2} be the minimum
eigenvalue of k x k symmetric matrix WW; and then we can write

ME{ AL Zi)? }<u«:{ 2 ]
R I D VY s 741 B WP OV

where the second step follows from the Jensen’s inequality and the independence of Z; and L,. By

concentration of Lipschitz functions of Gaussian measure, one finds that that L; /2 is sub-Gaussian
with variance proxy max;; A; < ||X||op and this implies a sub-exponential tail bound for L; of the
form

P(Ls <EIL] - C'[Slopt) < 267"

for some absolute constant C’ > 0. To obtain a lower bound on the expectation of L;, recall that
E[W;] = 7,1 where 7; = Z#i A;. Noting that

7 — Ly < |Li — 7] < —[|W; — E[Wi]l|op,

and then taking the expectation of both sides leads to E[L;] > 7; — E||W; — E[W;]||op- At this point,
we can apply Theorem 3.13 in [45]], which gives

E|W: —EWi]||,, S [k A2+ kmax A < [[Sllop(k +1+ Vdk),
i

Combining these bounds and recalling that 7; = tr(3) — A; yields

EL; > tr(X) = C"[|5]lop(k + Vdk),

10



for some absolute constant C”” > 0. Putting the pieces together, we have for all ¢ > 0,

m S BT +,WH{LizE[LiHC'nmopt}} +E [Li " Hon LB <EILIC Dl opt)
kX
< . 2et
S E[L] -~ O TS lopl + kA ¢

kX
< : + 2t
tr(X) — C"[|Zlop(k + Vdk) — C'[|E[opt + kA

where the last two lines hold provided that the denominator is strictly positive. Hence, if ¢ =
log(2tr ()| lop/ (ke)) and

tr(3)
tr(X) — C"||S|op(k + Vdk) — C'||Z]|opt > ——=
(%) = O[S k4 V) = 8ot = 771 75
then
kX ek kX;
p < (1 2 < 1
R TH T DR T
Simplifying the conditions leads to the stated bound. O

A.7 Proof of Decomposition in Equation

Fix 0 := (61,62) = (A,B) € St(k,d,) x St(k,d,) and let fy, fo,, and fp, denote, respectively, the
densities of (ATX,BTY'), ATZ, and BTY, where (X,Y) ~ uxy. Similarly, we use ¢y, @y, , and
©p,, for the densities when (X, Y) are replaced with their Gaussian approximation (X*,Y™*) ~ yxy.
We may now decompose

iy [ e g 200 fos.) e (&)o@
(ATXBTY) = [ fo(s.0)los (soms)%(t) o(5:) T (3) on (1) ) i

©o A B A B
1 D
By {Og (%%ﬂ +D((p™, p%)spxy || (0™, pP)svxy)

—D((p™, p®)srx @ py || (0™, 0%)erx @ 7y ).

Observing that log (ﬁ) depends only on the 2nd moment on the random variables and since
1 2

the Gaussian approximation (X*,Y™*) ~ ~xy was chosen to have the same covariance matrix as
(X,Y) ~ pxy, we may replace the distribution pxy w.r.t. which the expectation is taken with yxy-.
Doing so and taking an average over (A, B) € St(k,d,) x Stk, d,, we obtain

S(X;Y) =Sl (X Y™) + ]E[(S(AB)}
where §(A, B) is as defined under Equation (@) in the main text. O

B Bounds on Residual Term from Equation (4)

Throughout this appendix we interchangeably denote information measures in terms of probability dis-
tribution or the corresponding random variables. For instance, we write J(X) or J(u) for the Fisher in-
formation of X ~ p, and Wo(X,Y') or Wa(u, v) for the 2-Wasserstein distance between X ~ p and
Y ~ v. We also define a(X) := J=E[|[| X||* — E[| X|]?|] and 3,(X) := d%(EH<X1,X2)|"})”7,
for r = 1,2, where X; and X, are independent copies of X ~ px. The quantities (Y") and 3, (Y)
are defined analogously. Note that 31 (X) < f2(X) = 7 [Zx r.

