
A Technical Results

Lemma A.1 (Vershynin (2010)). For any ✏ > 0, the ✏-covering number of the Euclidean ball

B
d(R) := {x 2 Rd : kxk2  R} with radius R > 0 in the Euclidean metric is upper bounded by

(1 + 2R/✏)d.

Lemma A.2 (Lemma A.4 of Wagenmaker et al. (2022)). If x � C(2n)n logn(2nCB) for n,C,B �

1, then x � C logn(Bx).

Lemma A.3 (McSherry & Talwar (2007); Epasto et al. (2020)). Consider some (xi)ni=1. Then if

⌘ � log(n)/�, we have

P
n

i=1 e
⌘xixiP

n

i=1 e
⌘xi

� max
i2[n]

xi � �.

Lemma A.4 (Azuma-Hoeffding). et F0 ⇢ F1 ⇢ . . . ⇢ FT be a filtration and let X1, X2, . . . , XT

be real random variables such that Xt is Ft-measurable, E[Xt|Ft�1] = 0, and |Xt|  b almost

surely. Then for any � 2 (0, 1), we have with probability at least 1� �,

�����

TX

t=1

Xt

����� 
p

8b2 log 2/�.

Lemma A.5 (Freedman’s Inequality (Freedman, 1975)). Let F0 ⇢ F1 ⇢ . . . ⇢ FT be a filtration

and let X1, X2, . . . , XT be real random variables such that Xt is Ft-measurable, E[Xt|Ft�1] = 0,

|Xt|  b almost surely, and
P

T

t=1 E[X2
t
|Ft�1]  V for some fixed V > 0 and b > 0. Then for any

� 2 (0, 1), we have with probability at least 1� �,

TX

t=1

Xt  2
p
V log 1/� + b log 1/�.

A.1 Properties of Linear MDPs

Lemma A.6. For any linear MDP satisfying Definition 3.1, we must have that k�(s, a)k2 � 1/
p
d

for all s and a, and k�⇡,hk2 � 1/
p
d for all ⇡ and h.

Proof. By Definition 3.1, we know that Ph(·|s, a) = h�(s, a),µh(·)i forms a valid probability
distribution, and that k

R
S |dµh(s)|k2 

p
d. It follows that

1 =

Z

S
h�(s, a), dµh(s)i  k�(s, a)k2k

Z

S
|dµh(s)|k2 

p

dk�(s, a)k2

from which the first result follows.
For the second result, using that 1 =

R
Sh�(s, a), dµh(s)i, we get

Z

S
h�⇡,h, dµh(s)i =

Z

S
hE⇡[�h], dµh(s)i

= E⇡

Z

S
h�h, dµh(s)i

�

= E⇡[1]

= 1

where we can exchange the order of integration by Fubini’s Theorem since the integrand is absolutely
integrable, by Definition 3.1. As above, we then have

1 =

Z

S
h�⇡,h, dµh(s)i 

p

dk�⇡,hk2

so the second result follows.
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A.2 Feature-Visitations in Linear MDPs

Define

�⇡,h = E⇡[�(sh, ah)], �⇡,h(s) =
X

a2A
�(s, a)⇡h(a|s)

and

T⇡,h :=

Z
�⇡,h(s)dµh�1(s)

>
.

Lemma A.7. �⇡,h = T⇡,h�⇡,h�1 = . . . = T⇡,h . . . T⇡,1�⇡,0.

Proof. By the linear MDP assumption, we have:

�⇡,h = E⇡[�(sh, ah)]

= E⇡[E[�(sh, ah)|Fh�1]]

= E⇡[

Z Z
�(s, a)d⇡h(a|s)dµh�1(s)

>�(sh�1, ah�1)]

= E⇡[

Z
�⇡,h(s)dµh�1(s)

>�(sh�1, ah�1)]

=

Z
�⇡,h(s)dµh�1(s)

>E⇡[�(sh�1, ah�1)]

= T⇡,h�⇡,h�1.

This yields the first equality. Repeating this calculation h�1 more times yields the final equality.

Lemma A.8. Fix some h and i < h, and consider the vector

v := T
>
⇡,i+1T

>
⇡,i+2 . . . T

>
⇡,h�1T

>
⇡,h

u.

Assume that either u = ✓h for some ✓h which is a valid reward vector as defined in Definition 3.1, or

u 2 S
d�1

. In either case, we have that, for any s, a, |v>�(s, a)|  1, and kvk2 
p
d.

Proof. By the linear MDP structure (see Proposition 2.3 of Jin et al. (2020)), for any j,

Q
⇡

j
(s, a) = h�(s, a),w⇡

j
i

= h�(s, a),✓ji+

Z
V

⇡

j+1(s
0)dµj(s

0)>�(s, a)

= h�(s, a),✓ji+

Z
hw⇡

j+1,�j+1,⇡(s
0)idµj(s

0)>�(s, a)

= h�(s, a),✓j + T
>
⇡,j+1w

⇡

j+1i

so in general,

w⇡

i
=

HX

h0=i

(
h
0Y

j=i+1

T
>
⇡,j

)✓h0

where we order the product
Q

h
0

j=i+1 T
>
⇡,j

= T
>
⇡,i+1T

>
⇡,i+1 . . . T

>
⇡,h0 .

Case 1: u = ✓h. We first consider the case where u = ✓h for some ✓h which is a valid reward
satisfying Definition 3.1. Assume that the reward in our MDP is set such that for h0

6= h, ✓h0 = 0. In
this case, we then have that

w⇡

i
= T

>
⇡,i+1T

>
⇡,i+2 . . . T

>
⇡,h

✓h = v.

In this case, we know that the trajectory rewards are always bounded by 1, so it follows that
Q

⇡

i
(s, a)  1. Thus,

1 � Q
⇡

i
(s, a) = h�(s, a),w⇡

i
i = h�(s, a),vi

and this holds for any s, a. Since Q-values are always positive, it also holds that h�(s, a),vi � 0.
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To bound the norm of v, we note that by the Bellman equation and the calculation above,

kvk2 = kw⇡

i
k2 = k✓i +

Z
V

⇡

i+1(s
0)dµi(s

0)k2

 k✓ik2 + k

Z
|V

⇡

i+1(s
0)|dµi(s

0)k2

 k

Z
|dµi(s

0)|k2



p

d

where we have used that |V ⇡

i+1(s
0)|  1 since the total episode return is at most 1 on our augmented

reward function, and the linear MDP assumption.

Case 2: u 2 S
d�1

. We can repeat the argument above in the case where we only assume u 2 S
d�1.

Since k�(s, a)k2  1, it follows that with the reward vector at level h set to u, the reward will still
be bounded in [�1, 1]. Thus, essentially the same argument can be used, with the slight modification
to handle Q-values that are negative.

Lemma A.9. The set ⌦h is convex and compact.

Proof. Take ⇤1,⇤2 2 ⌦h. By definition, ⇤1 = E⇡⇠!1 [⇤⇡,h],⇤2 = E⇡⇠!2 [⇤⇡,h]. It follows that,
for any t 2 [0, 1], t⇤1 +(1� t)⇤2 = E⇡⇠t!1+(1�t)!2

[⇤⇡,h]. For t!1 +(1� t)!2 the mixture of !1

and !2. As t!1 + (1� t)!2 is a valid mixture over policies, it follows that t⇤1 + (1� t)⇤2 2 ⌦h,
which proves convexity.

