A Technical Results

Lemma A.1 (Vershynin (2010)). For any € > 0, the e-covering number of the Euclidean ball
BYR) := {x € RY: ||x|2 < R} with radius R > 0 in the Euclidean metric is upper bounded by
(1+2R/e)%

Lemma A.2 (Lemma A.4 of Wagenmaker et al. (2022)). If x > C'(2n)" log" (2nCB) for n,C, B >
1, then © > C'log" (Bx).

Lemma A.3 (McSherry & Talwar (2007); Epasto et al. (2020)). Consider some (x;)"_,. Then if
n > log(n)/d, we have

n NTi .
Eiliw > maxz; — 0.
Zi:l enTi i€[n]
Lemma A.4 (Azuma-Hoeftding). et 7o C F1 C ... C Fr be a filtration and let X1, X5,..., X

be real random variables such that X, is Fi-measurable, E[X;|Fi_1] = 0, and | X;| < b almost
surely. Then for any 6 € (0,1), we have with probability at least 1 — §,

T
> X
t=1

Lemma A.5 (Freedman’s Inequality (Freedman, 1975)). Let 7o C F1 C ... C Fr be a filtration
and let X1, X, ..., X1 be real random variables such that Xy is Fy-measurable, B[ X|F;_1] = 0,

| X¢| < balmost surely, and Zle E[X?|F;—1] <V for some fixed V > 0 and b > 0. Then for any
d € (0,1), we have with probability at least 1 — 6,

< 4/8b2log2/4.

T
ZXt <2y/Vlogl/d+blogl/é.
t=1

A.1 Properties of Linear MDPs

Lemma A.6. For any linear MDP satisfying Definition 3.1, we must have that ||¢(s,a)|s > 1/v/d
for all s and a, and ||y 1,||2 > 1/v/d for all 7 and h.

Proof. By Definition 3.1, we know that Py, (+|s,a) = (¢(s,a), pn(-)) forms a valid probability
distribution, and that || [ |[dgen(s)|[|2 < Vd. Tt follows that

1=t/<¢caa»duhw»fsn¢@,wuﬂy/Wduhwnn2s;vﬁn¢@,wnz
S S

from which the first result follows.
For the second result, using that 1 = [(#(s,a),dpun(s)), we get

/wmmmwaﬂmmme
S S

=E, [/8<¢h7dl1*h(5)>:|

= EW[I]
=1

where we can exchange the order of integration by Fubini’s Theorem since the integrand is absolutely
integrable, by Definition 3.1. As above, we then have

- / (o dpan(5)) <Vl Brnllz
S

so the second result follows. O
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A.2 Feature-Visitations in Linear MDPs

Define
Orh = Ex[p(sn,an)], @rn( Z (s, a)m(als)
acA
and
o= /¢w,h(s)dﬂh—1(3)T~
LemmaA.7. ¢, = Trnbrn-1=...=Tan... Tr1¢x0.

Proof. By the linear MDP assumption, we have:

¢‘rr,h = [‘b(sh’ ah)]
]E sh7ah)|}'h 1“

- //¢>s a)drs (als)dgn—1 ()T d(sn_1, an_1)]
— K| / b (8)dtn_1 ()T d(sn_1, an_1)]

:/¢7r,h(5)dﬂh—1(S)TEﬂ[d)(Sh—lvah—l)]
= Trn®r h—1-
This yields the first equality. Repeating this calculation i — 1 more times yields the final equality. [J
Lemma A.8. Fix some h and i < h, and consider the vector
U= 7;T,i+17j,i+2 - 7;T,h—17;T,hu'

Assume that either u = 0y, for some 0y, which is a valid reward vector as defined in Definition 3.1, or
u € 841, In either case, we have that, for any s, a, |v" ¢(s,a)| < 1, and ||v||2 < V.

Proof. By the linear MDP structure (see Proposition 2.3 of Jin et al. (2020)), for any 7,
Q7 (s,a) = (P(s,a), w])
= (9(5.).6) + [ V4 )as(s) Bl

— (9(5:).6) + [ (W11 By ()T b(s,0)
= <¢(Sa a)7 0] + 7;:]’+1w;r+1>
so in general,
ST e
h'=i j=1i1+1
h/
where we order the product [T;_, ., 7., = .\, T - T

Case 1: u = 6;,. We first consider the case where u = 0, for some 6, which is a valid reward
satisfying Definition 3.1. Assume that the reward in our MDP is set such that for A’ # h, 8, = 0. In
this case, we then have that

T _ T T T _
w; = 7;,7:-5-17;,1-5-2 e 7;r,h0h =".

In this case, we know that the trajectory rewards are always bounded by 1, so it follows that
Q7 (s,a) < 1. Thus,

1> Q?(Saa) = <¢(8aa)vwz‘r> = <¢(8aa)7v>

and this holds for any s, a. Since )-values are always positive, it also holds that (¢ (s, a),v) > 0.
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To bound the norm of v, we note that by the Bellman equation and the calculation above,
[v]l2 = [lw] 2= 6; + / (8" dpi(s) |2

<16+ [ 1V (i)l
< [l
<Vd

where we have used that [V, (s")| < 1 since the total episode return is at most 1 on our augmented
reward function, and the linear MDP assumption.

Case 2: u € S%1.  We can repeat the argument above in the case where we only assume u € S?~ 1,
Since ||¢(s,a)||2 < 1, it follows that with the reward vector at level h set to u, the reward will still
be bounded in [—1, 1]. Thus, essentially the same argument can be used, with the slight modification
to handle ()-values that are negative. O

Lemma A.9. The set 2y, is convex and compact.

Proof. Take Ay, Ay € Qy,. By definition, A1 = Ery,, [Arp], A2 = Eroy [Ar, ] It follows that,
forany t € [0,1], tA1 + (1 —t) A2 = Erropus, +-(1—t)ws [Ar ] For twy + (1 —t)wy the mixture of w;
and wo. As twy + (1 — t)wy is a valid mixture over policies, it follows that tA; + (1 — t)Ay € Qy,
which proves convexity.

Compactness follows since ||¢(s,a)ll2 < 1 for all s,a, so ||[Axpllop < 1, which implies
|Al[op < 1forany A € Q. Furthermore, the set €2, is clearly closed, which proves compactness.

O

A.3 Constructing the Policy Class

Lemma A.10 (Lemma B.1 of Jin et al. (2020)). Let w} denote the set of weights such that Q7 (s, a) =
(¢(s,a), w]). Then |[wf |2 < 2HVd.

Lemma A.11. For any § > 0 there exists sets of actions (.le)ses, A, C A, such that |.Zs| <
(14 8H~/d/5)? for all s and, for all a € A, s, h, and any T, there exists some @ € A, such that

QR (s,0) = QR(s,a)| <6, |ru(s, a) —ra(s,a)| < 6.

Proof. Let N be a §/(4H+/d) cover of the unit ball. By Lemma A.1 we can bound |N| < (1 +
8H+/d/6)?. Take any s and let A, = (). Then for each ¢ € N, choose any a at random from
the set {a € A : ||¢d(s,a) — ¢|l2 < 0/2} and set A; < A, U {a}. With this construction, we

claim that for all @ € A, there exists some @ € Aj such that ||¢(s,a) — ¢(s,a)||2 < §/(2HVA).
To see why this is, note that by construction of A, there always exists some ¢ € A such that

lp(s,a)—ll2 < 6/(AH+/d). Since A, will contain some a such that || (s, @) — || < 6/(4H/d),
the claim follows by the triangle inequality.

By Lemma A.10, we have that for any 7, [|w] ||, < 2HV/d. Take a € A and leta € A, be the
action such that ||¢(s, a) — ¢(s,@)||2 < 6/(2H+/d). Then

QR (s,a) — QR (s,a)| = [(¢(s, a) — B(s,a),wp)| < 2HVd|d(s,a) — ¢(s,a) 2 < .

The bound on |r, (s, a) — ri(s, a)| follows analogously, since we assume our rewards are linear, and
that ||0},||2 < Vd. O

Definition A.1 (Linear Softmax Policy). We say a policy is a linear softmax policy with parameters
n and {wy, }/__ | if it can be written as

on((s.a).w)
<¢(37a/)7wh>

mh(als) = 5

a’eA el

for some w = {wy, }1L_,. We will denote such a policy as 7%.
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Definition A.2 (Restricted-Action Linear Softmax Policy). We say a policy is a restricted-action
linear softmax policy with parameters 7, {wy, }_,, and (Ajy)ses if it can be written as

ent(s.a)wn) g e A}
S e, €PN )

7h(als) =

for some w = {wy, }1L_,. We will denote such a policy as 7%.

Lemma A.12. For any restricted-action linear softmax policies ' and ™ with identical restricted

sets (As)ses, we can bound

H

Ve (s1) = Vi (s1)] < 2dHn Y [lwp — 2.
h=1

Proof. Note that for any policy 7, the value of the policy can be expressed as

H

Vi (s1) =Y (On, br)-

h=1
Thus,

H
Ve (s1) = V& (s < D 1(On, P — P ):
h=1

So it suffices to bound [(6},, ¢rw j, — Gru p)|. Using the same decomposition as in the proof of
Lemma B.2, we have

h—1

h
Prwp — Prup = Z H Taw i | (Trw hei — Taw h—i) Prw h—i—1-

i=0 \j=h—i+1

By definition,

Trw h—i — Trw hi = /(¢ﬂ“’,h—i(5) — G pi(s))dpn—i—1(s)"
where

Prw h—i(s) = Z @(s, a)mp’i(als).
aG./Zs
Now, for a € VZS,

v 7Tw((Z|S) o 77¢(8, a)€77<¢’(87a)7'wh> . Za’ejs en<¢(s,a’),'wh> — e”<¢(5aa)7’wh) . Za'ejs n¢(87 al)en<¢(5=a/)»wh>
wp'h -

Cwei en{@(s,a’);wn))2
S0

2ne(P(s:a),wn)
Ywed, en{@(s,a’),wn)

IV w7 (al 8)|2 <

Thus, by the Mean Value Theorem,
2 (P (s,0),wn)
Za'ej enf{e(s,a’),wp,

|73y’ (als) — mi(als)] < 7 llwn — w2

SO
| @meni(s) = brenmi(s)2 < Y w2 i(als) — m_i(als)]
aefi,
2pen((s.a)wn)
S e i €Ol lewn—i = un-illz

<
aejs

18



< 2nl|lwp—1 — up—1]|2

which, with Definition 3.1, implies that
[ Trw h—i = Trw h—illop < / [ h—i(8) = P i (5) |2l dbtn—i—1(8) |2 < 2Vdn|wn—i — wp—iJ2.

By Lemma A.8, we can bound ||0,T (H?:hf i1 7;1“7]-) ||2- Thus, returning to the error decomposi-

tion given above, we have

h—1

H
VE (s1) = Vi (s1)] < Z 0, H Towj | (Taw h—i — Trw h—i) Prw h—i—1

h=1 i=0 j=h—i+1
H h—1
é\/azzuﬂwh i = Trw,n— 1||0p||¢7r“h i—1]l2
h=1 i=0
H h-—1
< 2dn§j lwn—i — wn s>

h

Il
-

=0

< QdHUZ |wn — w2
h=1

O

Lemma A.13. Let w* denote the weights such that Q%(s,a) = (¢(s,a),w}), and ™ the

restricted-action linear softmax policy with action sets (As)scs as defined in Lemma A.11 with

Vi (s1) — Vi(s1)| < e

as long as > 24H log(1 + 16Hd/c) - GY4"

Proof. We prove this by induction. Assume that at step h, for all s, we have [V}*(s) — Vh”w* (s)| < o
for some ¢j,. Then,

QR (5:0) = Qi a(ssa)l = | [ 077 () = Vi )16 6(5.0)
< [ W) = Ve lldmn (o, )l

where we use the linear MDP assumption in the last inequality. Thus,

w*

B S eed, Pl wi) Q™ (s, a)
- S e i en{@(s.a)wi )

S, €U DQE” (s,a)
B S o e@ia(se)

a€EA;

Zaej eth_l S’G)Q* (57(1)
2 — e~ Vdon.
> A€

acAs

Vhﬂi (s)

By Lemma A.3, as long as > log |.KS|/(\/35;L), we can lower bound

-~ ean—l(sva‘) * 7a/
Lo, i1 (50) —Vdby, > max Qf_,(s,a) — 2V/ddy.

Cacq, "0 " aed,
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Furthermore, by Lemma A.11 and our choice of ﬂs, we have

max Q% _,(s,a) — 2Vds;, > max Q1 (s,a) — 2Vdd, —
ac

€ €
= V> . (s) —2V/db), —
a€EA; H h 1() 4 3

3(3v/d) (3Vad)H~

Define recursively 6,1 = 3\/&5;1 and 0y = (3\/62)14’ Then 6,1 = (3\/5),171 > (3\/%),{, S

[0}

Vi (s) — 2Vdoy — ———— > Vi, (s) — 2Vdop — Sn1/3 = Vi'_y(5) — n_1.
() NV () h=0n-1/3=Vy_1(s) = dn

So |V (s) — Vh“w* (s)] < dp—1 for all s, which proves the inductive step.
For the base case, we have

. Zaez e"Q%(S»@uH(s, a)

VEY (8) = VE(s) = - —maxvy(s,a
H ( ) H( ) Zaejs enQH(S’a) pe H( )
> max vy (s,a) —maxvg(s,a) — 0 /2
ac€ A, @
> =0

where the first inequality holds by Lemma A.3 as long as n > 2log |.ZS\ /0w, and the second
inequality holds by Lemma A.11 and our choice of A, and 8. This proves the base case, since
VA" (s) < Vi (s).