Due to translation invariance of k-SMI we may assume that X and Y are centered. Define the
shorthand notation © = A @ Band Z = (X7 YT)T. Accordingly, 1z = pxy and we set
vz = vxy = N(0,Xxy) for the corresponding Gaussian; the Gaussian vector with distribution
is denoted by Z, = (X Y,7)T. Slightly abusing notation we define p©(z) = Tz = (zTA yTB)T.

To control the residual from , we first bound it in terms of a certain MI term. Let A, and B, be
matrices of dimension d,, x k and d,, X k with entries i.i.d. according to (0, 1/d,) and N'(0,1/d,,),

11



respectively. Define ©, = A, @B, andlet W = O Z++/tN, where N ~ N (0,1I51). The following
bound controls the residual in terms of 1(©.; W), plus a term that vanishes when ¢ is small and d,;, d,
are large. The proof is deferred to Appendix [B.T!

Lemma 10 (Residual bound via noisy MI). Under the above model with d, N\ dy, > k + 1 and for
any t > 0, we have

E[D(pf 1uzl[p®z)] < 1(0.:W)
oo e ) oo e 2850 )

Next, we bound the noisy MI term 1(©,; W). Let A, = -E||X|[|* and A\, = -E||Y||?, and for
x y

simplicity of presentation, henceforth assume that A = A, = A,. This is without loss of generality

since k-SMI is scale invariantlf] Note thatif A € (0, 00), then we have 0 < «(X) < 2Aand A/v/d, <

B2(X) < A (cf. [32]). Lastly, set & = max{a(X),a(Y)} and S, = max{S3.(X),5-(Y)}, for
r = 1,2. We prove the following result in Appendix[B.2.

Lemma 11 (Noisy MI bound). For anyt > 0 and € € (0, 1], we have

k — | —
A\ @ 1+e\* (. s /51 1 2(14+€e)A\ 2 B2

: < — | — P — 1 —_ 7 = 1.
I(G*»W)Ck10g<1+t)6>\+0<1_6> (k \/A+k <1+ ; 5

where C'is an absolute constant (in particular, C' = 3 is sufficient).

Combining Lemmasand yields a bound on [D(p?,uZHp@vz)] interms k, d, d,, \, &, 3

and (arbitrary) ¢ > O and € € (0, 1]. To further simplify the subsequent expressions, suppose that
(B2/A)?/(k+1) < 1 and se

-1 5

e ((2) 7o) cansan(2)7

Inserting into the said bound, we obtain

E [D(P?uz HPG'YZ)]

< Cklog <1+ 2(11+e) ((6/\2)_“ —1>> %
1+e€ i 3 By 1 Ba wH
() (e ()™
3 k+1 dy d
h 2JF<uz>||op((§2) ¢4<1+e>x(d )
x Yy

. \/M L 203(X) 2dw6§(Y)> |

tI‘(Ex) tI‘(Zy)

We can now complete the bound on the residual term E[dxy (A, B)] from (). Recall the definition
of O=A®Band Z = (X7 YT)T, we have

E[xy(A,B)] < E{D((PA,PB)WXYH(PA,PB)WXY)}

SThis scaling does affect the «, 8 factors in the lemma but will not change their convergence properties so
long as A, and A, scale at the same rate.

"Our bounds only need t* to be strictly positive, which is always the case under the considered setting. Indeed,
by the the Cauchy-Schwartz inequality S2 < A, with equality having probability zero since two independent
copies of a continuous random variables are a.s. not linearly aligned.

12



A
Ba\ T dy dy
+ k 2HJF(MZ)||op 7 4(1 +6)>\ do—k+1 + dy ko1

2d,.B2(X 2d,.B2(Y

y om 2B | 2B\
tI‘(E X ) tr(Zy)

Observe that this will typically converge to zero with increasing d,, d,. To better instantiate this

regime, we revisit the concept of weak dependence, i.e. random vectors with weakly dependent

entries [32] (essentially, a notion of approximate isotropy). The following proposition, whose proof

is straightforward and hence omitted, provides explicit convergence rate for the residual subject to
the weak dependence assumption.