Compactness follows since k�(s, a)k2  1 for all s, a, so k⇤⇡,hkop  1, which implies
k⇤kop  1 for any ⇤ 2 ⌦h. Furthermore, the set ⌦h is clearly closed, which proves compactness.

A.3 Constructing the Policy Class

Lemma A.10 (Lemma B.1 of Jin et al. (2020)). Let w⇡

h
denote the set of weights such that Q

⇡

h
(s, a) =

h�(s, a),w⇡

h
i. Then kw⇡

h
k2  2H

p
d.

Lemma A.11. For any � > 0 there exists sets of actions ( eAs)s2S , eAs ✓ A, such that | eAs| 

(1 + 8H
p
d/�)d for all s and, for all a 2 A, s, h, and any ⇡, there exists some ea 2 eAs such that

|Q
⇡

h
(s, a)�Q

⇡

h
(s,ea)|  �, |rh(s, a)� rh(s,ea)|  �.

Proof. Let N be a �/(4H
p
d) cover of the unit ball. By Lemma A.1 we can bound |N |  (1 +

8H
p
d/�)d. Take any s and let eAs = ;. Then for each � 2 N , choose any a at random from

the set {a 2 A : k�(s, a) � �k2  �/2} and set eAs  
eAs [ {a}. With this construction, we

claim that for all a 2 A, there exists some ea 2 eAs such that k�(s, a) � �(s,ea)k2  �/(2H
p
d).

To see why this is, note that by construction of N , there always exists some � 2 N such that
k�(s, a)��k2  �/(4H

p
d). Since eAs will contain some ea such that k�(s,ea)��k2  �/(4H

p
d),

the claim follows by the triangle inequality.
By Lemma A.10, we have that for any ⇡, kw⇡

h
k2  2H

p
d. Take a 2 A and let ea 2 eAs be the

action such that k�(s, a)� �(s,ea)k2  �/(2H
p
d). Then

|Q
⇡

h
(s, a)�Q

⇡

h
(s,ea)| = |h�(s, a)� �(s,ea), w⇡

h
i|  2H

p

dk�(s, a)� �(s,ea)k2  �.

The bound on |rh(s, a)� rh(s,ea)| follows analogously, since we assume our rewards are linear, and
that k✓hk2 

p
d.

Definition A.1 (Linear Softmax Policy). We say a policy is a linear softmax policy with parameters
⌘ and {wh}

H

h=1 if it can be written as

⇡h(a|s) =
e
⌘h�(s,a),whi

P
a02A e⌘h�(s,a0),whi

for some w = {wh}
H

h=1. We will denote such a policy as ⇡w.
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Definition A.2 (Restricted-Action Linear Softmax Policy). We say a policy is a restricted-action

linear softmax policy with parameters ⌘, {wh}
H

h=1, and ( eAs)s2S if it can be written as

e⇡h(a|s) =
e
⌘h�(s,a),whi · I{a 2 eAs}P

a02 eAs

e⌘h�(s,a0),whi

for some w = {wh}
H

h=1. We will denote such a policy as e⇡w.
Lemma A.12. For any restricted-action linear softmax policies ⇡

w
and ⇡

u
with identical restricted

sets ( eAs)s2S , we can bound

|V
⇡
w

0 (s1)� V
⇡
u

0 (s1)|  2dH⌘

HX

h=1

kwh � uhk2.

Proof. Note that for any policy ⇡, the value of the policy can be expressed as

V
⇡

0 (s1) =
HX

h=1

h✓h,�⇡,hi.

Thus,

|V
⇡
w

0 (s1)� V
⇡
u

0 (s1)| 
HX

h=1

|h✓h,�⇡w,h � �⇡u,hi|.

So it suffices to bound |h✓h,�⇡w,h � �⇡u,hi|. Using the same decomposition as in the proof of
Lemma B.2, we have

�⇡w,h � �⇡u,h =
h�1X

i=0

0

@
hY

j=h�i+1

T⇡w,j

1

A (T⇡w,h�i � T⇡u,h�i)�⇡u,h�i�1.

By definition,

T⇡w,h�i � T⇡u,h�i =

Z
(�⇡w,h�i(s)� �⇡u,h�i(s))dµh�i�1(s)

>

where

�⇡w,h�i(s) =
X

a2 eAs

�(s, a)⇡w
h�i

(a|s).

Now, for a 2 eAs,

rwh
⇡
w
h
(a|s) =

⌘�(s, a)e⌘h�(s,a),whi ·
P

a02 eAs

e
⌘h�(s,a0),whi � e

⌘h�(s,a),whi ·
P

a02 eAs

⌘�(s, a0)e⌘h�(s,a0),whi

(
P

a02 eAs

e⌘h�(s,a0),whi)2

so

krwh
⇡
w
h
(a|s)k2 

2⌘e⌘h�(s,a),whi
P

a02 eAs

e⌘h�(s,a0),whi

Thus, by the Mean Value Theorem,

|⇡
w
h
(a|s)� ⇡

u
h
(a|s)| 

2⌘e⌘h�(s,a),whi
P

a02 eAs

e⌘h�(s,a0),whi
· kwh � uhk2

so

k�⇡w,h�i(s)� �⇡u,h�i(s)k2 
X

a2 eAs

|⇡
w
h�i

(a|s)� ⇡
u
h�i

(a|s)|



X

a2 eAs

2⌘e⌘h�(s,a),whi
P

a02 eAs

e⌘h�(s,a0),whi
· kwh�i � uh�ik2
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 2⌘kwh�1 � uh�1k2

which, with Definition 3.1, implies that

kT⇡w,h�i � T⇡u,h�ikop 

Z
k�⇡w,h�i(s)� �⇡u,h�i(s)k2kdµh�i�1(s)k2  2

p

d⌘kwh�i � uh�ik2.

By Lemma A.8, we can bound k✓>
h

⇣Q
h

j=h�i+1 T⇡w,j

⌘
k2. Thus, returning to the error decomposi-

tion given above, we have

|V
⇡
w

0 (s1)� V
⇡
u

0 (s1)| 
HX

h=1

h�1X

i=0

������
✓>
h

0

@
hY

j=h�i+1

T⇡w,j

1

A (T⇡w,h�i � T⇡u,h�i)�⇡u,h�i�1

������



p

d

HX

h=1

h�1X

i=0

kT⇡w,h�i � T⇡u,h�ikopk�⇡u,h�i�1k2

 2d⌘
HX

h=1

h�1X

i=0

kwh�i � uh�ik2

 2dH⌘

HX

h=1

kwh � uhk2.

Lemma A.13. Let w?
denote the weights such that Q

?

h
(s, a) = h�(s, a),w?

h
i, and ⇡

w?

the

restricted-action linear softmax policy with action sets ( eAs)s2S as defined in Lemma A.11 with

� = ✏

3(3
p
d)H

. Then

|V
⇡
w?

0 (s1)� V
?

0 (s1)|  ✏

as long as ⌘ � 2dH log(1 + 16Hd/✏) · (3
p
d)H

✏
.