Recursing this all the way back, we conclude that

*

Vi (s1) = Vg (s1) = do

for 6o = (3vd)" oy = e.
For this argument to hold, we must choose 7 > 2log | Ay| /6 and n > log | A|/(v/ddy,) for all
s and h. By Lemma A.11 and our choice of A, we can bound

Ay < (1+8HVA@2Vd)" Je)d < (1 + 16Hd/e)™

so it suffices that we take > 2dH log(1 + 16Hd/¢) - LJEW .
O

Lemma A.14. Let ) = 2dH log(1 + 16Hd/e) - CY2% and W an - -net of B*(2HV/d). Let 11

€
denote the set of restricted-action linear softmax policy with vectors w € WH, parameter n, and

action sets (-’ZS)SES as defined in Lemma A.11 with § = Then for any MDP and reward

e
3(3Vd)H "
function, there exists some w € I such that |V — V| < ¢, and

N 32H*d%/?log(1 + 16Hd/e)>dH2
¥ .
€

m < (1

Proof. Consider some MDP and reward function, and let {w,‘fb}thl denote the optimal )-function
linear representation: Q% (s,a) = (¢(s,a),w;). Let w denote the vector in WH such that

Zthl |lw}; — wpl|2 is minimized. Then by Lemma A.12 and Lemma A.13, as long as nn >
2dH log(1 + 16Hd/e) - CYD° we have
V™ (s1) = Ve (sl < Vg™ (s1) = Vg (sl + V5" (51) = V' (s1)]
H

< 2dHn Y ||lw), — |2 + /2.
h=1

The first conclusion then follows as long as we can find some w such that

H
QdHUZ |wh, — whll2 < €/2.
h=1
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However, by Lemma A.10, we can bound ||wj |2 < 2H V/d. Therefore, since W is a ﬁ-net
of Bd(QH\/ﬁ), for each h there will exist some w;, € W such that || w} — w2 < m, which

implies that we can find w € W such that
H
2dHn Y ||wj — w2 < €/2,
h=1
which gives the first conclusion.

To bound the size of II, we apply Lemma A.1 and our choice of 7 to bound
16H3d®/? 2H*d%/?log(1 + 16Hd
|W|§(1+u)d§(1 3 og(1+16Hd/e) 4

€ €2
The bound on |TI| follows since |[IT| = [W|H.

)

B Policy Elimination

Throughout this section, assuming we have run for some number of episodes K, we let (F,)E_; the
filtration on this, with 7 the filtration up to and including episode 7. We also let F ;, denote the
filtration on all episodes 7" < 7, and on steps k' = 1,.. ., h of episode 7.

B.1 Estimating Feature-Visitations and Rewards

Lemma B.1. Assume that we have collected some data {(Sp—1.r,an-1.+,5hr)}5 1, where,
for each 7', sp /| Fr_1, is independent of {(Sh—1,rsQh—1,r,Sh,r)}r£r. Denote ¢pp_1 . =

(shotryan—1,,) and Ap_y = S5 Gh-1,704_1., + M. Fix 7 and let

K
= (Z ¢w,h(5h,7)¢;—1,~r> AL

T=1

Fix v € RY satisfying [v" ¢ 1(s)| < 1 forall s and w € R?. Then with probability at least 1 — §,
we can bound

~ log2/6
|UT(7;r,h — Trn)u| < <2 log2/6 + # + \F>\||7;Thvg> . ||u||A;1.

min( hfl)

Proof. Let® = {(sph—1.r,an—1-)} 5 ;, our data collected at step ~ — 1. Then by our assumption on
the independence of sy, -, we have that s;, -|F,_1 - has the same distribution as s, |(Fp—1,-, D).
Conditioning on ®, the ¢, , vectors are fixed, so Ap_; is also fixed. Note that

Ton = / e n(5)dpin_1(s)"

K

/¢7r h d#h 1 (Z h— 1,T¢;Lr—1,7'> A;il+A/¢W,h(3)dN}L—l(5)TA;i1

(/¢wh )dpn—1(s)" dn_ 1T>¢h 1AL 1+)‘/¢wh )dpn_1(s) T AL,

I
Mw i

Bl () F o ST A 0 [ b)) AT,

3
Il
—

I
Mx

Elprn(snr)| Frorrldn 1 AL + A Ten AL

3
Il
-

SO

v (T2 “‘<‘Z” El@rn(sh,e)|Fr-1,7] — ¢ﬂ'h(8h7’))¢h 1A 1“’+’)‘UTT hAh 1Y) -
S —
(b)

(a)
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Conditioned on D, (a) is simply the sum of mean 0 random variables, where the 7th random variable
has magnitude bounded as

|'UT (E[(pﬁyh(sh,”l')'fh—lﬂ'] - ¢7r,h(5h7‘r)) (ﬁZ—l,TA;ilu‘ < 2|¢;—1,TAh_i1u‘
<2||pn-1,r |A;ilHuHA;i1

< 2||u||A;i1/\/ Amin(lxh—l)

Furthermore, the variance of each term in (a) is bounded as
Var [0" (E[r p(5n,0) | Frot,r] = b p(5h,r)) G- Ayt 0l Froi]
=B [(v" Elgrn(on.) 1 Faor.c] = br(on)) 611, A7 Ly u) P
<ulA o1t AL

It follows that, by Bernstein’s Inequality, we can bound, with probability at least 1 — § conditioned
on ®:

(a) <2 i TA Y 1 0] AT -] 2, 2elag, log >
a U —1,7Pp_ I s o e S
< 2 h—1Ph=1,7Pp_1 7 3p—1 gé Amin (An—1) g5
log2/6
<2(V1og2/0 + ——————=) [lully-: .

(Vlog2/ Amin(mH)) [ulla,2,

In other words,
log2/6
Pl(a)>2 log2/0 + ————=—=) - |u|l, |D| <0
l” (ioe2/0 r ) i

so, by the law of total probability, for any distribution F' over 3,
P [(a) > 2(v/log2/3 + min{1, A" }10g 2/0) - [lul| 5+ |
= /IP {(a) > 2(y/log2/6 + min{1,\"*}log2/6) - ||u||A;i1|CD} dF(D)
< / dF (D)
=4

We can also bound
(0) < VAllulla-r [Tl
Combining these gives the result. O
Lemma B.2. Fix 7 and let
Q/b\‘n',h = ﬁr,hﬁ,h—l e 7A;r,27A;,1¢7r,0-

Fix u € S or w a valid reward vector as defined by Definition 3.1. Then with probability at least
1—-4:
h—1 2H
~ 2H log =+ ~
[(, P — )| < <2 log = + ——=2 + vd/\> N prilla-r-
; 4 \ Amin(Ai) ‘

Proof. Note that

b — ngh =Teh@Prh—1 — 7A?r,h¢A>w,h—1
= Ten(Prp—1 — qgw,hq) + (Tren — ﬁr,h)qgn,hq-
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Thus, unrolling this all the way back, we get

h—1 h

brn—xn=> | I Toi| Teni=Teni)rnin

i=1 \j=h—it+1

where we order the product HJ heiv1 Tmg = TanTrn—1- - Tr h—it1. It follows that

h—1 h
(e — Pe) <D T | ] Tri | Tenei = Teni)brnioa |-
i=1 j=h—i+1
Denote v; := u ' (H?:h_i_H ’7;J> By Lemma A.8 and our assumption on u, we can bound

|lvill2 < +/d and also have that for all s, a, |v

Zqub s,a)mp(als)

acA

(s,a)| < 1, which implies

<Z7rha| )=1.

acA

‘”z‘T‘ﬁmJ )| =

We can therefore apply Lemma B.1 to get that, with probability at least 1 — &, for all 4,

~ ~ 2H log 22 .
v (Trhi — ﬁr,h—z’)(ﬁw,h—i—l’ < ( log —_—t + \F)\||7;T,h”iH2 Ndrh—i—1l[p-1

\/ mln Ah i— 1

By Lemma A.8, the definition of v;, and our assumption on u, we can bound H’];Thviﬂg < V.
Summing over ¢ proves the result.

Lemma B.3. With probability at least 1 — §:

h—1 2Hd
~ 2Hd log =5
T - s S d 1
|@rn — rpll2 ) ( g —

h'=1

v d)‘> ) Hamh’”A;,l'

mm Ah’
Proof. We have:
|@nn — Prnlle < lPrn — Prnlli = Z [[@r,nli = [@rnlil = Z [(€is Pr,p — i)
i=1 i=1

Since e; € S, we can apply Lemma B.2 to bound, with probability 1 — §/d,

h—1 2Hd
~ 2Hd log =<
(i Grn — rn)] < Y (2 log +Vd ) -, wllas
h/=0 Inm Ah’
Summing over ¢ gives the result. O

Lemma B.4. Assume we have collected data {¢(sn +,an ), Th(Sh.r,an )} 5 1 and that for each
7', i (Shyrrs ahye )| (Shorr Gnoro) is independent of {(sp 7, an,r) }rzrr. Let

K
Oh = arg;ﬂin Z(Th,‘r - <¢h,7’7 0>)2 + >\||0||§

=1

and fix w € R? that is independent of {d(sh.ryan ), Th(Shrsan )} 5 . Then with probability at
least 1 —§:

~ log2/6
u, 0, —0y)| < log2/0 + ———=+VdA | - ||u]|-:-
(.0 h>|_( S0+ Bt ) Jula,

Proof. Let® = {(sp.r,an )} ;. Then by our assumption on the independence of 7y, ., we have
that 7, -|(Sh,r, an,-) has the same distribution as r, |©. Conditioning on D, the ¢, , vectors are
fixed, so Ay, is also fixed.
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By construction we have

K

ey —1

0, =A, E Ph,+Thr-
T=1

Furthermore:

K
On = Ay AnOn = AN dn Blrn | Frorr] + AA, 0.

=1

Thus,

K
|(u, 8, —6y)] < Z WA e (T — Elrp e | Fro12 )|+ [ AuT AL 10,
——_———

=1 )

(a)

Since Ry, » € [0,1] almost surely, we can bound

[T A n e (1~ Elrn | Faor oD < lllpotll@nr a1 < -1/ v Amin(Ar).
Furthermore, we can bound
Var [ul Ay @i (i — Elrns | Fuoa,q]) D)
=E [(u" AL bnr(rhr — Elrn | Frao1.7]))?D)]
<ul Ay Gy AL

By Bernstein’s inequality, we then have, with probability at least 1 — § conditioned on ®:

(a)

IN

S A Ao Vg 1082
U Ap QhrPp Ay U lOE -
=1 )\min(Ah)

log 2
L/‘S) )y
)\min(Ah) h

Applying the Law of Total Probability as in Lemma B.1, we obtain

IN

(V1og2/6 +

log2/6

P|(a) > (1/log2/0 + (A

) llullgz | <6

By Definition 3.1, we can also bound
(0) < Vullo-1 [04ll2 < VaN|u] .
Combining these proves the result.

B.2 Correctness and Sample Complexity of PEDEL

Lemma B.5. Let E,fs’? denote the event on which, for all m € 11,:

~ ([ AEP IR | log MRS
[(On+1, P pp1 — Pront1)] < Z 34/ log 5 + S—e : ||¢’7r,i\|A;£1a
i=1 min 7,
h AH?2d|T1, |62
- AH2d|IL, |02  log ——F5"— ~
@5 hi1 — Prnialla < d 3y/log + |l illa-1s
yh+1 ; 5 )\min(Ai,Z) s All

2 2
AH?[I, |2 log 2Ll

' i’h’eh_%g(? S Amm(Ahw)""’Sf“h'Ah;-

£,hye
Then ]P)[(gest) ] < 2]—}552'
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Algorithm 3 Policy Learning via Experiment Design in Linear MDPs (PEDEL, full version)

1: input: tolerance €, confidence &, policy set IT

3/2 -~
2: KO <~ ﬂogQ dT—I, Hfo — H, ¢711—,1 — anﬂ1(~\s1)[¢(sla CL)],VW ell
3: for £ = (o, by +1,..., [log 2] do

2 2
4 270 By« 64H* log AT
5: forh=1,2,...,Hdo
6: Run procedure described in Theorem 9 with parameters
2 2 2
€; 0 4H?|TT,y|¢ ~
68Xp<_E’ 5%@, A%lng, @F(Ph’g = {d)ﬂ’h:ﬂ'eﬂe}
and denote returned data as {(sp -, ap 7, 7h 7, sh+177)}f i, for K, ¢ total number of
episodes run , and covariates
Kh,e
Ahl — Z ¢(3h,7'a ah,r)d)(sh,‘m C"h,'r)T + 1/d 1
7: for m € II, do // Estimate feature-visitations for active policies
8: ¢£,h+1 A (ZT 1 ¢7r h+1(5h+1 T)¢h T hz) f;h
9: é\,{ — A} Zfﬁl D, rTh,r // Estimate reward vectors
10: // Remove provably suboptimal policies from active policy set
M1 < Hg\{ﬂ' eIl : ‘A/O’T < sup ‘7071’ - 26@} for ‘A/O” = ZhH:1< . h,0z>
/' €lly
11: if |II;41| = 1 then return 7 € II, 4

12: return any 7 € Ilp4

Proof. Note that the data collection procedure outlined in Theorem 9 collects data that satisfies
the independence requirement of Lemma B.1 and Lemma B.4, since Theorem 9 operates on the
h-truncated-horizon MDP defined with respect to our original MDP (see Definition C.2 and following
discussion), so by construction the data obtained at step & is independent of s, and rh(s By GR)-
Note also that ¢€ 1, is independent of {rj, T}fh S (shors an T)}f i, since we construct ¢ 1, using
only observations taken at step h — 1.