(12) lops T8y
are O(1) with respect to d, and d,, and that there exists an absolute C' < 0 such that

a(X) < C a(Y) < C B2(X) < C B2(Y) < C
ATV, A _\/cTy’ AT Vd, A _,/dy'
Then, up to log factors,

k
ko -1 _1 1 4/ 5/ 1 _1 1 __1
Elbxy(A,B)] $- (dx5+dy5)+< +€> (ki (d®+dy ) +h? (dx T, WU))
€

+k<d 2(k+1)+d 2(k+1))+k(d +d )

dy
tr(E )

which, for d, = d,, = d increasing, decays to zero as 0 (d_% +d 2D )

B.1 Proof of Lemma[10]

We can represent the residual term from , as
E[D(pf 1z [9°72)] = 1(©:©72) + h(©TZ*|©) — h(O72)
<(©;072)+h(OTZ*) —h(O7Z) (18)

For the latter entropy difference we use the Wasserstein continuity result from Lemmal[I] to obtain
h(0TZ*) —h(07Z2) < /J(OTZ)W,(0TZ,0727). (19)

For the Fisher information term we use the data processing inequality [41, Proposition 5 and the
fact that © is an orthogonal matrix (i.e., ©TO = I;) to obtain

J(@TZ) < /J(@TZ)d(Uk’dI ®0'k,dy)((9)

< / tr(0Jp(2)07)d(0),q, ® Ok,q,)(6)

8The Fisher information J(TW) is related to the parametric Fisher information Jy(W) :=
Var (2 logps(W)) as follows: if ¥ € R? is a location parameter, ie., ps(w) = p(w + ), then
Jw ) = Jy(W — 9). Proposition 5 of [41] states that if ¥ <> W <> W form a Markov chain, then
Jo(W) < Jy(W). Take W = (¥ +0O7Z,0) and } W=0+ GTZ which clearly satisfy the said Markov chain,
and invoke that result to obtain J(©7Z) = Jﬁ( ) < Jo(W) = [J(07Z)d(ok,d, ® Ok,a,)(0). The latter
equality is since % logpyrerze(,-) = 35 logpmr@TZ‘@( \ ).
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< 2k||JF(Z)||op~ (20)

To treat the 2-Wasserstein distance, note that by orthogonal invariance of the projections, we see that
the (unconditional) distribution of ©T Z satisfies

_(ATXY a (A4 X
017 = (BTY) = <B1||Y||

where A; and B; are the first rows of A and B, respectively. The same decomposition holds for
©T2Z*. Hence,

waorz oz =wa( (i) )- (w1 ) < v (37 (1 vae))

where the inequality follows from restricting to a coupling with the same (A1, B;) and recalling that
the entries of A; and B4 have second moments of 1/d,, and 1/d,,, respectively.

For any coupling of (X,Y") and (X*,Y™*), we have

= () - (el

< d%ﬂ*l “IIX - Jtr(Tx)ﬂ + d%IE “|X*|| - \/H(TX)H
v e[l - Ve[| + e[l - Ve

where we have used the inequality (a + b)? < 2a? + 2b2. Note that for any random positive random
variable W we have

EUW\/ITW?HgE \W\/Wf(uﬁglmf :%

Since (X*,Y™) are Gaussian, their squared Euclidean norms can be expressed as the weighted sum
of independent chi-squared variables, and one finds that E[|| X*||?] = tr(Xx) and Var (|| X*|?) =
2||Xx||%, and similarly for Y*. Putting everything together, we obtain

2d,55(X) | 2d,B3(X) >
tI‘(Zx) tI‘(Ey>

W2(0TZ,072%) < 2k <a(X) +a(Y)+ Q1

where a(X) and «(Y') are defined in Lemmal[10]

It remains to transform the MI term 1(©; ©T Z) in (I8) into |(0,; O Z++/tN), where N ~ N(0, Iz;,)
and ©, = A, ® B, with A, and B, matrices of dimension d, x k and d,, x k and entries i.i.d.
according to N'(0,1/d,) and N'(0,1/d,), respectively. Using the polar decomposition of Gaussian
matrices, we know that A, = A(AIA,)'2, where A ~ 0y, 4., i.e., it is uniformly distributed over
St(k, d,.). A similar claim holds for B,. By invariance of MI to invertible transformations (ATA,
and BIB, are a.s. invertible), we have

(0;077) =1(A,B;ATX,B"Y) = I(A,,B,; ATX,BIY) = 1(©,;0I2).