Proof. We prove this by induction. Assume that at step h, for all s, we have |V ?

h
(s)�V

⇡
w?

h
(s)|  �h

for some �h. Then,

|Q
⇡
w?

h�1(s, a)�Q
?

h�1(s, a)| =

����
Z

(V ⇡
w?

h
(s0)� V

?

h
(s0))dµh�1(s

0)>�(s, a)

����



Z
|V

⇡
w?

h
(s0)� V

?

h
(s0)|kdµh�1(s

0)k2k�(s, a)k2



p

d�h

where we use the linear MDP assumption in the last inequality. Thus,

V
⇡
w?

h�1 (s) =

P
a2 eAs

e
⌘h�(s,a),w?

h�1iQ⇡
w?

h�1(s, a)P
a2 eAs

e
⌘h�(s,a),w?

h�1i

=

P
a2 eAs

e
⌘Q

?

h�1(s,a)Q⇡
w?

h�1(s, a)P
a2 eAs

e
⌘Q

?

h�1(s,a)

�

P
a2 eAs

e
⌘Q

?

h�1(s,a)Q?

h�1(s, a)P
a2 eAs

e
⌘Q

?

h�1(s,a)
�

p

d�h.

By Lemma A.3, as long as ⌘ � log | eAs|/(
p
d�h), we can lower bound

P
a2 eAs

e
⌘Q

?

h�1(s,a)Q?

h�1(s, a)P
a2 eAs

e
⌘Q

?

h�1(s,a)
�

p

d�h � max
a2 eAs

Q
?

h�1(s, a)� 2
p

d�h.
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Furthermore, by Lemma A.11 and our choice of eAs, we have

max
a2 eAs

Q
?

h�1(s, a)� 2
p

d�h � max
a2A

Q
?

h�1(s, a)� 2
p

d�h �
✏

3(3
p
d)H

= V
?

h�1(s)� 2
p

d�h �
✏

3(3
p
d)H

.

Define recursively �h�1 = 3
p
d�h and �H = ✏

(3
p
d)H

. Then �h�1 = ✏

(3
p
d)h�1

�
✏

(3
p
d)H

, so

V
?

h�1(s)� 2
p

d�h �
✏

3(3
p
d)H

� V
?

h�1(s)� 2
p

d�h � �h�1/3 = V
?

h�1(s)� �h�1.

So |V
?

h
(s)� V

⇡
w?

h
(s)|  �h�1 for all s, which proves the inductive step.

For the base case, we have

V
⇡
w?

H
(s)� V

?

H
(s) =

P
a2 eAs

e
⌘Q

?

H
(s,a)

⌫H(s, a)
P

a2 eAs

e
⌘Q

?

H
(s,a)

�max
a

⌫H(s, a)

� max
a2 eAs

⌫H(s, a)�max
a

⌫H(s, a)� �H/2

� ��H

where the first inequality holds by Lemma A.3 as long as ⌘ � 2 log | eAs|/�H , and the second
inequality holds by Lemma A.11 and our choice of eAs and �H . This proves the base case, since
V

⇡
w?

H
(s)  V

?

H
(s).

Recursing this all the way back, we conclude that

V
⇡
w?

0 (s1) � V
?

0 (s1)� �0

for �0 = (3
p
d)H�H = ✏.

For this argument to hold, we must choose ⌘ � 2 log | eAs|/�H and ⌘ � log | eAs|/(
p
d�h) for all

s and h. By Lemma A.11 and our choice of eAs, we can bound

| eAs|  (1 + 8H
p

d(2
p

d)H/✏)d  (1 + 16Hd/✏)dH

so it suffices that we take ⌘ � 2dH log(1 + 16Hd/✏) · (3
p
d)H

✏
.

Lemma A.14. Let ⌘ = 2dH log(1 + 16Hd/✏) · (3
p
d)H

✏
and W an

✏

4dH2⌘
-net of B

d(2H
p
d). Let ⇧

denote the set of restricted-action linear softmax policy with vectors w 2 W
H

, parameter ⌘, and

action sets ( eAs)s2S as defined in Lemma A.11 with � = ✏

3(3
p
d)H

. Then for any MDP and reward

function, there exists some ⇡ 2 ⇧ such that |V
⇡

0 � V
?

0 |  ✏, and

|⇧| 

⇣
1 +

32H4
d
5/2 log(1 + 16Hd/✏)

✏2

⌘dH2

.

Proof. Consider some MDP and reward function, and let {w?

h
}
H

h=1 denote the optimal Q-function
linear representation: Q

?

h
(s, a) = h�(s, a),w?

h
i. Let ew denote the vector in W

H such thatP
H

h=1 kw
?

h
� ewhk2 is minimized. Then by Lemma A.12 and Lemma A.13, as long as ⌘ �

2dH log(1 + 16Hd/✏) · (3
p
d)H

✏
, we have

|V
⇡

fw

0 (s1)� V
?

0 (s1)|  |V
⇡

fw

0 (s1)� V
⇡
w?

0 (s1)|+ |V
⇡
w?

0 (s1)� V
?

0 (s1)|

 2dH⌘

HX

h=1

kw?

h
� ewhk2 + ✏/2.

The first conclusion then follows as long as we can find some ew such that

2dH⌘

HX

h=1

kw?

h
� ewhk2  ✏/2.
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However, by Lemma A.10, we can bound kw?

h
k2  2H

p
d. Therefore, since W is a ✏

4dH2⌘
-net

of Bd(2H
p
d), for each h there will exist some ewh 2 W such that kw?

h
� ewhk2 

✏

4dH2⌘
, which

implies that we can find ew 2W
d such that

2dH⌘

HX

h=1

kw?

h
� ewhk2  ✏/2,

which gives the first conclusion.
To bound the size of ⇧, we apply Lemma A.1 and our choice of ⌘ to bound

|W|  (1 +
16H3

d
3/2

⌘

✏
)d  (1 +

32H4
d
5/2 log(1 + 16Hd/✏)

✏2
)dH .

The bound on |⇧| follows since |⇧| = |W|
H .

B Policy Elimination

Throughout this section, assuming we have run for some number of episodes K, we let (F⌧ )K⌧=1 the
filtration on this, with F⌧ the filtration up to and including episode ⌧ . We also let F⌧,h denote the
filtration on all episodes ⌧ 0 < ⌧ , and on steps h0 = 1, . . . , h of episode ⌧ .

B.1 Estimating Feature-Visitations and Rewards

Lemma B.1. Assume that we have collected some data {(sh�1,⌧ , ah�1,⌧ , sh,⌧ )}K⌧=1, where,

for each ⌧
0
, sh,⌧ 0 |Fh�1,⌧ 0 is independent of {(sh�1,⌧ , ah�1,⌧ , sh,⌧ )}⌧ 6=⌧ 0 . Denote �h�1,⌧ =

�(sh�1,⌧ , ah�1,⌧ ) and ⇤h�1 =
P

K

⌧=1 �h�1,⌧�>
h�1,⌧ + �I . Fix ⇡ and let

bT⇡,h =

 
KX

⌧=1

�⇡,h(sh,⌧ )�
>
h�1,⌧

!
⇤�1

h�1.

Fix v 2 Rd
satisfying |v>�⇡,h(s)|  1 for all s and u 2 Rd

. Then with probability at least 1� �,

we can bound

|v>(T⇡,h � bT⇡,h)u| 
 
2
p
log 2/� +

log 2/�p
�min(⇤h�1)

+
p

�kT
>
⇡,h

vk2

!
· kuk⇤�1

h�1
.