The result follows by Lemma B.2, Lemma B.3, and Lemma B.4, and setting A = 1/d. O

Lemma B.6. Let Efxll}) denote the event on which:

o The exploration procedure on Line 6 terminates after running for at most

infacq, MmaXeped,

Ef/ﬁz

®lIA A - 72
AN 4 boly (dHlog = A* log|Hg|)

min

episodes.

o The covariates returned by Line 6 for any (h,£), Ay g, satisfy

€2 4H?|TT,|¢?
<t Amin (Ap) > log — 1=
¢Ig<gx H¢||Ab > ﬂza ( hl) = log 5
Then P[(E5)e N ELL™ N (NILEL)] < 5

Proof. By Lemma B.7, on the event £/ N (NP4 ) we can bound \|$frh —¢rnllz < deg/2H.

est exp

By Lemma A.6, we can lower bound ||@x 4|2 > 1/v/d. By the reverse triangle inequality,

1% nll2 >

2 — ||$fr,h — Punlla > 1/Vd — deg/2H.
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It follows that as long as ¢, < H/d>/?, that we can lower bound ||¢?fth2 > 1/(2V/d). Since we start
latl = [log2 2727 we will have that e, = 2~¢ < H/d%/2.

The result then follows by applying Theorem 9 with our chosen parameters and ¢ < 1/ (2\/&)
O

Lemma B.7. On the event £ 0 (NP_,EL1), for all w € T1,:

est exp

[(On+1, ¢i,h+1 — Grnt1)| < e/2H,
||¢7r 1 T ¢7r,h+1||2 < dGK/ZH,
|<¢‘n’,ha0h - 0h>| < €£/2H.

Proof. On E4}

exp> WE can lower bound

AH?|T1, |02

)\min(Ai,f) > 1Og 5

which implies

A2, |2  log AIIE AH2|TI, |0
<4 logf.

4H? |1, )%
)

34/ log

Amin (A e)

0,h
,on&)

oot » We can then

Furthermore, on £5, “‘%ZHA*; < & Since 3 = 64H"log
upper bound '

0 $€ é >|<zh: s/l 4H2‘Hg|€2+10g4H |11, €2 ”d) |
s Y - Y, >~ (0]
B A U A Newim (As0)
2 2
§H41/1ng €
0 VB

< €/2H.

The same calculation gives the bounds on ||¢7r h— @nnll2 and |<$f; iy 6, — 6,)). O

Lemma B.8. Define £, = Ny Nj, EXP and Eoei = Ny N, ELN. Then P[Epss N Eu] > 1 — 26 and
P P

exp est *

on Eest N Eexp, for all h, 4, and 7 € 11,
|(On+1, (/b\i-,h-&-l — ¢rnt1)| < e/2H,
@S p1 — Pransall2 < de/2H,
QL 1y On — O1)| < er/2H.

Proof. Clearly,

[log4/e] H . h
g(;t U ge(.xp U U gest 8&5}(};)) )

l=ly h=1

[log4/e] H . h he [log4/e] H
U U gest ( gest 1) U( h 1 ‘Sfxlp © ) U U g(fx};)
l=Ly h=1 (=0y h=1

[log4/e]l H [log4/e] H
- U Uethn (et numes))u U UeEkh
{=0y h=1 {=ly h=1

The first conclusion follows by Lemma B.5, Lemma B.5, and since we can bound

ul 0 w2
YD 2 g S i<

¢ h=1

The second conclusion follows by Lemma B.7. O
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Lemma B.9. On the event EcstNEexp, for all £ > {y, every policy w € 11, satisfies Vi (I1) =V < 4e;
and ™ € Ily, for 7 = argmax, .y V'

Proof. The value of a policy 7 is given by

H
Z On, rn)-

By Lemma B.8, for all 7 € 1I; we can bound

By 1) — (O D) < |(Bn — Ony % )| + [(Bn, Dy — D) < €0/2H + €0 /2H = €/ H.
Thus,

H H
Z aha Z 0ha¢7‘rh < ¢.
h=1 h=1

We will only include 7 € I,y if 7 € II, and

H

Z< £ 5r01) > sup Z b e OF) = 2e0.

h—1 m €l ;7

Using the estimation error given above, this implies that for any 7 € II,,

H

Ve =Y (6n,Prn) > sup Z On, P 1) — dee = sup Vi — dey.
h=1 melle 2 el

Both claims then follow if we can show 7* is always contained in the active set. Assume that
7* € II,. Then

H

o ot 7 7
Z<¢%*vh’0h> > V5 —e, sup Z - h,Gh )y < sup Z G 1, On) 0 =V] + e
h=1 ' €lly h=1 w’€lly h=1

Rearranging this gives

Mm

e
(D% *h,Oh ) > sup E 'hveh —2¢
h=1 mEelly 7

som* € Iypqq. O]
Theorem 6. With probability at least 1 — 20, Algorithm 1 will terminate after collecting at most
Lo

. 1
4 lanEQh MaXreTI(4e) ||¢7r,h||ifl H|H(465)| log <
on$s 3 : 1o 100

+ poly <d H,— )\* log6 log |TI|, log — )

min

h=1t=0y+1

H .
L oH Z infacq, maxrer ||@x,nll3 - log H|I|log(1/e)

2
h=1 €t 0
episodes for vy := min{[log 27, log Ai} and will output a policy T such that
VE > max VT — e,
mell

where here T1(4ep) = {m € I : VJ > max, e V7 — 4es}.

Proof. By Lemma B.8 the event Eqst N Eqxp Occurs with probability at least 1 — 26. Henceforth we
assume we are on this event.

Correctness follows by Lemma B.9, since upon termination, I, will only contain policies 7
satisfying V7 > max,cr V7 — € (and will contain at least 1 policy since 7* € II, for all ).
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Furthermore, by Lemma B.9, if 4e; < Ay, (IT), we must have that IT, = {7*}, and will therefore
terminate on Line 11 since |II;| = 1. Thus, we can bound the number of number of epochs by

tp := min{[log — ] log Amj( )}

By Lemma B.6, the total number of episodes collected is bounded by

lanEQh MmaXeped, ), ¢Hi A)-1 1 1
Z 25 & + poly (d H, log 5w ,log 11|, log — )
h=1 (=1 L min
AL ianGQh maXepedy H(p”i A)-1 HI|II,| log(1
h ¢| 108 €
< Z C- 2 A" e logw poly (d H, log6 )\* ,log |1}, log — >
h=1 (=1 min

On Eest N Eexp, by Lemma B.8, for each m € II,, we have Hqgfrh — Grnllz < deg/2H. As
Dy p = {(Zfr’h :w € I}, it follows that we can upper bound

. . e
inf - max [|§]3 a1 = inf max |67 4llAcn) -

AEQ, PEDn
< inf 2 Ay +2095 5 )
= a2, 2 CIOnnla £ 200 |
2
< inf max(2|¢ h||2 d—)
~ AEQy, mell mAlAM)T 2H? Amin (A(A))
dQE%
< inf 4 - L (AA))
A, max Ao nllaca) - 108 A
d2 2
< inf 4
- Alélﬂ %%X ||¢7rh||A o H2)‘?n1n
)
infacn, maxpes,, ||¢||1(A)—1 < infacq, maxrer, 4] @ nlla i
G% ~ 6% H2>\:n1n

Note also that, by Lemma B.9, for ¢ > /¢, every policy m € II, will be 4¢, optimal, so we
therefore have

My Ci{rell : V{f >VJ —de} = T(4ey).

Putting this together, we can upper bound the complexity by

Lo inf AX e T(de - H|T(4e,)| log(1 /e 1 1 1
> > o e e [elhe g joq HINAONOSUID  pory (4, 11105 7, 11 tog i tog T
11— el 6 6 >\m1n
h=1/¢={y+1
4o minco, maxeen lenpllhos gy HIY 13g<1/e>'
EZO

O

Corollary 5 (Full Statement of Theorem 1). With probability at least 1 — §, the complexity of
Algorithm I can be bounded as

H 1
1 : [rnllA-1 HIIlog
CH"log - - f oA 1 g
% Zanta, 5?21%‘ (vo*(n) VIRV EV A2 8T 5
1
+ poly <d H, /\* log 5 ,log |11}, log — )
episodes, and Algorithm 1 will output a policy T such that
Vi > maLxV0
well
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Proof. By the definition of II(4e;), for each 7 € II(4¢,) we have
1
2

2= (V) = VPV (der)?)

€

We can therefore upper bound

Lo

3 infAcq, Mmaxrerae,) [|9xnl3-1 H|TI(4¢ep)|log £

-1
€ 08 S
t=lo+1

Lo ) 1

; H¢7r h”A—l H|H(464)|1Og7

<C inf max — -log €

[:%;_1A€Qh reli(de,) (Vg(II) — V)2 Vel 5

1 A - HI|M|log
< Clog-- inf max pr.nll7-2 Bl 11| Oge'

¢ Acq, menl (Vy(ID) — VIEV @V Apm(D)2 27 6
Furthermore, since ¢y = [log, d*/2/H, using Lemma B.10 we can also bound

ity mteen 9l |y HU080/0
650

The result then follows by Theorem 6. O

C

< poly (d, H,log 1/6,log |II],log 1/€) .

Proof of Corollary 1. By Lemma A.14, we can choose II, to be the restricted-action linear softmax
policy set constructed in Lemma A.14. Lemma A.14 shows that II. will contain an e-optimal policy
for any MDP and reward function, and that

32H*d5/21
\ T o

< (1 1+ 16Hd/e)>dH2.

€

Combining this with the guarantee of Corollary 5 shows that V7 > Vi — 2¢ and that Vg (TT) — V{ is
within a factor of € of V{j7 — V. To bound the complexity of this procedure, we apply the bound
given in Corollary 5 with the bound on the cardinality of I, given above.

B.3 Interpreting the Complexity

Lemma B.10. For any set of policies 11, we can bound

inf s 2 <d.
Anf Wlelgllqﬁw,hl\,\ 1 <

Proof. By Jensen’s inequality, for any v € R?, we have
v Ar v = Er[(v 01)%] 2 (Ex[v én])* = (v ).
It follows that, for any T,
Aﬂ‘,h t ¢7r,h¢);|r—,h'
Take A € Q;,. Then,
A= ]ETer [A‘n’,h} = E’Trww[¢7r,h¢;rr,h]'
It follows that we can upper bound

nf 2 oinf 2
lélﬂh TSrléIr)I”(bﬂ',hHA 1S /\lenAn igg”(bﬂ,hHA()\) 1

where A(X) = Y- Axépr n, 1, By Kiefer-Wolfowitz (Lattimore & Szepesvari, 2020), this is upper
bounded by d. O

inf max [ érnlla inf max .
Aeqy, rell, max{Vy — V[T, e}? ~ AeQ, nell. € — e

Proof of Corollary 2. This follows directly from Lemma B.10 and Corollary 1, by upper bounding:
2
||¢7r,h2”A71 < i
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B.3.1 Linear Contextual Bandits

Since we always assume the MDP starts in some state s;, to encode a linear contextual bandit, the
direct mapping of our linear MDP in Definition 3.1 would require considering an H = 2 MDP,
where we encode the “context” in the transition to state s at step h = 2. While we could run our
algorithm directly on this, in the standard contextual bandit setting, the learner has no control over
the context, and so their action before receiving that context has no effect. Thus, there is no need for
the learner to explore at stage h = 1. To account for this, we can simply run our algorithm but ignore
the exploration at stage i = 1, which will reduce the » = 1 term in the sample complexity.

B.3.2 Tabular MDPs
Lemma B.11. In the tabular MDP setting, assuming that 11 contains an optimal policy,

inf max Hd)ﬂ’h”i_l
Aeqy, el (Vi — V)2V €2 V Ayin(II)?
1 1 wl(s,a)
< inf maxma: i hA™
= fowp mell S0 w,; " (s, a) i { wi(s,a)Ap(s,a)?’ €V Ayin ()2 }
. 1
< inf max

mexp 50w, P (s,a)  emax{Ay(s,a), €, Apin (1)}

Proof. We have that ¢ p]s,« = W] (s,a). Furthermore, ¢(s,a) = e 4, so for any A € €, A is
diagonal with [Alsq s¢ = Erw|w] (s, a)]. Furthermore, by the Performance-Difference Lemma,
Vi -V = Zs’a’h wi(s,a)Ap(s,a). Thus,

wT (s,a)?
inf max ||¢777h||f\71 < inf max ZS#G wi%g)gs(?’a)
Aey, well (Vi = Vi)2V e2 V Apin(ID? ~ mep 7wl (32 00 e Wi (87,0 ) Apr(87,0))2 V €2V Apyin (I1)2
(B.1)
We have
™ 2 T ™
Ziﬁh(&a) < Zw,’{(&a) - max 71ﬁh'(8’a) = max 71?(8’@ .
exp -, exp N exp
7wy (s,a) s s,aw, " (s, a) s,a w, " (s, a)
Thus,

(B l) < i f wg(s7a)/wzcxp(s7a’)
. inf max max
T mep well sia (Do o Wi (8, a)Aps(s',0))2 V€2V Apyin (11)?