Next, we introduce the noise into the latter MI as follows. Denote the distribution of ©, by ~ and
consider

1(0,;072) — 1(6,; W) = h(8TZ) — h(W) + h(W]©,) — h(0TZ|6,)
< /h(W|(9* =0) — h(OTZ|0, = 0)dv(6)

< / VIOTZ)W, (072,07 Z + VEIN)dy(9)

< \/2kt / 167 2)dN(8), (22)
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where the first inequality follow since h(1¥) > h(W|N) = h(©I2) (as conditioning cannot increase

differential entropy), the second inequality follows from Lemma([T] while the last step upper bounds

the 2-Wasserstein distance by (E[|[v/tN|?]) 2 _ /2Kt and applies Jensen’s inequality.

To bound the expected Fisher information, let 7 denote the pseudo-inverse of #. Using the data
processing inequality once more, we have

/ JOTZ)dy(0) < / tr(0TIr(2)(0")T)dv(0)

— [ (e()06m) ) ar(6)
= 196 (2)llop E[tx((070,)71)]
= 1e(2) op (o [tx((ATA) )]+ [or((BIB) )] )

where A, and B, are random Gaussian matrices of dimensions d, x k and d, X k, respectively,

with i.i.d. N(0,1) entries. Consequently, note that ATA, and BIB, follow the k x k Wishart
distribution with d, and d, degrees of freedom, respectively. For d; > k + 1 the mean of the inverse

is ]E[(AIA*)’l] = ﬁlgk and so ]E[tr((AIA*)’l)} = ﬁ; cf. e.g., [46] (and similarly
for B.). Inserting this into and combining with and yields the result. O

B.2 Proof of Lemma(1]]

The following bounds follow by the exact same argument of Lemmas 4 and 5 from [32], respectively.
Lemma 12. We have

(©5W) <5 [\ Vaxlpwie. (w]6.))ds
RQk‘,
where Kk = SUpP,¢ (g ) 10g(1 + x)/y/7 ~ 0.80474.

Lemma 13. Ler f : R — R be a non-negative integrable function and denote its pth moment by
mplf] = [NzIPf(2)dz. If na-1[f]. na+1[f] < oo, then

[ Vi < \/%(ndlmndmﬂ) ,

where T'(z) is the Gamma function.

=

Let ¢; denote the density of (0, tI;); the dimension is suppressed and should be understood from
the context, while the subscript is omitted when ¢t = 1. Define the following quantities:

Jeer lw][PVar (pwie, (w|O.)) dw
(Jar ?(w)dw) ( fgr [lw]|Pe? (w)dw)
M(W,0.) i= \/map_1(W, 0. )mar41(W, 0.).

mp(VV, @*) =

The following lemma is adapted from Lemma 6 of [32] to accommodate our M (W, ©,.), definition
which slightly differs from theirs.

Lemma 14. [f the conditional distribution of W' given ©., pw|e,, is absolutely continuous w.r.t.
Leb and M (W, ©,) < oo, we have

1
3mk\*
(W;0,) < & (g) VM(W,0,),
where & is as defined in Lemma

Proof. Lemmas|[12]and [13]together imply

omk+1
L'(k)

1
4

I(W;0,) <k (UQk—l[Vﬁr(pW|®*(w|®*))] T2k 1 [Var(pW\(a*(M@*))]) ;
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- ¢ %\/MW, 0. [yt
x ( L Pt [ el g )dw)i,

= /MW, @*)\/212k7r< 5

(3k:+1) %
2(5)T2(k) > ’