Proof. Let D = {(sh�1,⌧ , ah�1,⌧ )}K⌧=1, our data collected at step h� 1. Then by our assumption on
the independence of sh,⌧ , we have that sh,⌧ |Fh�1,⌧ has the same distribution as sh,⌧ |(Fh�1,⌧ ,D).
Conditioning on D, the �h�1,⌧ vectors are fixed, so ⇤h�1 is also fixed. Note that

T⇡,h =

Z
�⇡,h(s)dµh�1(s)

>

=

Z
�⇡,h(s)dµh�1(s)

>

 
KX

⌧=1

�h�1,⌧�
>
h�1,⌧

!
⇤�1

h�1 + �

Z
�⇡,h(s)dµh�1(s)

>⇤�1
h�1

=
KX

⌧=1

✓Z
�⇡,h(s)dµh�1(s)

>�h�1,⌧

◆
�>

h�1,⌧⇤
�1
h�1 + �

Z
�⇡,h(s)dµh�1(s)

>⇤�1
h�1

=
KX

⌧=1

E[�⇡,h(sh,⌧ )|Fh�1,⌧ ]�
>
h�1,⌧⇤

�1
h�1 + �

Z
�⇡,h(s)dµh�1(s)

>⇤�1
h�1

=
KX

⌧=1

E[�⇡,h(sh,⌧ )|Fh�1,⌧ ]�
>
h�1,⌧⇤

�1
h�1 + �T⇡,h⇤

�1
h�1

so

|v>(T⇡,h � bT⇡,h)u| 
���

KX

⌧=1

v> (E[�⇡,h(sh,⌧ )|Fh�1,⌧ ]� �⇡,h(sh,⌧ ))�
>
h�1,⌧⇤

�1
h�1u

���
| {z }

(a)

+
����v>

T⇡,h⇤
�1
h�1u

���
| {z }

(b)

.

21



Conditioned on D, (a) is simply the sum of mean 0 random variables, where the ⌧ th random variable
has magnitude bounded as

|v> (E[�⇡,h(sh,⌧ )|Fh�1,⌧ ]� �⇡,h(sh,⌧ ))�
>
h�1,⌧⇤

�1
h�1u|  2|�>

h�1,⌧⇤
�1
h�1u|

 2k�h�1,⌧k⇤�1
h�1
kuk⇤�1

h�1

 2kuk⇤�1
h�1

/

p
�min(⇤h�1)

Furthermore, the variance of each term in (a) is bounded as

Var
⇥
v> (E[�⇡,h(sh,⌧ )|Fh�1,⌧ ]� �⇡,h(sh,⌧ ))�

>
h�1,⌧⇤

�1
h�1u|Fh�1

⇤

= E
h�
v> (E[�⇡,h(sh,⌧ )|Fh�1,⌧ ]� �⇡,h(sh,⌧ ))�

>
h�1,⌧⇤

�1
h�1u

�2
|Fh�1

i

 u>⇤�1
h�1�h�1,⌧�

>
h�1,⌧⇤

�1
h�1u.

It follows that, by Bernstein’s Inequality, we can bound, with probability at least 1� � conditioned
on D:

(a)  2

vuut
KX

⌧=1

u>⇤�1
h�1�h�1,⌧�>

h�1,⌧⇤
�1
h�1u · log

2

�
+

2kuk⇤�1
h�1p

�min(⇤h�1)
· log

2

�

 2(
p
log 2/� +

log 2/�p
�min(⇤h�1)

) · kuk⇤�1
h�1

.

In other words,

P
"
(a) � 2(

p
log 2/� +

log 2/�p
�min(⇤h�1)

) · kuk⇤�1
h�1

|D

#
 �

so, by the law of total probability, for any distribution F over D,

P
h
(a) � 2(

p
log 2/� +min{1,��1

} log 2/�) · kuk⇤�1
h�1

i

=

Z
P
h
(a) � 2(

p
log 2/� +min{1,��1

} log 2/�) · kuk⇤�1
h�1

|D
i
dF (D)

 �

Z
dF (D)

= �.

We can also bound

(b) 
p

�kuk⇤�1
h�1
kT

>
⇡,h

vk2.

Combining these gives the result.

Lemma B.2. Fix ⇡ and let

b�⇡,h = bT⇡,h bT⇡,h�1 . . .
bT⇡,2 bT⇡,1�⇡,0.

Fix u 2 S
d�1

or u a valid reward vector as defined by Definition 3.1. Then with probability at least

1� �:

|hu,�⇡,h �
b�⇡,hi| 

h�1X

i=1

 
2

r
log

2H

�
+

log 2H
�p

�min(⇤i)
+
p

d�

!
· k b�⇡,ik⇤�1

i

.

Proof. Note that

�⇡,h �
b�⇡,h = T⇡,h�⇡,h�1 �

bT⇡,h b�⇡,h�1

= T⇡,h(�⇡,h�1 �
b�⇡,h�1) + (T⇡,h � bT⇡,h) b�⇡,h�1.
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Thus, unrolling this all the way back, we get

�⇡,h �
b�⇡,h =

h�1X

i=1

0

@
hY

j=h�i+1

T⇡,j

1

A (T⇡,h�i �
bT⇡,h�i) b�⇡,h�i�1

where we order the product
Q

h

j=h�i+1 T⇡,j = T⇡,hT⇡,h�1 . . . T⇡,h�i+1. It follows that

|hu,�⇡,h �
b�⇡,hi| 

h�1X

i=1

������
u>

0

@
hY

j=h�i+1

T⇡,j

1

A (T⇡,h�i �
bT⇡,h�i) b�⇡,h�i�1

������
.

Denote vi := u>
⇣Q

h

j=h�i+1 T⇡,j

⌘
. By Lemma A.8 and our assumption on u, we can bound

kvik2 
p
d and also have that for all s, a, |v>

i
�(s, a)|  1, which implies

|v>
i
�⇡,j(s)| =

�����
X

a2A
v>
i
�(s, a)⇡h(a|s)

����� 
X

a2A
⇡h(a|s) = 1.

We can therefore apply Lemma B.1 to get that, with probability at least 1� �, for all i,

���v>
i
(T⇡,h�i �

bT⇡,h�i) b�⇡,h�i�1

��� 
 
2

r
log

2H

�
+

log 2H
�p

�min(⇤h�i�1)
+
p

�kT
>
⇡,h

vik2

!
· k b�⇡,h�i�1k⇤�1

h�i�1

By Lemma A.8, the definition of vi, and our assumption on u, we can bound kT >
⇡,h

vik2 
p
d.

Summing over i proves the result.

Lemma B.3. With probability at least 1� �:

k b�⇡,h � �⇡,hk2  d

h�1X

h0=1

 
2

r
log

2Hd

�
+

log 2Hd

�p
�min(⇤h0)

+
p

d�

!
· k b�⇡,h0k⇤�1

h0
.

Proof. We have:

k b�⇡,h � �⇡,hk2  k
b�⇡,h � �⇡,hk1 =

dX

i=1

|[ b�⇡,h]i � [�⇡,h]i| =
dX

i=1

|hei, b�⇡,h � �⇡,hi|.

Since ei 2 S
d�1, we can apply Lemma B.2 to bound, with probability 1� �/d,

|hei, b�⇡,h � �⇡,hi| 

h�1X

h0=0

 
2

r
log

2Hd

�
+

log 2Hd

�p
�min(⇤h0)

+
p

d�

!
· k b�⇡,h0k⇤�1

h0
.

Summing over i gives the result.