Texp

. wi(s,a)/w (s,a)
- ¢ a\S) h ?
= e mell s (W (5, @) An(5,0))2 V€ V Apin(I1)?

. . 1 wl(s,a)
= inf b . B.2
E s w; " (s, a) H { wi(s,a)Ap(s,a)?” €V Apin(I)? } B2

We can further upper bound

in 1 wi (s, a) < 1
wi(s,a)Ap(s,a)?” €V Apin(I1)2 | = Ap(s,a)(e V Amin (1))
S0

1
B.2) < inf maxmax min
( )< Texp mEIL  s,a ’LUZEXP (s,a) {Ah(

1 wj(s,a) }

s,a)e’ €2V Apin(I1)2

1 1
< inf max .
T mep sa wp P (s,a) emax{Ap(s,a), €, Apin(I1)}

O

Lemma B.12. If PEDEL is run with a set 11 that contains an optimal policy, the complexity of PEDEL
is upper bounded as

~ H s !
O <H4 Z sup inf max max ! min{ 1 wh(s,a)} -log ()] + Co)

h=1 €’ >max{e,Amin(I1)/4} Texp TEII(e) 8,0 w;exp (S’ (1) wiTzr(S7 CL)A}L(S, G‘)Q 7 (6/)2 d

forTl(¢) ={m eIl : VF > V5(I) —€}.
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Proof. Using an argument identical to that in Lemma B.11, we can upper bound

ianeﬂh MaXreri(4e,) ||¢7r,h||i—1 < inf max M
€ A€y, nenl(de,) (V§ — VI)2V €l
1 1 ™
< inf max max ———— mi wp (s, a)

n
2P (s, q) {wZ(S,a)Ah(Sva)T 5

The result then follows from Theorem 6, noting that we will never run for ¢, < A, (I1) /4. ]

Texp TEII(4eg) S, W

Proof of Corollary 3. Note that in the tabular MDP setting, we can choose II to be the set of all
deterministic policies, since this set is guaranteed to contain an optimal policy. We can then bound
ITT| < ASH_ The result then follows directly from Lemma B.11 and Theorem 1. O

Proof of Proposition 4. We begin with an example where PEDEL has complexity smaller than the
Gap-Visitation Complexity, and then turn to an example where the reverse is true.

PEDEL Improves on Gap-Visitation Complexity. Consider the tabular MDP with |S| = |A| =
N, and where

Pn(s1]s1,a1) =1, wvp(s1,a1) =1,Vh € [H|

Py(s1]s1,a;) =0, wvp(s1,a5) =0,Vh € [H],j#1

Py(s1]si,a;) =0,Yh € [H],j € [N],i # 1

Pr(silsj,a;) =1,Vh € [H],j € [N],i # 1

rip(si,a1) =€, Vh € [H],i #1, wv(si,a;) =0,Yh e [H],j#1,i# 1.
In this MDP, the optimal policy simply plays action a; H times and is always in state s;. The total
reward it collects is H. Any deterministic policy that does not play a; H consecutive times has
optimality gap of at least 1 — e. Furthermore, every other state can be reached with probability
1. In this case, then, assuming that we take II to be the set of all deterministic policies, we have

Apmin(IT) = 1 — € (note that since there always exists a deterministic policy that is optimal, it suffices
to take II to be the set of all deterministic policies).

By Corollary 3, we can therefore upper bound the complexity of the leading-order term by

(5(H 552 A), so PEDEL will identify the optimal policy (since IT contains an optimal policy). Thus,
the total complexity of PEDEL is O(poly(S, 4, H,log1/4)).

On this example, in every state s;, i # 1, action a still collects a reward of e. Thus, we have that
Ay (si,a;) = e for j # 1. The Gap-Visitation complexity is given by

iinf max min 1 Wh(8)2
X .
T  s,a lUZ(S,CL)A}L(S,CL)Z7 €2

h=1

Since W, (s) = 1 for each s, we conclude that
H H
. . 1 Wh(8)2 } 1
inf max min , > —.
}; T sa {wg(s, a)Ap(s,a)?’ €2 };1 €2
Thus, for small €, the Gap-Visitation complexity can be arbitrarily worse than the complexity of
PEDEL.

The Gap-Visitation Complexity Improves on PEDEL. To show that the Gap-Visitation Com-
plexity improves on the complexity of PEDEL, we consider the example in Instance Class 5.1 of
Wagenmaker et al. (2021b). As shown by Proposition 6 of Wagenmaker et al. (2021b), on this
example, for any ¢, the Gap-Visitation Complexity is O(poly(.9)).

To bound the complexity of PEDEL on this example, we consider the complexity given in
Theorem 6 with II the set of all deterministic policies, which is slightly tighter than the complexity of
Corollary 3. Take ¢ > 27, Then, on this example, it follows that A, (IT) < O(€), since we can
find a policy 7 which is optimal on every state s; at step h = 2 for i = O(log 1/¢), which will give it
a policy gap of O(e). Furthermore, any near-optimal policy will have [¢r 2]s,.a; = W5 (s1,a1) =
O(1), so we always have infacq, > Q(1). It follows that the complexity
of PEDEL is lower bounded by (1/¢€2).

O
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B.3.3 Deterministic, Tabular MDPs
Lemma B.13. In the deterministic MDP setting,

inf max ——— A <
Aey, mell (Vi —VF)2Vve? — ZAhsaQ\/e2

Proof. Note that [¢r 1]sr o = 1, and otherwise, for (s,a) # (s}, af), [¢x,n]s,a = 0. Furthermore,
A, will always be diagonal, with diagonal elements wj (s, a). We then have || pl% + =

Texp

1
w;’l\'exp (S;{ 7a;) ’

Texp s

SO

2
H(ﬁ’ﬂ',h”?\_l ||¢7T,h||A71

inf max ———— 2 < inf max ————2
Acy, mell (Vi = V)2V €2 7~ mep nell (Vi — V)2V €2
Texp

) w ST aT —1
= inf max AP Rl ( b Qh) 5

Texp mell (‘/0 VO ) Ve
((l) Texp

w st ar)”
= inf max max %
Texp 5.0 m€lan (Vi — V)2 Ve

Tox —1

() w,,"" (s, a)

= inf max max ——t————70
Texp 8,0 me€llan (Vi — V)2 Ve

Texp

wy, (s,a)1
‘/‘07r)2 \/ 62

1

= inf max —
Toxp S0 (VI — maXzen

1

sah

(o)

w;, " (s,a)”
= inf max =t—"1"~
Texp S0 Ap(s,a)? V€2

where (a) follows since IT = U, 411545, (b) follows since by definition, for any 7 € Ilqp, (sp,ap) =
(s,a), and (c) follows by the definition of Ay (s, a).

Let 7°¢ denote any policy such that (s}, a}) = (s, a). Set

maX{Ah(Sv a)? 6}72
Zs’,a’ maX{Ah(S/7 a’/)7 6}_2 .

Note that this is a valid distribution. Let mexp, = Zs’a Arsa5, then w;:”‘f’ (s,a) = Apsa, SO

Apoa =

w; **(s,a) 7! Aria
inf max =" _ <max —~—
Tep 50 Ap(s5,0)2Ve2 = sa Ap(s,a)? Ve2

1
< - -
- ; Ap(s,a)? Ve?
which proves the result. O

Proof of Corollary 4. As in tabular MDPs, we can set I to correspond to the set of all deterministic
policies. However, since our MDP is also deterministic, at any given h, we only need to specify ()
for a single s—the state we will end up in at step h with probability 1. Thus, we can take Il to be a
set of cardinality |IT| = A¥. The result then follows directly from Lemma B.13 and Theorem 1. [

Comparison to Lower Bound of Tirinzoni et al. (2022). The precise definition for A", is

Al = min, A (s.0)>0 An(s,a) in the setting when every deterministic e-optimal policy will

reach the same (s, a) at step h, and A", := 0 otherwise.

The exact lower bound given in Tirinzoni et al. (2022) scales as ¢*(c¢) which does not have an
explicit form. However, they show that

f?el?X]Z Z 4maX{Ah s,a), A mln }2 - Z Z Z 4max{A(s ‘1) A’Iilirﬂe}Q.

s€Sa he[H] s€S acA
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Up to H factors, then, this matches the complexity of our upper bound in every term but the A" . |
term. Aﬁnn > Anin, so this lower bound is potentially smaller than our upper bound in this
dependence. We remark, however, that the algorithm presented in Tirinzoni et al. (2022) obtains the
same scaling as we do, depending on A, instead of A” . . Furthermore, in general we can think of

these quantities as scaling in a similar manner, since they each quantify the minimum policy gap.

C Experiment Design via Online Frank-Wolfe

C.1 Experiment Design in MDPs with General Objective Functions

While the experiment design in (5.1) is the natural design if our goal is to identify a near-optimal
policy, in general we may be interested in collecting data to minimize some other objective; that is,
solving an experiment design of the form:

Aexlfef a, f(Aexp)

for some function f defined over the space of PSD matrices. For example, we could take f(Aexp) =
AL llop = m, and the above experiment design would correspond to maximizing the
minimum eigenvalue of the collected covariates, or E-optimal design (Pukelsheim, 2006).

Motivated by this, in this section we generalize Theorem 5 and Algorithm 2 to handle a much
broader class of experiment design problems. In particular, we consider all smooth experiment design
objectives, which we define as follows.

Definition C.1 (Smooth Experiment Design Objectives). We say that f(A) : Si — R is a smooth
experiment design objective if it satisfies the following conditions:

e [ is convex, differentiable, and 8 smooth in the norm || - ||: [[Vf(A) = VF(A)|. <
BllA = Al

o fis L-lipschitz in the operator norm: |f(A) — f(A')| < LI|A — A/|op.

o LetEp, := —VAf(A)|a=a,- Then Ep, = 0 and tr(Zp,) < M for all Ay = 0 satisfying
[Aollop < 1.

We will often be interested in objectives f that satisfy f(aA) = a=1f(A) for a scalar a, in

which case the guarantee f(N ! s ~) < Nereduces to f(X ) < e. We note also that many typical
experiment design objectives are non-smooth. As we show in Appendix D, however, it is often
possible to derive smoothed versions of such objectives with negligible approximation error.

Through the remainder of Appendix C as well as Appendix D, we will be interested in the problem
of data collection in linear MDPs. In general, we will seek to collect data for a particular h € [H].
We will therefore consider the following truncation to our MDP.

Definition C.2 (Truncated Horizon MDPs). Given some MDP M with horizon H, we define the

h-truncated-horizon MDP My, , to be the MDP that is identical to M for A’ < h, but that terminates
after reaching state s;, and playing action ay,.

We can simulated a truncated-horizon MDP by playing in our standard MDP M, and after taking
an action at step h, ay,, taking random actions for ' > h and ignoring all future observations.

The utility of considering truncated-horizon MDPs is that we can therefore guarantee the data
we collect, {{(sn' .+, an +)}1_; }E ;1 is uncorrelated with the true next state and reward at step h
obtained in M, {(Sp+1,7,7h.+) } ;. While we do not allow our algorithm to use {(sp+1.7, 7h.+) } 2y
in its operation, it is allowed to store this data and return it.

For the remainder of Appendix C and Appendix D, then, we assume there is some fixed h we are
interested in, and that we are running our algorithms in the h-truncated-horizon MDP defined with
respect to our original MDP. We will also drop the subscript of h from observations, so A = A, p,
¢r = Grp,and Q = Q.

Our main experiment design algorithm, OPTCOV, relies on a regret-minimization algorithm
satisfying the following guarantee.

Definition C.3 (Regret Minimization Algorithm). We say REGMIN is a regret minimization algo-
rithm if it has regret scaling as, with probability at least 1 — 4,
K
R =Y (Vi = Vi™*) < /C1K log" (HK/5) + Czlog” (HK /)
k=1
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for any deterministic reward function r1,(s, a) € [0, 1].

Throughout this section, we will let A refer to covariates normalized by time, and 3 unnormalized
covariates. So, for example, we might have % = S°7_ ¢, ¢ and A = T ST ool

The rest of this section is organized as follows. First, in Appendix C.2 we show that a variant of
the Frank-Wolfe algorithm that relies on only approximate updates enjoys a convergence rate similar
to the standard Frank-Wolfe rate. Next, in Appendix C.3 we show that for a smooth experiment
design objective, we can approximately optimize the objective in a linear MDP by approximating the
Frank-Wolfe updates via a regret minimization algorithm. Finally, in Appendix C.4 we present our
main experiment-design algorithm, OPTCOV, which relies on our online Frank-Wolfe procedure to
collect covariates that minimize an online experimental design objective up to an arbitrarily tolerance.