< ky/M(W,0,)(6kr?)3 | 2 ,

< SV/M(W.6.)(6km)1,

where we have substituted in M (W, ©,.) as defined above, have noted that [ ||w|P¢?(w)dw =
3k—1
(4#)’§F(¥)/F(§). The last step observes that 2~ 2% L R Y decreasing in k£ > 1. This

L(5)T(k)
can be verified by by using the fact that that as T'(z 4+ 1) = 2I'(2), increasing k by 2 will decrease
—aop T3 O
T(5)r(k)’

Given the bound in Lemma[: we next bound the moment M (W ©.). To that end, we control
n,(W, ©.). For convenience of notation, we set Z = (Z] ZJ)T7,i.e., Z; = X,and Z, = Y, and

dy = dy, do = d,,. We consider two independent copies of Z, denoted by Z () and Z(2). With this
notation, we have the following lemma.

Lemma 15. For any p > 0, we have

p p
v2 - R2\* (V% —R}\®
W,0,)=E |[(V,1 — R))2(Vyo—Ry)"2 | [ 22211 Vg2~ 12
6 e Ve e (ValRl + Va2 — R
ya
2

where

Vaz—t+7HZ I+ HZ |17,

1 1
Voi = \/ (t + d||Z£”|2) (t + d,||252>||2)7
(2 7

R; = y <Z(1) Z(2)>

. i 4
)

Proof. By the definition of W, we have py e, (w|0) = ]E[got(w - HTZﬂ, whereby
Pivie, (wl0) = E[py(w — 07 Z0)py(w — 07 23))].
Taking the expectation over the distribution of ©, and swapping the order of expectation yields
Epiyje. (w]0.)] = E[v(w, ACNACH

where v(y, 20V, 2)) = E[p;(w — OL2) g (w — ©I2(?)]. Note that since (1), 2(?) are fixed,
oI
{ or.@ | ~N0Z)
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where

L) L@ 7
Vi 0 e 0
1 2
0 125712/ ds 0 Gz )
Y= <z(1) 2(2)> 2)2 2 ® 1.
Grom) 0 12212/ dy 0
2 @ 9
0 o) 0 12812 /ds |

The proof of Lemma 7 from [32] shows that

1 1 [
v(w, 2V, 2 = (27)2% |2 + ¢ 14y, : exp (—2 H(E +tly) "2 w ]

w

2
) . (23)

It is convenient to transform X into a block-diagonal form. To that end, let us consider the (orthonor-
mal) permutation matrix

1000
oo 10
P=10 100/
000 1
and set ¥’ = (P ® I)X(P ® Ix)T. This gives
(1) (2)
BN 0 0
[CORNC) 9
¥ = <Zldfl) |‘Z§)||2/d1 0 <)O<> ® I
- 1 221 7222 ’
0 R O
zl,z 2
0 0 S,

Note that since P is a permutation matrix, the eigenvalues of > and 3 are equal, hence |X + tI| =
‘i + tl) = (v2, —r})¥(v2 5 — r3)". We also obtain

w1
1” alw ]l 1, _1| Vg, 1 — T1 5 Va,2 — T2 5
e R I (RRe (LT 24 8202 a2,
2 w 2 wa 1)371 —r? v3,2 — 73
w2
where (vq,i, Vg4, 7;) are as defined in the lemma statement and we have observed that PTP = I, and
w1
(P®I) [ Z ] = g; . Substituting into and simplifying yields
w2

k k _1 _1
v(w, 20, Z®) = (Vo1 — R1) "2 (Voo — Ra) " 2U2 U3 ¢} 1 (Uy 291) 031 (U 2ya)

where U; = (V2; — R?)/(Va,i — R;). Then the pth moment of v with respect to w is (using change
of variables) is give by

mp [E[pivje. (w]6.)]]
=E U |wlPv(w, 2V, Z(Q))dw}
E k kE_k -1 —1
— B |(Vaa ~ R) £ Vo = R [ Wl0F U3 20 ) (0 P