Lemma B.4. Assume we have collected data {�(sh,⌧ , ah,⌧ ), rh(sh,⌧ , ah,⌧ )}K⌧=1 and that for each

⌧
0
, rh(sh,⌧ 0 , ah,⌧ 0)|(sh,⌧ 0 , ah,⌧ 0) is independent of {(sh,⌧ , ah,⌧ )}⌧ 6=⌧ 0 . Let

b✓h = argmin
✓

KX

⌧=1

(rh,⌧ � h�h,⌧ ,✓i)
2 + �k✓k22

and fix u 2 Rd
that is independent of {�(sh,⌧ , ah,⌧ ), rh(sh,⌧ , ah,⌧ )}K⌧=1. Then with probability at

least 1� �:

|hu, b✓h � ✓hi| 

 
p

log 2/� +
log 2/�p
�min(⇤h)

+
p

d�

!
· kuk⇤�1

h

.

Proof. Let D = {(sh,⌧ , ah,⌧ )}K⌧=1. Then by our assumption on the independence of rh,⌧ , we have
that rh,⌧ |(sh,⌧ , ah,⌧ ) has the same distribution as rh,⌧ |D. Conditioning on D, the �h,⌧ vectors are
fixed, so ⇤h is also fixed.
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By construction we have

b✓h = ⇤�1
h

KX

⌧=1

�h,⌧rh,⌧ .

Furthermore:

✓h = ⇤�1
h

⇤h✓h = ⇤�1
h

KX

⌧=1

�h,⌧E[rh,⌧ |Fh�1,⌧ ] + �⇤�1
h

✓h.

Thus,

|hu, b✓h � ✓hi| 

�����

KX

⌧=1

u>⇤�1
h

�h,⌧ (rh,⌧ � E[rh,⌧ |Fh�1,⌧ ])

�����
| {z }

(a)

+
���u>⇤�1

h
✓h
��

| {z }
(b)

.

Since Rh,⌧ 2 [0, 1] almost surely, we can bound

|u>⇤�1
h

�h,⌧ (rh,⌧ � E[rh,⌧ |Fh�1,⌧ ])|  kuk⇤�1
h

k�h,⌧k⇤�1
h

 kuk⇤�1
h

/

p
�min(⇤h).

Furthermore, we can bound

Var
⇥
u>⇤�1

h
�h,⌧ (rh,⌧ � E[rh,⌧ |Fh�1,⌧ ])|D

⇤

= E
⇥
(u>⇤�1

h
�h,⌧ (rh,⌧ � E[rh,⌧ |Fh�1,⌧ ]))

2
|D
⇤

 u>⇤�1
h

�h,⌧�
>
h,⌧

⇤�1
h

u.

By Bernstein’s inequality, we then have, with probability at least 1� � conditioned on D:

(a) 

vuut
KX

⌧=1

u>⇤�1
h

�h,⌧�>
h,⌧

⇤�1
h

u · log 2/� +
kuk⇤�1

h

· log 2/�
p
�min(⇤h)

 (
p
log 2/� +

log 2/�p
�min(⇤h)

) · kuk⇤�1
h

.

Applying the Law of Total Probability as in Lemma B.1, we obtain

P
"
(a) � (

p
log 2/� +

log 2/�p
�min(⇤h)

) · kuk⇤�1
h

#
 �.

By Definition 3.1, we can also bound

(b) 
p

�kuk⇤�1
h

k✓hk2 
p

d�kuk⇤�1
h

.

Combining these proves the result.

B.2 Correctness and Sample Complexity of PEDEL

Lemma B.5. Let E
`,h

est denote the event on which, for all ⇡ 2 ⇧`:

|h✓h+1,
b�`

⇡,h+1 � �⇡,h+1i| 

hX

i=1

 
3

r
log

4H2|⇧`|`
2

�
+

log 4H2|⇧`|`2
�p

�min(⇤i,`)

!
· k b�`

⇡,i
k⇤�1

i,`

,

k b�`

⇡,h+1 � �⇡,h+1k2  d

hX

i=1

 
3

r
log

4H2d|⇧`|`
2

�
+

log 4H2
d|⇧`|`2
�p

�min(⇤i,`)

!
· k b�`

⇡,i
k⇤�1

i,`

,

|h b�`

⇡,h
, b✓h � ✓hi| 

 
2

r
log

4H2|⇧`|`
2

�
+

log 4H2|⇧`|`2
�p

�min(⇤h,`)

!
· k b�`

⇡,h
k⇤�1

h,`

.

Then P[(E`,h

est )
c]  �

2H`2
.
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Algorithm 3 Policy Learning via Experiment Design in Linear MDPs (PEDEL, full version)
1: input: tolerance ✏, confidence �, policy set ⇧
2: `0  dlog2

d
3/2

H
e, ⇧`0  ⇧, b�1

⇡,1  Ea⇠⇡1(·|s1)[�(s1, a)], 8⇡ 2 ⇧

3: for ` = `0, `0 + 1, . . . , dlog 4
✏
e do

4: ✏`  2�`, �`  64H4 log 4H2|⇧`|`2
�

5: for h = 1, 2, . . . , H do

6: Run procedure described in Theorem 9 with parameters

✏exp  
✏
2
`

�`

, �  
�

2H`2
, � log

4H2
|⇧`|`

2

�
, � �h,` := { b�`

⇡,h
: ⇡ 2 ⇧`}

and denote returned data as {(sh,⌧ , ah,⌧ , rh,⌧ , sh+1,⌧ )}
Kh,`

⌧=1 , for Kh,` total number of
episodes run , and covariates

⇤h,`  

Kh,`X

⌧=1

�(sh,⌧ , ah,⌧ )�(sh,⌧ , ah,⌧ )
> + 1/d · I

7: for ⇡ 2 ⇧` do // Estimate feature-visitations for active policies
8: b�`

⇡,h+1  

⇣PKh,`

⌧=1 �⇡,h+1(sh+1,⌧ )�>
h,⌧

⇤�1
h,`

⌘
b�`

⇡,h

9: b✓`

h
 ⇤�1

h,`

PKh,`

⌧=1 �h,⌧rh,⌧ // Estimate reward vectors
10: // Remove provably suboptimal policies from active policy set

⇧`+1  ⇧`\

n
⇡ 2 ⇧` : bV ⇡

0 < sup
⇡02⇧`

bV ⇡
0

0 � 2✏`
o

for bV ⇡

0 :=
P

H

h=1h
b�`

⇡,h
, b✓`

h
i

11: if |⇧`+1| = 1 then return ⇡ 2 ⇧`+1

12: return any ⇡ 2 ⇧`+1

Proof. Note that the data collection procedure outlined in Theorem 9 collects data that satisfies
the independence requirement of Lemma B.1 and Lemma B.4, since Theorem 9 operates on the
h-truncated-horizon MDP defined with respect to our original MDP (see Definition C.2 and following
discussion), so by construction the data obtained at step h is independent of sh+1 and rh(sh, ah).
Note also that b�`

⇡,h
is independent of {r`

h,⌧
}
Kh,`

⌧=1 |{(sh,⌧ , ah,⌧ )}
Kh,`

⌧=1 , since we construct b�`

⇡,h
using

only observations taken at step h� 1.
The result follows by Lemma B.2, Lemma B.3, and Lemma B.4, and setting � = 1/d.

Lemma B.6. Let E
`,h

exp denote the event on which:

• The exploration procedure on Line 6 terminates after running for at most

C ·

inf⇤2⌦h
max�2�`,h

k�k2A(⇤)�1

✏
2
`
/�`

+ poly

✓
d,H, log

`
2

�
,

1

�
?

min

, log |⇧`|

◆

episodes.