C.2 Approximate Frank-Wolfe

We will consider the following approximate variant of the Frank-Wolfe algorithm:

Algorithm 4 Approximate Frank-Wolfe

1: input: function to optimize f, number of iterations to run 7', starting iterate x;
2: fort=1,2,...,T do

3: Set v H%l

4: Choose y; to be any point such that

Vi) Ty, <min V() y+e
yeX

5: xip1 < (1= v)®e + ey
6: return T4

Lemma C.1. Consider running Algorithm 4 with some convex function f that is 3-smooth with
respect to some norm || - ||, and let R := sup,, , ¢ ||® — y||. Then for T > 2, we have

BR*(logT+1) 1 iﬁ
t

2T +1) T+1

f(@ri1) — min f(z) < 2

Proof. Letx* = argmin_ » f(). Using that f is S-smooth, the definition of y,, and the convexity
of f, we have that for any s,

F@ai1) = F(@2) < VI @) (@arn — @) + 5 a1 —
<Y V() (ys —zs) + gﬁRQ
<V (@) (@~ ) + e + D92
<A@~ J(@a)) + s + SR
Letting 05 = f(xs) — f(x*), this implies that

5s+1 S (]- - 75)55 + Vs€s + g’yg

R?.
Unrolling this backwards gives

Or41 < (1 — 7)o + yrer + §7%32

< (I =97)(1 =97-1)0r—1+ (1 —y7)(y7-1€7-1 + 27%_132) +rer + 27%32
T T ﬁ

< 1— 7, e + =i R?).
; (é_]:[ﬂ( v )) (ver + 57 R?)
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We can write

s t+1
IR | (e
s=t+1 s=t+1 s+ 1 T + 1
S0
T T T
B a2 15 1 2
S Huw) -y
t=1 <s—t+1 t=1 12(+1)
_ BR? ET: 1
2T +1) & t+1
< BR*(logT + 1)
- 2(T+1)
and

S (T ) e S 1
. Vs ’Ytt—t:IT+lt+1t

1 T
- T _|_ 1 Z €t
t=1
which proves the result.
O
Lemma C.2. When running Algorithm 4, we have
1 T
Tr41 = T (;yt +$1> .
Proof. We have:
T T T
Tri =) ( IT a- %)) VY + <H(1 - ’Ys)) x,
t=1 \s=t+1 s=1
B ET: b4l 1 1
= T+1t+10 7 T+1
d 1
Tl ;yt+ T+17
O

C.3 Online Frank-Wolfe via Regret Minimization

Algorithm 5 Online Frank-Wolfe via Regret Minimization (FWREGRET)
1: input: function to optimize f, number of iterates 7', episodes per iterate K

2: Play any policy for K episodes, denote collected covariates as I'g, collected data as D

3: A+ K_lro

4: fort=1,2,...,T do

5: Set ¢ 5 +1

6: Run REGMIN on reward 7, (s, a) = tr(Za, - ¢(s,a)p(s,a)’)/M for K episodes, denote

collected covariates as I';, collected data as D,
At+1 — (1 — ’Vt)At =+ ’ytK_lI‘t
8: return Ar, i, UL (D,

~
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Lemma C.3. Consider running Algorithm 5 with a function f satisfying Definition C.1 and a regret
minimization algorithm satisfying Definition C.3. Denote Ko(T, 3, M, 0) the minimum integer value
of K satisfying

2 2 2 2 P1 P2
K > max {72T M?210g(4T/5) 8T2M2Cy logP (2HKT/S) 3TMCylog (2HKT/S) }

B2RA J BZRA ) BR2
Then as long as K > Ko(T, 8, M, §), we have that, with probability at least 1 — 0,

) BR?*(log T + 3)
—_ < 2 =2 @ 7
f(Ar+1) = jnf f(A) < 2(T +1)
for R =sup, ./ [[Ax — Arr]|.

Proof. Note that by Lemma C.2 and since ||¢(s,a)||2 < 1, we can bound ||A¢|lop, < 1 and
lp(s,a)p(s,a)"|lop < 1. Definition C.1 it follows that rf(s,a) € [0,1] for all s,a, since
r(Zn, - Bls,0)$(5,0)7) < (5, 0)b(5,0) o - tx(En,) < tr(En,) < M, and tr(Za, -
o(s,a)p(s,a)") > 0 since 5, = 0. If we run REGMIN for K episodes on reward function
71, by Definition C.1 and Definition C.3 we then have that, with probability at least 1 — §/27,

K
VG K log" (2HKT/8) + Calog" (2HKT/6) > K supEr[tr(Ena, - ¢ )/M] = > Er, [tr(En, - ¢ )/M]
& k=1

= Ksuptr(Za,Ax)/M — Ktr(Ea, - K'Y Ar)/M

which implies

M2Cy logP (2HKT/)  MCylogP?(2HKT/S K
Culog RIRTJ0) | MCIosTRHETI0) 5 uptr(Ea,Ar) — tr(Ea, - K~ Y Ary)

Furthermore, we have that

K K
= - = 1 -
tr(Zp, - K1 ZAM) —tr(Za, - K'TY) Ztr EaA) — 174 Ztr(:Atqbkqb,I) .
k=1 k=1

Note that E, [tr(Za, @) )] = tr(Ea, Ax, ), t1(Za, @) ) € [0, M], and 7y, is Fi_1-measurable.
We can therefore apply Azuma-Hoeffding (Lemma A .4) to get that, with probability at least 1 — & /27,

8M?log(4T'/6)

EA, - 1ZAM —tr(Za, - K'Ty)| < K

Therefore,

\/ 8M2log(4T/6) \/ M?2C, log" (2HKT/8) ~ MCologP?(2HKT/6)
+ +
K K K
> suptr(2x,Ay) — tr(Ea, - K'TY).

Given our condition on K, we have

\/8M2 log(47/0) ,  [MCylog” RHKT/S) | MCylog™(2HKT/5) _ R’
K K K =T

which implies

- - 1 BR?
sup tr(Za, Ay) —tr(Za, - K7 Ty) < 7 (C.1)

s

Note that, for any A € €2, we have
tI‘(EAtA) = tI‘(EAtEWNW[Aﬂ-]) =FE ww [tI‘(EAtAﬂ-)]
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SO

sup tr(Ea,A) = sup Epu[tr(Ea,Ar)] = suptr(Ea, Ax)

AEQ WED,
By definition, Zp, = =V f(A)|a=a,, so it follows that
— sup tr(2a,A) = inf tr(Vaf(A)laza, - A).
AEQ AeQ

It follows that (C.1) is precisely the guarantee required on y; by Algorithm 4 with ¢, = #.

Since f is S-smooth by Definition C.1 and since the set €2 is convex and compact by Lemma A.9, we
can apply Lemma C.1 with a union bound over ¢ to get the result. O

C.4 Data Collection via Online Frank-Wolfe

Algorithm 6 Collect Optimal Covariates (OPTCOV)
1: input: functions to optimize ( f;);, constraint tolerance ¢, confidence §
2: fori=1,2,3,...do
33 T+ 2L K« 2'T7
4: if K; > Ko(T;, B, M;, %)Tf + K1(Ty, Bi, M, %)Ti for Ky and K as in Lemma C.5
then

5 A,D; + FWREGRET(f;, T} — 1, K;)

. B A N Bi R%(log T; +3)
6: if fi(A) < f(,Tve and f;(A) > === then
7: return A, KiTia @i

Theorem 7. Let (f;); denote some sequence of functions which satisfy Definition C.1 with constants
(Bi, Li, M;) and assume B; > 1. Let (8, L, M) be some values such that 3; < §,L; < L,M; < M
for al i, and let | be some function such that f;(A) < f(A) for all i and A = 0. Denote fuin a
lower bound on all f;: min; infacq fi(A) > fmin.

Define

infaco f(A) .
€

N*(e; f) := (C.2)

Then, if we run Algorithm 6 on ( f;); with constraint tolerance € and confidence 6, we have that with
probability at least 1 — 0, it will run for at most

5N (e f) + poly (271772,Cy,Ca, M, B, R, L, fr,, log 1/3)
episodes, and will return data {¢, }¥_, with covariance Sy = Zivzl ¢- . such that

H(NTIEy) < Ne,

where 1 is the iteration on which OPTCOV terminates.

Corollary 6. Instantiating REGMIN with the computationally efficient version of the FORCE algo-
rithm of Wagenmaker et al. (2021a), we obtain a complexity of

SN*(G; f) + p01y (da Ha Maﬂ7 R7L7 fr;ilnalog 1/6> .
Proof. This result is immediate since FORCE satisfies Definition C.3 with
Ci=cad'H', Cy=cd'H? p =3 p=7/2
for universal numerical constants ¢; and cs. O
Proof of Theorem 8. We first show that the condition fi(zAX) > %@ is sufficient to ensure a

2-approximate minimum of f;, and then show a sufficient condition on K; and 7; that will guarantee
the condition on Line 6 is met.
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Guaranteeing 2-optimality. We first show that for a fixed 4, the condition fz(./AX) > BiR(log T: +3)

will only be met once

fi(A) <2 if fi(A)
and that it will take at most
2B8R?(log T;; + 3)
infaecq fi(A)

iterations to do so, as long as

L2
ik = 2(dlog(1 + 8T, K;) + log(4i2/4)) - (infaeq fi(A))2

The first part follows by applying Lemma C.3. Note that the if statement on Line 4 will only be
met once
Ki > Ko(T;, i, M, 6/4i).
This follows by Lemma C.5. Thus, the condition on K; required by Lemma C.3 will be met, so it
follows that with probability at least 1 — 6/(4i?),
BiR?(log T; + 3)

fi(A) — inf, fi(A) < o,

Therefore, if f;(A) > w, we have

iR~ it fi(A) < 2 fi(R) = Jf(R) < inf Fi(A)

A A

= fi(A) <2 inf fi(A).

We will show a sufficient condition for fi(_/AX) > w, which implies that fi(_/AX) >
w since 3; < 8. By Lemma C.2 and the procedure run by Algorithm 5, we have that
A= T K Zf If ¢, ¢, where at episodes T we run some F, _;-measurable policy 7, to acquire ¢T.
Now if A = A for some A € €2, then the second part follows trivially since inf 5 cg fi(A) < fi(A),
so a sufficient condition for fi( ) > w is that inf Aen fi(A) > %m. However,
since A is stochastic, we may not have that A€ Q. LetA = TR K ZT R A and note that AcqQ.
Applying Lemma C.4, we have that with probability at least 1 — § /(442 )

§ \/ 8dlog(1 + 8VT,K;) + 8log(4i?/5)
op T, K;

A—-A

H~ o~

for 7 the uniform mixture of {7rT ‘ . By the Lipschitz condition of Definition C.1, this implies
fi(A) > fi(A) = Lil| A — Allop
> fi(A) = LA = Allop

> fi(R) - L\/ Sdlog(1 + SVTQ + 8log(442/9)

I ;2
_— fi(A)L\/8d1og(1+8\/T}§(z)+810g(4z /)

~ 2 e
Thus, a sufficient condition for f;(A) > w is that

2 2 :
inf fi(A) - L\/ngOg(1+8\/;( i) +8log(4?/0)  BR (10§sz+3>
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BR?*(log T; + 3)
L\/Sdlog(lJrS\/ )+810g(4z2/6)

<— T, >

infaco fi(A

If

L2
T 2 S (log(1 1 SYTIR) + 10g(12/5)) - (imface fi (A))?

it follows that a sufficient condition is

S 28R%*(log T; + 3)
infacq fi(A)

Union bounding over the events considered above for all 7, we have that the total probability of
failure is bounded as

=5 1) 2
4+ )=-6<
Z(4i2+4i2) 12(S 0.

Termination Guarantee. We next show a sufficient condition to ensure that the if statements on
Line 4 and Line 6 are met.

Assume the if statement on Line 4 has been met and that we are in the regime where
L2 28R2(log T;
T, > Y BR*(log +3)
2(dlog(1 + 8VT,K;) + log(4i2/9)) - f2.. Jmin

By the argument above and since infacq fi(A) > fmin, these conditions are sufficient to guarantee
a 2-optimal solutions has been found, that is,

Ji(A) <2+ inf fi(A),

(C.3)

and that the condition f; (K) > w has been met. Thus, if (C.3) holds, a sufficient condition
for fl(l/i) S TzKZG is
2. inf f;(A) < T;Ke.
AR ) = Tiltee

It follows that this condition will be met (assuming (C.3) holds) once T;K; > N*(5; fi). Since
fi < o N*(5; fi) < N*(5; f), so a sufficient condition is that T; K; > N*(5; f).
To upper bound the total complexity, it suffices then to guarantee that we run for enough epochs
so that
3 I 5 2 0
Kz:2 ZKO( 17615 iy - )T +K1( 17B1;M17E)T‘1 (C4)

L2
TK, — 2% > €5
~ 2(dlog(1 + 8VT,K;) + log(4i2/9)) - f2, 2
268R?*(log T; + 3)
fmin

TK; = 2% > N*(%; f). (€7

T, =2 > (C.6)

Here (C.4) guarantees the if statement on Line 4 is met, and (C.5)-(C.7) guarantee the if statement on
line Line 6 is met.

By assumptlon M; < M and 3; > 1, and note that KO(T“B“ i 7 95) and Kl(ﬂ,ﬁ“ b 12 %)
are both increasing in M; and decreasing in §;. Thus, a sufficient condition to ensure (C.4) is met is

2% > Ko(2,1, M, 5 0 )221+K (21,1,M d ) (C.8)

Some calculation shows that

_ 5 o~ 5 ~ ) N 0
K0(2 71,M7E> § (5Z)p1K0(2,1,M7 Z)’ K1(2 ,1,]\4’7 @) S (4’6)p2K1(2,1,M, Z)
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so a sufficient condition to meet (C.8) is
. - 5 . ~ 5
2" > 2(5i)P Ko (2,1, M, 1), 2% > 2(4i)P2 K, (2,1, M, Z)'
By Lemma A.2 and some calculation, this will be met once

~ 1) ~ 1)
1 > max {4p1 log,(2p1) + 21ogs(2(5)P Ko (2,1, M, Z))7 2p2 logy(p2) + 2log,(2(4)P2 K4 (2,1, M, 4))} =:1p.