1 1
2

HVaa = R E Vo — Ryt [ b0 U 07 )t (07 2w2>dw}

) V2 _R2 % V2 _R2 g
= 0ol [%|E | (Ve — R1) ™% (Voo — Ro) ™2 < ) +< )

Vaa — 1 Va2 — Ro
24
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Next, we find the pth moment of the unconditional squared density p%v. First, as in the conditional
case, we write pZ, (w) = E[o(w, 21, 2(2))], where

P(w) = E[py(w — 6812 0)gpy(w — 67 2?)]

with 69, for i = 1.2, being independent copies of ©.. This independence in turn decorrelates
@S)z(l) and 6&2)2(2), ie.,

@5})2(1) .
0®,@ |~ N (0, diag(%)).

Proceeding as in the correlated case above yields

2 2 2 -5,k Vg%l : VgQ,Z :
o [Elpiy (w)]] = no[e®]npl@?] = E |V, Voo +| 7= :
Va,l Va,2

and combining this with (24) gives
Mp [Var(pme (w]©.))]
ol ?]11p[0?]

my (W, 0.) =

(NS

k
2

w\r

=E |(Vag— R1) 2 (Va2 — R2)”

VA B\ (ViR
Vaa — R Va2 — Ro
v\t (v
_F 5 2 9,1 g,2
V V (Va’l) i (Va)2>

It remains to bound the expectation in Lemma[I5] We start with the following bound.
Lemma 16. For any p > 0, we have

_k__k-p Ri R =52 Ry R
mp(W,0,) <E {Vazzva,l R <V11 V22) Ve 12Va2 (V22’ Vllﬂ ’

where gy, - (—1,1) — R is given by gy, p(u,v) = (1 — v)"E(1—u)"5(1+u)% — 1.

|

Proof. Note that for ¢, j = 1,2 with i # j, we have

(NS}

Vo — Ry)-4(Vas — Ry-4 (VBT RE) Ty AN
Vooy = B2 Vs = R g P | = Vs Vs | 7,
R,

k
) — _k
( 7j K g7i

R, R —k_ _kip
: v, 2V, . 2 VP,
gp (Va,i Va,j) a,j a,i g,

Ri R\ -5
= 9p (Va,i’Va,j> Yoy Vai ™

where we have noted that V; ; <V, ; since the geometric mean is upper bounded by the arithmetic
mean. Substituting into Lemma [I5]completes the proof. O

k
— ) “2\/P
o V[ Va,j Vg,i

4

To make the expectation of g,, tractable we next upper bound it by a quadratic function.
Lemma 17. For anyt > 0 and (r1,r2) such that |r1| < c1,|ra2| < co, for some c1, ca, we have

2 2
T T k+p ko7 K p e [Ti TS

< f R4+ 26)5 () T (t4ey)E | ——2L |
gp(t—i—ci’t—i—cj)_ 2 iva aiye L UH2) (t+6) 7 (t+c)) ENC

where i,j = 1,2 with i # j.
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Proof. Since g,(0,0) = 0, we decompose
gp(u,v) = (Vgy(0,0))7 [ Z ] + Ay (u, v) (u? + v?),

where h,(u,v) = (gp(u,v) — Vg,(0,0)T [ Z ]) /(u? + v?). It can be verified that h,, is non-

negative and nondecreasing in both arguments. Hence, forall -1 < u <z, <1, -1 <v <z, < 1,
we have

gp(u,v) < Vg,(0,0)T { g } + by (2, 20) (U2 + v?).
Furthermore, for z,,, z, > 0,

gp(ZUaZU) 1 _k &
= 1 — 1 — 2
22+ 22 22 —|—zg( 20) 72 ( 2u)

ol

ya
2

(14 2y)2.

hp(zuazv) <
Using 2z, = ¢;/(t + ¢;), zo = ¢j/(t + ¢;), we obtain

—k k k—p P
hp(2us 20) < Tmin(s2, 2] (t+c)2(t+c) = (E+2¢)7,

ur v

from which the result follows.
O

Next, we provide a bound on M (W, ©,) subject to a.s. boundedness assumption on the squared
norms of the random variables. The subsequently presented Lemma [T9] then relaxes this assumption
to a bound on the MI term of interest.