• The covariates returned by Line 6 for any (h, `), ⇤h,`, satisfy

max
�2�`,h

k�k2
⇤�1

h,`


✏
2
`

�`

, �min(⇤h,`) � log
4H2

|⇧`|`
2

�
.

Then P[(E`,h

exp)
c
\ E

`,h�1
est \ (\h�1

i=1 E
`,i

exp)] 
�

2H`2
.

Proof. By Lemma B.7, on the event E`,h�1
est \ (\h�1

i=1 E
`,i

exp) we can bound k b�`

⇡,h
��⇡,hk2  d✏`/2H .

By Lemma A.6, we can lower bound k�⇡,hk2 � 1/
p
d. By the reverse triangle inequality,

k b�`

⇡,h
k2 � k�⇡,hk2 � k

b�`

⇡,h
� �⇡,hk2 � 1/

p

d� d✏`/2H.
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It follows that as long as ✏`  H/d
3/2, that we can lower bound k b�`

⇡,h
k2 � 1/(2

p
d). Since we start

` at ` = dlog2
d
3/2

H
e, we will have that ✏` = 2�`

 H/d
3/2.

The result then follows by applying Theorem 9 with our chosen parameters and ��  1/(2
p
d).

Lemma B.7. On the event E
`,h

est \ (\h
i=1E

`,i

exp), for all ⇡ 2 ⇧`:

|h✓h+1,
b�`

⇡,h+1 � �⇡,h+1i|  ✏`/2H,

k b�`

⇡,h+1 � �⇡,h+1k2  d✏`/2H,

|h b�`

⇡,h
, b✓h � ✓hi|  ✏`/2H.

Proof. On E
`,i

exp, we can lower bound

�min(⇤i,`) � log
4H2

|⇧`|`
2

�

which implies

3

r
log

4H2|⇧`|`
2

�
+

log 4H2|⇧`|`2
�p

�min(⇤i,`)
 4

r
log

4H2|⇧`|`
2

�
.

Furthermore, on E
`,i

exp, k b�`

⇡,i
k⇤�1

i,`


✏`p
�`

. Since �` = 64H4 log 4H2|⇧`|`2
�

, on E
`,h

est , we can then
upper bound

|h✓h+1,
b�`

⇡,h+1 � �⇡,h+1i| 

hX

i=1

 
3

r
log

4H2|⇧`|`
2

�
+

log 4H2|⇧`|`2
�p

�min(⇤i,`)

!
· k b�`

⇡,i
k⇤�1

i,`

 H4

r
log

4H2|⇧`|`
2

�

✏`
p
�`

 ✏`/2H.

The same calculation gives the bounds on k b�`

⇡,h
� �⇡,hk2 and |h b�`

⇡,h
, b✓h � ✓hi|.

Lemma B.8. Define Eexp = \` \h E
`,h

exp and Eest = \` \h E
`,h

est . Then P[Eest \ Eexp] � 1� 2� and

on Eest \ Eexp, for all h, `, and ⇡ 2 ⇧`,

|h✓h+1,
b�`

⇡,h+1 � �⇡,h+1i|  ✏`/2H,

k b�`

⇡,h+1 � �⇡,h+1k2  d✏`/2H,

|h b�`

⇡,h
, b✓h � ✓hi|  ✏`/2H.

Proof. Clearly,

E
c

est [ E
c

exp =

dlog 4/✏e[

`=`0

H[

h=1

((E`,h

est )
c
[ (E`,h

exp)
c)

=

dlog 4/✏e[

`=`0

H[

h=1

(E`,h

est )
c
\

⇣
(E`,h�1

est )c [ ([h�1
i=1 (E

`,i

exp)
c)
⌘
[

dlog 4/✏e[

`=`0

H[

h=1

(E`,h

exp)
c

=

dlog 4/✏e[

`=`0

H[

h=1

(E`,h

est )
c
\

⇣
E
`,h�1
est \ ([h�1

i=1 E
`,i

exp)
⌘
[

dlog 4/✏e[

`=`0

H[

h=1

(E`,h

exp)
c
.

The first conclusion follows by Lemma B.5, Lemma B.5, and since we can bound

X

`

HX

h=1

2 ·
�

2H`2


⇡
2

6
�  2�.

The second conclusion follows by Lemma B.7.
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Lemma B.9. On the event Eest\Eexp, for all ` > `0, every policy ⇡ 2 ⇧` satisfies V
?

0 (⇧)�V ⇡

0  4✏`
and e⇡?

2 ⇧`, for e⇡? = argmax
⇡2⇧ V

⇡

0 .

Proof. The value of a policy ⇡ is given by

HX

h=1

h✓h,�⇡,hi.

By Lemma B.8, for all ⇡ 2 ⇧` we can bound

|hb✓h, b�`

⇡,h
i � h✓h,�⇡,hi|  |hb✓h � ✓h, b�`

⇡,h
i|+ |h✓h, b�`

⇡,h
� �⇡,hi|  ✏`/2H + ✏`/2H = ✏`/H.

Thus,
�����

HX

h=1

hb✓`

h
, b�`

⇡,h
i �

HX

h=1

h✓h,�⇡,hi

�����  ✏`.

We will only include ⇡ 2 ⇧`+1 if ⇡ 2 ⇧` and

HX

h=1

h b�`

⇡,h
, b✓`

h
i � sup

⇡02⇧`

HX

h=1

h b�`

⇡0,h,
b✓`

h
i � 2✏`.

Using the estimation error given above, this implies that for any ⇡ 2 ⇧`,

V
⇡

0 =
HX

h=1

h✓h,�⇡,hi � sup
⇡02⇧`

HX

h=1

h✓h,�⇡0,hi � 4✏` = sup
⇡02⇧`

V
⇡
0

0 � 4✏`.

Both claims then follow if we can show e⇡? is always contained in the active set. Assume that
e⇡?
2 ⇧`. Then
HX

h=1

h b�`

e⇡?,h
, b✓`

h
i � V

e⇡?

0 � ✏`, sup
⇡02⇧`

HX

h=1

h b�`

⇡0,h,
b✓`

h
i  sup

⇡02⇧`

HX

h=1

h�⇡0,h,✓hi+ ✏` = V
e⇡?

0 + ✏`.

Rearranging this gives

HX

h=1

h b�`

e⇡?,h
, b✓`

h
i � sup

⇡02⇧`

HX

h=1

h b�`

⇡0,h,
b✓`

h
i � 2✏`

so e⇡?
2 ⇧`+1.

Theorem 6. With probability at least 1� 2�, Algorithm 1 will terminate after collecting at most

CH
4

HX

h=1

◆0X

`=`0+1

inf⇤2⌦h
max⇡2⇧(4✏`) k�⇡,hk

2
⇤�1

✏
2
`

· log
H|⇧(4✏`)| log

1
✏

�
+ poly

✓
d,H,

1

�
?

min

, log
1

�
, log |⇧|, log

1

✏

◆

+ CH
4

HX

h=1

inf⇤2⌦h
max⇡2⇧ k�⇡,hk

2
⇤�1

✏
2
`0

· log
H|⇧| log(1/✏)

�

episodes for ◆0 := min{dlog 4
✏
e, log 4

�min(⇧)}, and will output a policy b⇡ such that

V
b⇡
0 � max

⇡2⇧
V

⇡

0 � ✏,

where here ⇧(4✏`) = {⇡ 2 ⇧ : V
⇡

0 � max⇡2⇧ V
⇡

0 � 4✏`}.