To meet (C.5) it suffices to take
2

> 4log2 de

By Lemma A.2, a sufficient condition to meet (C.6) is that

68R? 4BR? 48R? }
: log

fmin fmin fmin

T > max{

so it suffices that

. 65 R> 48 R? .
1 > log ( log =: 9.
2 fmin fmin 2
Finally, to meet (C.7), it suffices that
1
i> Zlng N*(e/2; f) =: i3.

If we terminate at epoch?, the total sample complexity will be bounded by

i i .16 -
;Tim:;% §1—5~24.

By the above argument, we can bound 7 < [max{ig, i1, 2, i3} ]. Furthermore, we see that
240l = poly (281, 2P2 M, Cy, Ca, log 1/9)
4Tl = poly(L, fi,h)
24 21 = poly(B, R, fruin)
2411 <2N*(¢/2; f)
so we can bound the total sample complexity by

1 o 9
o2 -gimestini il < SENH (/2 )+ poly (27,27, 6, R, L, fh

min’

M,Cl,CQ,IOgl/(S) .

This completes the proof since N*(5; f) = 2N *( f) and since, by Lemma C.2, Ais simply the

average of the observed feature vectors: A = 7 K~ Zf:f o P,
O

Lemma C.4. Let Ak denote the time-normalized covariates obtained by playing policies {Trk}szl,
where T, is Fr_1-measurable. Then, with probability at least 1 — 0,

1 K
T2 An—A
k=1

_ \/8dlog(1 +8VK) +8log1/s
i K .

op
Proof. LetV denote an e-net of S d=1 for some ¢ to be chosen. Then,

1 & 1 &
?ZAWFA v’ (KZAMAK>'U
k=1

k=1

= sup
veSd—1

op
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< sup
€V

Qwm

1 K
" <K ZAM — AK> v
k=1
(a)

1 & 1 &
v’ (KZAM—AK>1;—T;T (K;AM—AK>?}

k=1

+ sup inf
veSd—1 VEV

(b)
Via a union bound over V and application of Azuma-Hoeffding, we can bound, with probability at

least 1 — 6,
2log |V|/é
< _
() < 1/ 2]
X
T ~
v (Kg_lAwk—AK> (v — )

1 K
% > Ar —Ax
k=1

We can bound (b) as

(b) < sup inf 2
vesd—1VEV

< sup inf 2||jv — vz
veSd—1vEV

op
< 4e

where the last inequality follows since ||+ Zle A, llop < 1,and |+ Akllop < 1, and since V is
an e-net. Setting ¢ = 1/(4v/K), Lemma A.1 gives that |V| < (1 + 8V/K)%, and we conclude that

with probability atleast 1 — §:
/21 5
< [2logVI/o

1 K
EZAM—AK
k=1
<\/2d10g(1+8\/f)+210g1/6+ 1

op

K VE
< o,/ 2dlog(1+8VK) + 2log1/
< K .
O
Lemma C.5. We can bound B B
Ko(T,ﬁ7M,5) S KO(TaﬁvMa 5)T2 + Kl(TaﬂaMa 5)T
for
~ 72M?log(4T/5) 8M?2Cy 32p1 HT3M?Cy
KO(T,ﬂ,M,(S) = maX{ IB2R4 5 ﬁ2R4 . (2p1)p1 logpl W
=~ 3MCQ po 12p2HT2MCQ
= . logh? | —/——— "~ "¢
KI(T7ﬂ7M7 6) ,3R2 (2]92) 0g BRQCS 3
Proof. By definition Ko (T, 3, M, ) is the smallest integer value of K that satisfies:
K> ma 7212 M? log(4T/8) 8T?M?3CylogP (2HKT/S) 3TMCqlogh (2HKT)/S)
max .
— 62R4 ’ 62R4 ) BRQ
(C.9

By Lemma A.2, we have that if

8T2M?C, 8T?M?Cy 4p HT 3TMCy 3TMCy 4poHT
K>————(2p1)"" logh . K> - (2p2)P? logP? .
= B2R4 ( pl) og < 52R4 5 ) ) = BR2 ( pZ) 0og ( BRQ 5 )
and
2772
K> 727> M*1og(4T/9)
= B2RA
then Equation (C.9) will be satisfied. Some algebra gives the result. O
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D XY-Optimal Design

We are interested in optimizing the function
XY opt(A) = max |placay-2 for A(A)=A+Ag

with Ay > 0 some fixed regularizer. This objective, however, is not smooth, so we relax it to the
following:

_ 1 .
XY opt (A) := LogSumExp ({em'd"lim)—l}d,e@;n) = —log Z e”l‘b”i(/\)—l . (D.1)
n
Ped

We first offer some properties on how well XY opt (A) approximates XY ot (A ), and then show
that we can bound the smoothness constant of XY ., (A). Throughout this section, we will denote
Yo = MaXped ||¢H2 and let f(A) = XYopt(A).

D.1 Approximating Non-Smooth Optimal Design with Smooth Optimal Design

Lemma D.1.

—~ log |® —~
XY g (4) = X ()] < L X000 (8) £ X o ().

Proof. This result is standard but we include the proof for completeness. We prove it for some
generic sequence (a;)!" ;. Take n > 0. Clearly,

n
exp( max na;) Z p(na;) <n exp(max na;)

SO

n

maxna; <log (Z p(na; ) < logn + maxna;.

The result follows by rearranging and dividing by 7. O
Lemma D.2. Ifn > 177 > 0, then XYOpt (Asm) < XYOpt (A;7).
Proof. We will prove this for some generic sequence (a;)}" ;, a; > 0. Note that,

d1 1 1 1
— log E i e log eN%i + = . aienai )
d?’] n ( ) n? (Z ) n E :z enai Z

i %

We are done if we can show this is non-positive. Note that,

g

SO
—ilog Zenal +1 1 .Zaenaz < —~maxa; + 1 Zaenaz
2 - UDD n doienh 4
1
< ——maxa; + — maxa;
?7 K3 3
= 0.
The result follows since XNYOpt has this form. O
Lemma D.3. We have,
Vo
in XYopt(A) > —————.
a0 A ) Z TR
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Proof. Note that ||A(A)|op < 1+ [|Aollop» SO

maxgce || @2

inf inf 2 .
I A LN = Aro, \|A\|$<1+\|AouopH¢||A(A) "7 1+ [ Aollop

AZO0,[[Allop<1 P

Lemma D.4. Assume that we set 1) > %(1 + || Aollop) - log |®|. Then
N*(6; XYopt (A)) < 2N*(6; XY ot (A)).

2
Proof. Denote f(A) + LogSumExp ({e"“‘puA(A)‘l}d,e@;n). By Lemma D.1 and Lemma D.3,
we have

log |®| VP . 1

2

max - f(A)] < < < min -
|¢€q> H¢”A(A) 1 f( )| = n = 2(1+ ||A0||op) = A=0,[[A[Jop<1 2 (

= f(A) <2 VILRE
f(A) < {gggIWHA(A)I
Let A* denote the matrix that minimizes maxgco H¢||i( a)-1 over the constraint set:

MaXped ”‘75”%(1\*)—1 = infaco maxgea ||¢||2A(A)_1. Then it follows that, by definition of
N*(e; maxgpea ||¢H,24(A)—1)3

yo1 S e N¥ .
max [$a a1 < - N¥(e;max [ @l3 (a)-)

However, this implies
1 * * 2
JfAY) <e- N (e;glggIWHA(A)—l),

0 (A*,2N*(e; maxgea ||¢\|i(A),1)) is a feasible solution to the optimization (C.2) for f. As
N*(e; f) is the minimum solution, it follows that N*(€; f) < 2N*(e; maxgca ||¢||1(A),1). O

D.2 Bounding the Smoothness
LemmaD.5. f(A) = XNYOpt (A) satisfies all conditions of Definition C.I with
= [Ag 12 B=2lA5" 5, (1 +nllAg lop), M =[IAg 3,

-1

VAS(A Z 677”4’HA(A) N ) Z en”(b”i(")’lA(A)fl(].’)d)TA(A)il =

ZA.
peP PP
Proof. Using Lemma D.6, the gradient of f(A) with respect to A;; is
~1
2
VA”f Z 677”¢HA(A) 1 . Z eﬁl\thA(A)q ¢TA(A)—1eiejTA(A)—1¢

peD ped

from which the expression for V 4 f(A) follows directly.
To bound the Lipschitz constant of f, by the Mean Value Theorem it suffices to bound

-1

~ 2 2 ~
Cosup (VM) TA) < | YD Mlam | ST A AA) T2, A op
ARO[ Aflop<1,[|Alop<1 ped ped
< IAG Y2,

where the last inequality follows since A(A) > Ay for all A. This also suffices as a bound on M.
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To bound the smoothness, again by the Mean Value Theorem it suffices to bound the operator
norm of the Hessian. Standard calculus gives that, using V2 f(A)[A, A] to denote the Hessian of f
in direction (A, A):

-1

VQf(A)[K, A] _ _% Z 677H¢H2A(A+t7\)71 . Z e"l“d’HZA(AH;\)fl ¢TA(A + tA)—lKA(A + tA)—1¢
olS ped
—2
= Z 677”¢H2A(A)—1 Z e"”‘i’”i(m*l ¢TA(A)71AA(A)71¢ Z 677‘|¢||2A(A)71 ¢TA(A)71KA(A)71¢
Pcd Ped ped

-1

+n Z en”(’ﬁHi(A)’l Z e”l‘|¢”i(,\)f1 (QSTA(A)_lj_XA(A)_ld)) ((ﬁTA(A)_l.KA(A)_l(z))
peD ped
—1
+ Z e"]”‘b”i(A)—l Z 6""¢H2A(A)71¢TA(A)71AA(A)71XA(A)71¢
PP PpeP
1
+ Z 677H¢H2(A)71 Z en“d’”i(A)—l (ZSTA(A)_lKA(A)_lAA(A)_ld).
peD ped
We can bound this as
B sup V2 (M)A, Al < 20l A lop + 2014513,
A A NSO Alop <L [ Allop L[| Allop <1

Convexity of f(A) follows since it is the composition of a convex function with a strictly increasing
convex function, so it is itself convex. O

Lemma D.6. For A invertible, & (A + teie] )"l = —A"le;e] A7

Proof. We can compute the gradient as

Ty—1 -1
%(A+teiejT)_1 ~ lim (A +teiejt) - A .
By the Sherman-Morrison formula,

tA_leie;rA_l

1+ te}A*lei

(A + teiejT)*1 =A"!

soast — 0,
(A + L‘e,»eij1 — AT - tAfleiejTA*1
Thus,
A+tejel )t — AT At —tA leje] AT - ATY
lim ( i€ = lim i =—Ale;el AL
t—0 t t—0 t J

D.3 Obtaining Well-Conditioned Covariates

Lemma D.7. Consider running policies (w,)1_,, for =, F,_1-measurable, and collecting covari-
ance Xp = ZZZI ¢-¢L. Then as long as

24 32T
0

with probability at least 1 — §, if we rerun each (7,)X_,, we will collect covariates 1 such that

Amin (27) > 12544d log

= 1
)\min(ET) Z aAmin(ET)-
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Algorithm 7 Collect Well-Conditioned Covariates (CONDITIONEDCOV)

1: input: Scale NV, minimum eigenvalue ), confidence §
2: for j =1,2,3,...do
3: T; < poly(2?,d, H,log1/9)
—q J
4 6 279 max{12544dl§g ERICIEEVIIN 2 0j 4 0/(47%)
Run Algorithm 5 of Wagenmaker et al (2022) with parameters (e;, 77, d;), obtain covariates

b

3 and store pollcles run as I1

if Apin (A) > max{12544d log w , A} then
break _ _ ~
Rerun every policy 7 € II [ N/|II|] times, collect covariates X

return ¥ + 3

o 2R

Proof. Let N be an g=-net of S471. Let & = 0 be any matrix with HEHOP < T and let v be the
minimum eigenvalue of 3. Let v € J\/ be the element of N closest to v in the £5 norm. Then:

Anin(B) =0 Zv =020+ (v Zv -7 Tv)
>0 20— |v'Zv—v'Z0| - v Zv - v X0
5755 - 20|Sllop 5 — vl
By the construction of N and since || 2|,, < 7', we can bound 2||X||,p]|0 — v]|2 < 1/4, so
020 = 2||Zlop||v — 0|2 >0 Zv — 1/4
which implies

Amin(Z) +1/4 >0 X9 > mlj{lfvTE'v (D.2)
veE

By Lemma A.1, we can bound |NV| < (1 4 167).
Note that Var[v'¢,|F,—1] < E.[(v ¢,)? so Zle Var[v' ¢, | Fro1] <

v E[Z7|ry, ..., 7)o for E[Ep|n,...,mp] = Zle E, [¢.¢]]. By Freedman’s Inequality
(Lemma A.5), for all v € N simultaneously, we will have, with probability at least 1 — J,

2 2
|vT2TU — ’UTE[ET|7T1, ey 7TT]’U’ < 2\/UTE[ET|’/T1, ..., mr|vlog @ + log @ (D.3)
= 2 2
‘UTET’U — ’UTE[Z]T|7T17 ey 7TT]’U’ < 2\/’UTE[ET|7T1, . ,7TT]’UIO M + log % (D4)
Rearranging (D.3), some algebra shows that
2 2
'UTE[ET|7T1, comrju < v v+ 3log ‘éw \/’UTZT'U log "(/SW + 2 log2 @
2 2
<v'Xrv+6log ‘éw + 2\/1)T2Tv log ‘g\ﬂ
< 30" Epv + 8log |g\/’|
where the last inequality uses Vab < max{a, b}. Thus, if (D.3) and (D.4) hold, we have
= 2 2
v Y>>0 v — 4\/vTE[ET|7T1, ...,mr]vlog ‘/5\” — 2log |g\/’|
2 2
> v B — 4\/3UTETvlog ‘g\” — 14log W'
Therefore, as long as
2
v Zpv > 125441og ‘é\/',
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we can lower bound