X2 Y2 X||? Y2
Lemma 18. Suppose that Apin < Hdl‘ A Hdll < Hdll \Y, ”dJ < Amax a.5. Then

k k 52 2
MT.6.) < 24 Gn) l%ﬁl(Zl);ﬂl(Zz) +2<1+2A?ax) () + A2

min

Proof. Using Lemmaand the definitions of 87, R;, and V ;, for p = 2k — 1, we have

_k_ _k-p R, R; Lk s (3k—1B1(Z:) |k Bi(Z)
2y 2 J < ' 5 ’
qujmﬂ %(%va>}@+xm)zwmmg2 ( 5 . T3

A2 ’

min

+ 7R (t + 2Amax)

By Lemma([T@] this yields
3 B1(Z1) + B1(Za)

min

+ 2675 (t 4+ 2 max)

Mak—1(W,0,) < (£+ Amin) 2 (£ + Amax) 7 (4k — 1)

21 f3(Z) + B3(Z2)
)\2

min

Similarly for p = 2k + 1,
B1(Z1) + B1(Zo)

min

m2k:+1<VV7 9*) S (t + )\min)_g (t + )\max)% <4k + 1)

219;1 w
)\2

min

+ 2t 7R (t 4+ 2\ max)

By the definition of M (W, 0.) = \/maj—1 (W, O.)mai+1(W, ©.), we obtain
k
El

M(W,0.) < 2% (Amax> [MWW(Z) Lo (1 . 2Amax)’“ B3(Z1) + B3(Zs)

Arnin AInin t )\2

min

where we have used the fact that the geometric mean is upper bounded by the arithmetic mean.
O
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The derivation is concluded by adapting Lemma 12 of [32] to our notation and setting.
Lemma 19. Let £ C R%1% pe measurable. Then

0700 < St (142 (nrter + S0 L eyarionz o,

Proof. Letting U = 1¢(Z), the MI chain rule gives
(W,U;0,) =1(W;0,)+ 1(U;0.|W) =1(W;0,|U) + (U; 0,).
Since I(U; ©,.) = 0, we have |(W;©,) < [(W; 0,|U), and expanding the conditioning yields
(W3 0.) < pz(ENW; 0412 ¢ &) + uz(E){(W;0.]Z € £).

Recall that W = O Z + /t N, where ©, and N are independent Gaussians. Therefore, conditioned
on Z, (W, ©,) is jointly Gaussian and we have

I(W;0.|Z ¢ £)
= h(W|Z,Z §§ 5) — h(W|@*,Z7Z ¢ 8)

k t+ X1 + g,
= —FEK |1 %= 1 v
B [og( . + log .

b (ol o (R o (AN,
T 2uz(&°) SN TSN Rl U &

e (12) )

where the last inequality follows from Lemma 19 of [32]]. Combining expressions yields the lemma.

Z¢¢

O
To use the bound on M (W, ©.,,) from Lemma we therefore let
1 €
s = 1w € RY | —|lz]2 = A < A
&= {w e R 21l - A < 2
where € € (0, 1]. Markov’s inequality implies 11z, (80) 2a(Z;). Define € = £ x &, so that by
the union bound 117 (E€) < puz, (EF) + pz,(E5) < Ja(Z1) V a(Zz). Let Z' be drawn according to

the conditional distribution of Z given Z € £, and set W' =0lZ ++tN. By Lemma. we have

MW", 0,) < 2f <1+€>

w214 + Bi(Z2) +2<1 N 2(1+e>A> B3(24) + 53(23)
1—e€ A t 22
Hence
;6,12 € €) < Sovan! (125) lsz(Z)Xﬁ(Z)

)

A

( 2(1 + €) ) Ba(21) V B2(Z5)
(Z:)

< B, (Zi)

2(5),f0rz—12andr—1 2,

and applying Lemma|19, while noting that 37 (Z]) < 2” @, )
Z
yields the result of Lemma [TT]
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