Proof. By Lemma B.8 the event Eest \ Eexp occurs with probability at least 1� 2�. Henceforth we
assume we are on this event.

Correctness follows by Lemma B.9, since upon termination, ⇧` will only contain policies ⇡

satisfying V
⇡

0 � max⇡2⇧ V
⇡

0 � ✏ (and will contain at least 1 policy since e⇡?
2 ⇧` for all `).
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Furthermore, by Lemma B.9, if 4✏` < �min(⇧), we must have that ⇧` = {e⇡?
}, and will therefore

terminate on Line 11 since |⇧`| = 1. Thus, we can bound the number of number of epochs by

◆0 := min{dlog
4

✏
e, log

4

�min(⇧)
}.

By Lemma B.6, the total number of episodes collected is bounded by
HX

h=1

◆0X

`=1

C ·

inf⇤2⌦h
max�2�`,h

k�k2A(⇤)�1

✏
2
`
/�`

+ poly

✓
d,H, log

1
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1

✏
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
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✏
2
`

·H
4 log

H|⇧`| log(1/✏)

�
+ poly

✓
d,H, log

1

�
,

1

�
?

min

, log |⇧|, log
1

✏

◆
.

On Eest \ Eexp, by Lemma B.8, for each ⇡ 2 ⇧`, we have k b�`

⇡,h
� �⇡,hk2  d✏`/2H . As

�`,h = { b�`

⇡,h
: ⇡ 2 ⇧`}, it follows that we can upper bound

inf
⇤2⌦h

max
�2�`,h

k�k2A(⇤)�1 = inf
⇤2⌦h

max
⇡2⇧`

k b�`

⇡,h
k
2
A(⇤)�1
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⇤2⌦h

max
⇡2⇧`

(2k�⇡,hk
2
A(⇤)�1 + 2k b�`
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2
A(⇤)�1)

 inf
⇤2⌦h
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⇡2⇧`

(2k�⇡,hk
2
A(⇤)�1 +

d
2
✏
2
`

2H2�min(A(⇤))
)
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⇤2⌦h

max
⇡2⇧`

4k�⇡,hk
2
A(⇤)�1 + inf

⇡

d
2
✏
2
`
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⇤2⌦h
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2
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d
2
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✏
2
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
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4k�⇡,hk

2
⇤�1

✏
2
`

+
d
2

H2�?

min

.

Note also that, by Lemma B.9, for ` > `0, every policy ⇡ 2 ⇧` will be 4✏` optimal, so we
therefore have

⇧` ✓ {⇡ 2 ⇧ : V
⇡

0 � V
e⇡?

0 � 4✏`} =: ⇧(4✏`).

Putting this together, we can upper bound the complexity by
HX

h=1

◆0X

`=`0+1

C ·
inf⇤2⌦h

max⇡2⇧(4✏`) k�⇡,hk
2
⇤�1

✏
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`

·H
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+ poly
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✏
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max⇡2⇧ k�⇡,hk
2
⇤�1

✏
2
`0

·H
4 log

H|⇧| log(1/✏)

�
.

Corollary 5 (Full Statement of Theorem 1). With probability at least 1 � �, the complexity of

Algorithm 1 can be bounded as

CH
4 log

1

✏
·

HX

h=1

inf
⇤2⌦h

max
⇡2⇧

k�⇡,hk
2
⇤�1

(V ?

0 (⇧)� V
⇡
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H|⇧| log 1
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+ poly

✓
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, log
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�
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1

✏

◆

episodes, and Algorithm 1 will output a policy b⇡ such that

V
b⇡
0 � max

⇡2⇧
V

⇡

0 � ✏.
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Proof. By the definition of ⇧(4✏`), for each ⇡ 2 ⇧(4✏`) we have

✏
2
`
=

1

16

�
(V ?

0 (⇧)� V
⇡

0 )2 _ (4✏`)
2
�
.

We can therefore upper bound
◆0X

`=`0+1

inf⇤2⌦h
max⇡2⇧(4✏`) k�⇡,hk

2
⇤�1

✏
2
`

· log
H|⇧(4✏`)| log

1
✏
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 C

◆0X

`=`0+1
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⇤2⌦h

max
⇡2⇧(4✏`)

k�⇡,hk
2
⇤�1

(V ?

0 (⇧)� V
⇡

0 )2 _ ✏
2
`

· log
H|⇧(4✏`)| log

1
✏

�

 C log
1

✏
· inf
⇤2⌦h

max
⇡2⇧

k�⇡,hk
2
⇤�1

(V ?

0 (⇧)� V
⇡

0 )2 _ ✏2 _�min(⇧)2
· log

H|⇧| log 1
✏

�
.

Furthermore, since `0 = dlog2 d
3/2

/He, using Lemma B.10 we can also bound

C ·
inf⇤2⌦h

max⇡2⇧ k�⇡,hk
2
⇤�1

✏
2
`0

·H
4 log

H|⇧| log(1/✏)

�
 poly (d,H, log 1/�, log |⇧|, log 1/✏) .

The result then follows by Theorem 6.

Proof of Corollary 1. By Lemma A.14, we can choose ⇧✏ to be the restricted-action linear softmax
policy set constructed in Lemma A.14. Lemma A.14 shows that ⇧✏ will contain an ✏-optimal policy
for any MDP and reward function, and that

|⇧✏| 

⇣
1 +

32H4
d
5/2 log(1 + 16Hd/✏)

✏2

⌘dH2

.

Combining this with the guarantee of Corollary 5 shows that V b⇡
0 � V

?

0 � 2✏ and that V ?

0 (⇧)� V
⇡

0 is
within a factor of ✏ of V ?

0 � V
⇡

0 . To bound the complexity of this procedure, we apply the bound
given in Corollary 5 with the bound on the cardinality of ⇧✏ given above.

B.3 Interpreting the Complexity

Lemma B.10. For any set of policies ⇧, we can bound

inf
⇤2⌦h

sup
⇡2⇧
k�⇡,hk

2
⇤�1  d.

Proof. By Jensen’s inequality, for any v 2 Rd, we have

v>⇤⇡,hv = E⇡[(v
>�h)

2] � (E⇡[v
>�h])

2 = (v>�⇡,h)
2
.

It follows that, for any ⇡,

⇤⇡,h ⌫ �⇡,h�
>
⇡,h

.

Take ⇤ 2 ⌦h. Then,

⇤ = E⇡⇠![⇤⇡,h] ⌫ E⇡⇠![�⇡,h�
>
⇡,h

].

It follows that we can upper bound
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⇤2⌦h

sup
⇡2⇧
k�⇡,hk

2
⇤�1  inf

�24⇧

sup
⇡2⇧
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2
A(�)�1

where A(�) =
P

⇡
�⇡�⇡,h�>

⇡,h
. By Kiefer-Wolfowitz (Lattimore & Szepesvári, 2020), this is upper

bounded by d.

Proof of Corollary 2. This follows directly from Lemma B.10 and Corollary 1, by upper bounding:

inf
⇤2⌦h

max
⇡2⇧✏

k�⇡,hk
2
⇤�1
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B.3.1 Linear Contextual Bandits

Since we always assume the MDP starts in some state s1, to encode a linear contextual bandit, the
direct mapping of our linear MDP in Definition 3.1 would require considering an H = 2 MDP,
where we encode the “context” in the transition to state s at step h = 2. While we could run our
algorithm directly on this, in the standard contextual bandit setting, the learner has no control over
the context, and so their action before receiving that context has no effect. Thus, there is no need for
the learner to explore at stage h = 1. To account for this, we can simply run our algorithm but ignore
the exploration at stage h = 1, which will reduce the h = 1 term in the sample complexity.