2
v S — 4\/31)T2Tvlog \g\/| > %'UTET'U > Z)\min(ZT)

so, forallv € NV,
=~ 3
v Srv > zAmin(ET)

By assumption, A, (E7) > 12544d log %, which implies, since |NV| < (1 4 1674, that for
allv € S v Bpv > 12544 log %Nl, so the above condition will be met.
Since || S llop < T', we can apply (D.2) to then get that
= 3 1 1
Amin(ET) Z ZAmin(ET) - 1/4 2 iAnlin(zT) + Z(Amin(zT) - 1)
Since we have already establishes that A, (37) > 12544d log %, we have A\pin(27) —1 >0,

so we can lower bound

)\min(iT) 2 )\min(zT)-

N |

Lemma D.8. With probability at least 1 — 6, Algorithm 7 will terminate after at most

1 N dmax{dlog X \}  d*H3log"?1
N Iv1 —_——— d,H, )\ log — | - 2 °
Tpolyios (Supn- >\min(27r) & 08 g ) < Supn )\Hlin(z‘ﬂ')Q N SUPx Amin(zﬂ)

episodes, and will return covariates 3 such that

Amin(zﬂ')2 SUp, )\min(zﬂ') olvlo (
d "dBH3log™?1/8 o ios SUp, Amin ()
+ max{dlog1/J, A}

—1
,d,H,)\,IOgN>

Amin(2) > N - min { S1Px ;

and

1 N dmax{dlog X A}  d*H3log"/?1
Slop < N lylog | ——————,d,H,\,log — | - 012 0
H HOP = + poly log <Supﬂ- )\min(z‘n->7 ’ , A, 10g (S > < sup,, )\min(zﬂ')2 + sup,, )\min(zﬂ)

Proof. By Theorem 4 of Wagenmaker et al. (2022), as long as Algorithm 5 of Wagenmaker et al.
(2022) is run with parameters € and 2, it will terminate after at most

1 d d dH log(d/~?
e = max{rg log %a d* HPm/? log??(d/+?) log"/? 2™ oe(d/v) }
€ Y €Y o

episodes for m = [log(2/e)] (to get the slightly more precise bound on the number of episodes
collected than that given in Theorem 4 of Wagenmaker et al. (2022), we use the precise definition of
K; given at the start of Appendix B). Furthermore, if ¢ < sup,. Amin (X5 ), with probability at least

1 — ¢ it will collect covariates X satisfying )\min(i) > e/

. _o—j 2 27 o .9
It follows that, by our choice of €; = 277, 75 = man {12544 10g XTI 5y and d; = 0/(45%),

for every 7 we will collect at most

2N(2 + 32T;)
5

, A} log(djay), d*H? % log®/ (da;) lo

< » i4dH log(da;
c1 - 27 max {2-7dj2 max{dlog g7/2 czyog(a])}

o

episodes, where we denote a; := max{12544d log w, A}. Note that T is an upper bound
on this complexity. Furthermore, once j is large enough that 277 < sup.. Apin (2 ), Theorem 4 of
Wagenmaker et al. (2022) implies that the condition )xmin(fl) > €/ 732- will be met. By our choice
of ’yJQ- and ¢, it follows that the if condition on Line 6 will be met once 277 < SUp.. Amin (Xr)-
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Since 277 decreases by a factor of 2 each time, it follows that the if statement on Line 6 will have
terminated once 277 > sup,. Amin (X5 )/2. This implies that the total number of episodes collected
before the if statement on Line 6 is met is bounded as

1 N dmax{dlog X A}  d*H3log"/?1
lylog [ —————— d H )\, log — | - 0 o D.5
POy io8 <Sup7r )\min(zﬂ') T 208 5 ) < Supﬂ— )‘min(zﬂ')2 Supfr )\min(Ew) ( )

By Lemma D.7, since Amin (2) > max{12544d log w,g} and T} is an upper bound on the

number of episodes run at epoch j, every time we run all policies 7 € I, with probability at least
1—0/(2N), we will collect covariates 32 such that

2N (2 jg 32Tj)’A}'

Thus, if we rerun every policy [ N/|II|] times to create covariates 3, with probability at least 1 — §/2,
we have

. 1
Amin () > Amin(X)/2 > 3 max{12544d log

. N IN(2 + 32T
Amin () > ﬁ max{12544d log %73}*

Note that this procedure will complete after at most NV + \ﬁ| episodes. Furthermore, ﬁ| < (D.5), so

we can lower bound

< min 27\' 2 > min Zﬂ' 1 N -1
Nain(5) > N - min 4 S0Px Amin(Bn)” S0P Awin(B) (g0 (L g MY
sup, A 0

d ’ d3H3 1Og7/2 1/6 min(zw)

The final lower bound on the returned covariates follows since we return X + fl, and we know that

Amin(2) > max{12544d log w,g}. The upper bound on || + ||, follows since every
feature vector encountered has norm of at most 1.

The failure probability of each call to Algorithm 5 of Wagenmaker et al. (2022) is 6/(452), so the
total failure probability of Algorithm 7 is

oo

0 2
—=—0<4/2.
;4]'2 210 =9/

D.4 Online XY-Optimal Design

Theorem 8 (Full version of Theorem 5). Consider running OPTCOV with some € > 0 and functions
Fi(A) = XY opi(A)

for Ag + (T;K;)7'%; =: A; and

2
ni = — (1 +[[Aillop) - log [
Yo

Li= A7 s B = 20IA7 5L+ mill AT lop), M = [ATHZ,

where 3; is the matrix returned by running CONDITIONEDCOV with N < T;K;, § < 6/(2i?), and
some \ > 0. Then with probability 1 — 20, this procedure will collect at most

infaco maxgeca ||¢||2A(A)*1

A*

min €exp

1 1 1
+ poly (d,H,logl/(S,,,)\,log|<1>|,log )

€exp
episodes, where
)\*. )2 )\*

[ , 1 1\ !
AA)=A e iz - poly I —,d, H, )\ log — I
(A) +mln{ d P log7/2 s poly log B 0g5 )

and will produce covariates s+ 3%, such that

2
max 18l s, < €oxp

and
Amin(Z + ;) > max{dlog1/8, A}.

47



Proof. Note that the total failure probability of our calls to CONDITIONEDCOV is at most

=6 72
—_ =l 5<s.
;212 126_(S

For the remainder of the proof, we will then assume that we are on the success event of CONDI-
TIONEDCOV, as defined in Lemma D.8.

By Lemma D.5, f;(A) satisfies Definition C.1 with constants

Li = |A7H2, Bi=20A7 3,0+ mill A7 lop), M= | A2

15p
for A; < (TzKl)*lEl
By Lemma D.8, on the success event of Lemma D.8 we have that

Amin(A;) > min O\:“in)Z Abnin oly lo (
min 3 - d 7d3H3 10g7/2 1/6 p y g

1
)\*

min

1\ !
,d, H, )\,z7log5>

(note that the poly log(i)’1 dependence arises because we take N < T; K; = 24 Thus, we can
bound, for all  (using the upper bound on ||3;||op given in Lemma D.8 to upper bound 7;),

d>  d°HSlog" 1/ 1
Li=M,; < Iyl H,\,i,l
=t < { s i b votyios (53— it ).

min min

B; < poly (d H,log1/§, — )\* , /\,z,log|<1>|>

min

Assume that the termination condition of OPTCOV for i satisfying

i <log (poly ( ,d,H,log1/6, — )\* , /\ ,log tI>|)> (D.6)
6exp

min

We assume this holds and justify it at the conclusion of the proof. For notational convenience, define
1
L := poly (log ,d, H,log1/4, ,/\,logfI>|) .
exp )\min e
Given this upper bound on i, set

d?>  dSHSlog"1 /5}
L =M :=max ~ , — - poly log, B =1
{Q) (Min)?

min min

With this choice of L, M, 3, we have L; < L, M; < M, 3; < B forall i < i.
Now take f(A) « )z\/(opt(A; 7, Ag) with

) ()\* . )2 /\* 1
A min min . . I D'7
o mm{ d " d3H3log™/?1/6 [ polyloge B

2 IOg |¢)‘ . ()‘fnin)2 )\;nn 1
= —— | 1+ min , 775 . .
Yo d " dH3log™*1/5 | polylog:

Note that in this case, we have ||Agllop < Amin(A;) for all 4, so Ag < A; and n < n;. By the
construction of XY ¢ and Lemma D.2, it follows that f(A) > f;(A) for all A > 0, so this is a valid
choice of f, as required by Theorem 8. Furthermore, we can set R = 2, since ||A,||r < 1 forall =

To apply Theorem 8, it remains only to find a suitable value of f,;;,. By Lemma D.1 and
Lemma D.3, we can lower bound f; by ﬁ By Lemma D.8, we can lower bound
illop

and

Vo > Yo

1+ ||Ai||op - 2 +polylogL . (dmaz(i:llo)gﬁ&} + d4H3)\1*og7/2 %) .
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We then take this as our choice of fiin.

We can now apply Theorem 8, using the complexity for OPTCOV instantiated with FORCE given
in Corollary 6, and get that with probability at least 1 — §, OPTCOV will terminate in

N <5N* (€exp/2; f) +¢

episodes, and will return (time-normalized) covariates A such that

~

f;(A) < Neéexp-
By Lemma D.4, our choice of 7 and A, we can upper bound

4 inf max 2 _
N* (o /2 ) < IN* (cuny /2 XY opr) = AR 1005950 [Blar)
P P P

€exp
where here A(A) = A + A for Ay as in (D.7). Furthermore, by Lemma D.1 we have

) i
1Y = < f~
¢g§II¢II(E+AO)71 < [(A).

The final upper bound on the number of episodes collected and the lower bound on the minimum
eigenvalue of the covariates follows from Lemma D.8.

It remains to justify our bound on i, (D.6). Note that by definition of OPTCOV, if we run for
a total of N episodes, we can bound 7 < 1 logy(N). However, we see that the bound on i given
in (D.6) upper bounds % log,(N) for N the upper bound on the number of samples collected by
OpPTCoOV stated above. Thus, our bound on 7 is valid. O

E Suboptimality of Optimistic Algorithms

E.1 Linear Bandit Construction

In the linear bandit setting, at each time step ¢, the learner chooses some z; € Z, and observes ;.
We will consider the case when the noise is Bernoulli so that y; ~ Bernoulli({0,, z;) + 1/2), and
will set

0, =e1, Z={fei,eq,...,eq,xa,...,xq4}, x; =(£—A)e;+e;
for some &, A, a to be chosen. In this setting, the optimal arm is z* = ey, and A(e;) = &,i > 2,
We will assume:
2
52% > ¢ > max{vy/Vd, VA}, max{( = (d/Z%la ZCZA
We provide explicit values for £, A, and +y that satisfy this in Lemma E.3.

,A} <92 (E.1)

Definition E.1 (§-correct). We say a stopping rule 7 is d-correct if P[Z, = 2*] > 1 — §, where 2 is
the arm recommended at time 7.

Lemma E.1. Consider running some low-regret algorithm satisfying Definition 4.1 on the linear
bandit instance described above and let T be some stopping time. Then if T is §-correct, we must
have that

S d—1 1 1

= 1877 %45

Proof. This proof follows closely the proof of Theorem 1 of Fiez et al. (2019) and relies on the
Transportation Lemma of Kaufmann et al. (2016).

E[7]

Bounding the number of pulls to {es, ..., es}. By assumption, we collect data with a low-regret
algorithm satisfying Definition 4.1. Every time we pull e;,% > 2, we incur a loss of 1/2. Thus, we
can lower bound

d
- 1
E[Vy = V"] > 3 ;E[Pm [z = x]]

s0, letting T'(;) denote the total number of pulls to x;, we have
K d d

EPr [z = @]l = = Y E[T(x:)].  (E2)
=14=2 i=2

K
K™ +C > Y E[Vy — V5] >

1
2
k=1 k
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Applying the Transportation Lemma. Let O,); denote the set of 8 vectors such that £e; is not
the optimal arm, that is, max.cx (6, z) > (0,&e;). Let vg , = Bernoulli((0, z) 4+ 1/2). Then by
the Transportation Lemma of Kaufmann et al. (2016), for any 8 € ©,);, assuming our stopping rule
is d-correct, we have

1
ZE )JKL(ve, 2||ve.z) > logﬁ
zEZ

Combining this with our constraint (E.2), it follows that ) __ > E[T'(2)] > >,z t. forany (t.).cz
that is a feasible solution to

d
1
min Z t, s.t. mln t.KL(ve, z|lve.z) > log Z t2)* +Co > 3 thi.
z€Z ‘zeZ 2€Z i=2
(E.3)
We can rearrange the second constraint to
d
2C, n 2C, S Yoo ta, .
(EZEZ tz)l—a ZZEZ tz ZZEZ 122
Assume that the optimal value of (E.3) satisfies > _; ¢, > -, then this constraint can be weakened
to
¢ 20, 20,407 S b,
(d/A%)t=e d 7 Dsezts

It follows then that if the optimal value to

>ty b
mant s.t. rnln1 t.KL(ve, z||ve.z) > 1o 245,C S
2€Z M zez zezt

is at least d/A?, then the optimal value to (E.3) is also at least d/A?, so our assumption that
> aeztz > <% will be justified.
For z # z*, let 0, (¢, t) denote the instance
_(l6 +)AMN) ys
yI A1)
fory, = 2* — z, A(t) = Zzez ztizfzzT + diag([¢2,~4%/d,...,~¥?/d]), and € < min{A, £}
zlez /zl
Note that y] 6. (¢,t) = —e < 0 which implies that 8 (¢, t) € ©,;. Furthermore, we can bound:
Claim E.2. Forall z,v € Z,

(E4)

pylA®) oo AW My

KL(VO*,‘lJHVGZ(e,t),'v) < 16(yT9* +e€
: (yi A1) 'y2)?

This implies that, for any ¢,

2Ys A() lvvTA() Ny,
(Yl A(t)yz)?
sz;‘;(t)_l(Zvez ﬁva)A(t)_lyz

> tKL(ve, v||ve,(e)0) < 16> to(y] 6. +¢)
vezZ veEZ

—16Zt (y, 0 +€)?

vEZ (szK(t)_lyz)Q
TAG)TADAD) Ly,
<16 Z te - (y;rg* + )2yz (t ?r’v (t)l (t)2 Y
veZ (yz A(t)_ yz)
= 16(y; 6, + )
vEZ H zHA(t)_l
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Thus:

d
te
(E.4) > min Z ty st min tuKL(ve, vllVe, (e,t)0) > log ,C > Z .
z#z* Z’UEZ
vEZ veEZ
ly=1% ;- d
. (t)-! Dico tas
>m1nZt,, s.t. ty > max ————"— - ¢>
- . T 2 )
ez ez z#z 16( Y. 0* + 6) 2 4(5 Z’veZ
=l .

p— 1 f —_— . [
Nerrz 16(yl 0, + o2 %245

where A(\) = > .ezAzzz! and A={ elhz: (> 2512 Az, }- We can further lower bound
this by

= — il X
(-
> inf B
AIQA S T6((z — @) 0, + 0?2245
. |Aey — ’YeiH;\()\),l 1 1
TR T 16(A e ®2as

By Lemma E.4, we have

inf max||Ael *yei||%()\)71
XEA 12

-1
> inf max(Ae; — wei)T(%QelelT + 2max{(,y?}\iese; + diag([€2,42/d, . .. ,72/d])> (Aey —ve;)

AEAy i>2

v

1
Jnf max(Aey — )T (3¢%ere] + 2max{C.7?Ih 27 dee] ) (Aer — ve)

A2
— =4 inf -

32 T atA T oN, 1 1/d
where in the final equality we have used that ¢ < 2. However, this is clearly minimized by choosing
A; = 1/(d — 1), which gives a lower bound of

1 d—1
>
2/(d-1)+1/d = 3
Putting all of this together, we have shown that any feasibly solution (¢, ).cz to (E.3) must satisfy
1 1

Zt di log ——
S RAte? ®oas

z€Z

Using that any feasible solution to (E.3) lower bounds ) ___ . E[T'(z)] and taking ¢ — 0 gives the
result.

O

Lemma E.3. Take some A > 0 satisfying:

Ao 1 F 1 T
=" 2704027 10816Cg’<10816d0‘61)

1 2C4 20, A?
= - = dA .
$=poqr  TTmex { (/A2 T T4
Then this choice of £, , <lforallz € Z.

and set

Proof. To satisfy (E.1), we must have > . Thus, if

Qf

At At AL )
S gr0a2 S S\ 1s160, SF <10816d%’1> )

some computation shows that choosing ~ as prescribed will meet the constraint ﬁ > ~ and will
also satisfy v > v/dA. The norm bound follows by our choice of ¢ and since £ > ~/v/d > VA. O
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E.1.1 Additional Proofs
Proof of Claim E.2. We first show that |(0(¢,t),v)| < 13d¢ for all z,v € Z. Note that for all
veZ |{v,0,)] <&

Case 1: z = z*. In this case, (y., 05) = 0 so the result follows from our condition on e.

Case2: z=¢;,i>2 LetA={\elAz : (> Z?:z Az; }- In this case, (z,0,) = 0 and
(Y, 0) = £. Furthermore, by Lemma E.4,

~ —1
yTAW ys 2 int gl (23 Audiag((2)%) + ding(€2,7°/d, ... 7*/d)) s
€ z'eZ
-1
>yl (2626161T + 2max{(, 7’ }e;e] + diag([¢*,~7/d, ... ,72/d])> Y-
> 23+ 1
— 7 & 2max{(,y*} +1?/d
1
= Smax(C 2+ 02/d
1
> .
255

where the last inequality follows from our assumption that ¢ < ~2. In the other direction, we can
bound

N . _ 1 d _2d
v A(t) . < vl diag([€9%/d, .. 7 d) Ty, < ata<na
where the last inequality follows by our assumption that &€ > ~/+/d. Putting this together, we have

2d/+*
< 13d¢€.
1/3~% — ¢

Case 3: z = x;. In this case (y,,0+) = A. We can apply a calculation analogous to above to
lower bound y A (t)~'y., but in this case obtain

[(6=(e,t),v)| <€+ (E+€)

,.)/2

2max{¢,7*} +7?/d

~ 3 1
szA(t) 'y, > A2£—2 + > 3

Similarly, we can upper bound
X — . _ A
v A(t) 'y < v 'diag([¢?,7%/d, ..., /d]) MYz < gt s
This gives a final upper bound of

[(0z(e,t), v)| < &+ (A+e)% <€+ 12\/‘? < 13de.

Combining these three cases gives that | (0 (€, t), v)| < 13d¢ for all z,v € Z. By our assumption
that £ < =, it follows that |(6 (¢, t),v)| < 1/4 forall z,v € Z.

By Lemma D.2 of Wagenmaker et al. (2022), as long as (0,(e,t),v) + 1/2 € (0,1) and
(6.,v) +1/2 € (0,1), which will be the case by the definition of 6, and since |(0, (e, t),v)| < 1/4
as noted above, we have

<0z(63 t) — 0*7 ’l)>2
0=(e,t),v) +1/2)(1/2 = (0z(c, 1),v))
Using what we have just shown, we can upper bound this as
(0z(e, 1) — 0*7v>2 (02(e, 1) — 0*7'U>2
((0=(e, 1),v) +1/2)(1/2 = (B=(e, 1), v)) — (=1/4+1/2)(1/2-1/4)
=16(0,(¢,t) — 0,,v)>.

KL(VO*,v”VBz(e,t),v) S (<

IA
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By our choice of 0, (e, t), this is equal to:

SAM) v A 1y
(YT A()'y=)?

16(y] 0, + )2 Y=

which completes the proof. O

Lemma E4.

Z Aozz! <2 Z A diag(z?)

zEZ zeZ

Proof. This follows since every z € Z has at most two non-zero entries, and since (ax + by)(ax +
by)" < 2a’zx" + 20%yy . O
E.2 Mapping to Linear MDPs

We can map this linear bandit (with parameters chose as in Lemma E.3) to a linear MDP with state
space S = {so, $1, 82, .- ., Sd+1}, action space A = Z U {e4+1/2}, parameters

01:0, 02261

pi(s1) = [20,,1], pa(5) = 5[-20,,1],

SR

and feature vectors
d(s0,€q11) = ear1/2, @(s0,2) =[2/2,1/2], Vzec2Z
¢(817Z) = éq, ¢(§iaz) :eiJZ 27 vz GA

Note that, if we take action z in state sg, our expected episode reward is

d+1
Pi(s1]s0,2) - 1 +ZP1(§¢\507Z) 0=(0.,2) +1/2

since we always acquire a reward of 1 in any state s1, and a reward of 0 in any state §;, and the reward
distribution is Bernoulli.

Lemma E.5. The MDP constructed above is a valid linear MDP as defined in Definition 3.1.
Proof. For z € Z we have,

Pi(s1]30, 2) = (@(50, 2), H1(51)) = (s, 2) +1/2 >0

Pi(Silso, 2) = ($(s0, 2), 1 (50)) = 3(~(02,2) +1/2) >

where the inequality follows since |(0y, z)| < O(1/d) for all z € Z. In addition,

d+1
1
S1|507 Zpl S7|505 <0*,Z>+1/2+dg(*<0*7z>+1/2):1

Thus, P;(+|so, z) is a valid probability distribution for z € Z. A similar calculation shows the same
for z = eg441/2.

It remains to check the normalization bounds. Clearly, by our construction of Z, ||¢(s,a)|l2 < 1
for all s and a. It is also obvious that ||@ | < v/d and ||6; ||> < V/d. Finally,

1
NSl = > lms)l|| =[26.,1]+d- 7120 1]ll2 < V.
s€S\so 9
Thus, all normalization bounds are met, so this is a valid linear MDP. O
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Proof of Proposition 2. If we assume that the learner has prior access to the feature vectors, and also
knows this is a linear MDP, then, even with no knowledge of the dynamics, we can guarantee an

optimal policy is contained in the set of policies 7% defined as:

! ’ ’ !
0% (s0) = z,m5% (s0) = 2/, 717 (s1) = Eer,m " (8:) = Eeq

This holds because in states s; and §;, the performance of each action is identical since the feature
vectors are identical, so it doesn’t matter which action we choose in these states. In this case, we can
bound |T1| < | Z|? < 4d?.

Now, for z € A, z # eq41/2, we have

Greer 1 = [2/2,1/2]
Gr=er o = ({04, 2) +1/2)e1 + ( (..2) +1/2) ) e

i>2

and if z = eg41/2, Draz g = eq+1/2, Drrnt g = e /2+ 21—{1 D ;>0 €i. Let Teyp be the policy that
plays action e, in state sq at step h = 1. Then, B

A2 = 6161 + 54 E ee
L>3

Since (0,,z) < O(1/d) and [z]; < O(1/d) for all z by construction, it follows that we can bound,
for all z, 2/,

1
[¢paallts =0 (143 5| =0)

i>2

SO

2 1
inf max T < 0(1/€).
Texp TEIL maX{VO ‘/0 7A£[1ma }2 B ( / )

Now let mcy, be the policy that, at step h = 1, plays {e; with probability 1/4, e;1 with
probability 1/4, and plays e; with probability ﬁ fori > {2,...,d}. In this setting, we have

1 1 1
A‘ffexp,l = Z§26161r + Zed+1ed+1 + m ‘ Z eieiT.
1€42,...,d}
Note that VJ" — =& — (04,2),s0for z = ey,...,e441, we have V" — VOWZ‘Z/ =¢=
O(1/d), while for z = fel, Ty, ..., xq, wehave Vi — VI~ = A,
It’s easy to see that for z = ez, ..., €441, we have || ../ ||y < O(d), and for z =

fe1,x2,... T, |Przar 1[4 < O(1 + dy?) = O(1). Combining these bounds with the gap
values, we conclude that ’

I all5-

f < O(1/€ + poly(d)).
TIrgpglgIBI( max{VO VO7 m1n7€}2 = ( /6 + po Y( ))

The result then follows by Theorem 6. O

Lower bounding the performance of low-regret algorithms. Assume that we have access to
the linear bandit instance constructed in Appendix E.1 with parameters chosen as in Lemma E.3.
That is, at every timestep ¢ we can choose an arm z; € Z and obtain and observe reward y; ~
Bernoulli((0,, z;) + 1/2). Using the mapping up, we can use this bandit to simulate a linear MDP
as follows:

1. Start in state s and choose any action z; € A
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2. Play action z; in our linear bandit. If reward obtained is y; = 1, then in MDP transition to
any of the states s;. If reward obtained is y; = O transition to any of the states Sa, ..., 5441,
each with probability 1/d. If the chosen action was z; = e441/2, then play any action in the
linear bandit and transition to state s; with probability 1/2 and 5, .. ., 5441 with probability
1/2d, regardless of y;

3. Take any action in the state in which you end up, and receive reward of 1 if you are in s,
and reward of 0 if you are in S, ..., Sg41.
Note that this MDP has precisely the transition and reward structure as the MDP constructed above.
Lemma E.6. Assume 7 is ¢ < A/2-optimal in the MDP constructed above. Then, z* =
arg max, ¢ 4 T (2|s0).

Proof. Note that the value of 7 in the linear MDP is given by V" = >~ _ _ - m1(2|s0)({2,0.)+1/2)+
m1(ed+1/2|s0)/2 and the optimal policy is 71 (2*|sg) = 1 and has value V' = (2*,0,) + 1/2. It
follows that if 7 is e-optimal, then

> mi(zl50)((2,04) +1/2) + m1(ear1/2]s0)/2 > (2*,6,) +1/2 ¢
zEZ
= m(2*s0)(€+1/2)+ > mlzlso)—A+1/2)>E+1/2—€
zEA, z#z*
= A Y mi(z]s0) > ¢
zEA, z#£2z*

= e>A > m(z]s)
zEA,z#z*
If e < A/2, this implies that 3 , ... m1(2[s0) < 1/2, so it must be the case that 71 (2*|sg) >
1/2. 0

Proof of Proposition 3. Consider running the above procedure for some number of steps. By
Lemma E.6, if we can identify an e < A/2-optimal policy in this MDP, we can use it to deter-
mine z*, the optimal arm in the linear bandit. As we have used no extra information other than
samples from the linear bandit to construct this, it follows that to find an e < A /2-optimal policy in
the MDP, we must take at least the number of samples prescribed by Lemma E.1. O
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