B.3.2 Tabular MDPs

Lemma B.11. In the tabular MDP setting, assuming that ⇧ contains an optimal policy,
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⇡2⇧
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·
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Proof. We have that [�⇡,h]s,a = w
⇡

h
(s, a). Furthermore, �(s, a) = es,a, so for any ⇤ 2 ⌦h, ⇤ is

diagonal with [⇤]sa,sa = E⇡⇠![w⇡

h
(s, a)]. Furthermore, by the Performance-Difference Lemma,
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We have
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We can further upper bound
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Lemma B.12. If PEDEL is run with a set ⇧ that contains an optimal policy, the complexity of PEDEL
is upper bounded as

eO
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4
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Proof. Using an argument identical to that in Lemma B.11, we can upper bound
inf⇤2⌦h

max⇡2⇧(4✏`) k�⇡,hk
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The result then follows from Theorem 6, noting that we will never run for ✏` < �min(⇧)/4.

Proof of Corollary 3. Note that in the tabular MDP setting, we can choose ⇧ to be the set of all
deterministic policies, since this set is guaranteed to contain an optimal policy. We can then bound
|⇧|  A

SH . The result then follows directly from Lemma B.11 and Theorem 1.

Proof of Proposition 4. We begin with an example where PEDEL has complexity smaller than the
Gap-Visitation Complexity, and then turn to an example where the reverse is true.

PEDEL Improves on Gap-Visitation Complexity. Consider the tabular MDP with |S| = |A| =
N , and where

Ph(s1|s1, a1) = 1, ⌫h(s1, a1) = 1, 8h 2 [H]

Ph(s1|s1, aj) = 0, ⌫h(s1, aj) = 0, 8h 2 [H], j 6= 1

Ph(s1|si, aj) = 0, 8h 2 [H], j 2 [N ], i 6= 1

Ph(si|sj , ai) = 1, 8h 2 [H], j 2 [N ], i 6= 1

rh(si, a1) = ✏, 8h 2 [H], i 6= 1, ⌫h(si, aj) = 0, 8h 2 [H], j 6= 1, i 6= 1.

In this MDP, the optimal policy simply plays action a1 H times and is always in state s1. The total
reward it collects is H . Any deterministic policy that does not play a1 H consecutive times has
optimality gap of at least 1 � ✏. Furthermore, every other state can be reached with probability
1. In this case, then, assuming that we take ⇧ to be the set of all deterministic policies, we have
�min(⇧) = 1� ✏ (note that since there always exists a deterministic policy that is optimal, it suffices
to take ⇧ to be the set of all deterministic policies).

By Corollary 3, we can therefore upper bound the complexity of the leading-order term by
eO(H5

S
2
A), so PEDEL will identify the optimal policy (since ⇧ contains an optimal policy). Thus,

the total complexity of PEDEL is O(poly(S,A,H, log 1/�)).
On this example, in every state si, i 6= 1, action a1 still collects a reward of ✏. Thus, we have that

�h(si, aj) = ✏ for j 6= 1. The Gap-Visitation complexity is given by
HX

h=1
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⇡
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min

⇢
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w
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h
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,
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.

Since Wh(s) = 1 for each s, we conclude that
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h
(s, a)�h(s, a)2

,
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�
�

HX

h=1

1

✏2
.

Thus, for small ✏, the Gap-Visitation complexity can be arbitrarily worse than the complexity of
PEDEL.

The Gap-Visitation Complexity Improves on PEDEL. To show that the Gap-Visitation Com-
plexity improves on the complexity of PEDEL, we consider the example in Instance Class 5.1 of
Wagenmaker et al. (2021b). As shown by Proposition 6 of Wagenmaker et al. (2021b), on this
example, for any ✏, the Gap-Visitation Complexity is eO(poly(S)).

To bound the complexity of PEDEL on this example, we consider the complexity given in
Theorem 6 with ⇧ the set of all deterministic policies, which is slightly tighter than the complexity of
Corollary 3. Take ✏ � 2�S . Then, on this example, it follows that �min(⇧)  O(✏), since we can
find a policy ⇡ which is optimal on every state si at step h = 2 for i = O(log 1/✏), which will give it
a policy gap of O(✏). Furthermore, any near-optimal policy will have [�⇡,2]s1,a1 = w

⇡

2 (s1, a1) =
O(1), so we always have inf⇤2⌦2 max⇡2⇧(4✏`) k�⇡,hk

2
⇤�1 � ⌦(1). It follows that the complexity

of PEDEL is lower bounded by ⌦(1/✏2).
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B.3.3 Deterministic, Tabular MDPs

Lemma B.13. In the deterministic MDP setting,
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max
⇡2⇧

k�⇡,hk
2
⇤�1

(V ?

0 � V
⇡

0 )2 _ ✏2


X

s,a

1

�̄h(s, a)2 _ ✏2
.

Proof. Note that [�⇡,h]s⇡
h
,a

⇡

h
= 1, and otherwise, for (s, a) 6= (s⇡

h
, a

⇡

h
), [�⇡,h]s,a = 0. Furthermore,

⇤⇡exp,h will always be diagonal, with diagonal elements w⇡

h
(s, a). We then have k�⇡,hk

2
⇤�1

⇡exp,h

=

1
w

⇡exp
h

(s⇡
h
,a

⇡

h
)
, so

inf
⇤2⌦h

max
⇡2⇧

k�⇡,hk
2
⇤�1

(V ?

0 � V
⇡

0 )2 _ ✏2
 inf

⇡exp

max
⇡2⇧

k�⇡,hk
2
⇤�1

⇡exp,h

(V ?

0 � V
⇡

0 )2 _ ✏2

= inf
⇡exp

max
⇡2⇧

w
⇡exp

h
(s⇡

h
, a

⇡

h
)�1

(V ?

0 � V
⇡

0 )2 _ ✏2

(a)
= inf

⇡exp

max
s,a

max
⇡2⇧sah

w
⇡exp

h
(s⇡

h
, a

⇡

h
)�1

(V ?

0 � V
⇡

0 )2 _ ✏2

(b)
= inf

⇡exp

max
s,a

max
⇡2⇧sah

w
⇡exp

h
(s, a)�1

(V ?

0 � V
⇡

0 )2 _ ✏2

= inf
⇡exp

max
s,a

w
⇡exp

h
(s, a)�1

(V ?

0 �max⇡2⇧sah
V

⇡

0 )2 _ ✏2

(c)
= inf

⇡exp

max
s,a

w
⇡exp

h
(s, a)�1

�̄h(s, a)2 _ ✏2

where (a) follows since ⇧ = [s,a⇧sah, (b) follows since by definition, for any ⇡ 2 ⇧sah, (s⇡
h
, a

⇡

h
) =

(s, a), and (c) follows by the definition of �̄h(s, a).
Let ⇡sa denote any policy such that (s⇡

h
, a

⇡

h
) = (s, a). Set

�⇡sa =
max{�̄h(s, a), ✏}�2

P
s0,a0 max{�̄h(s0, a0), ✏}�2

.

Note that this is a valid distribution. Let ⇡exp =
P

s,a
�⇡sa⇡

sa, then w
⇡exp

h
(s, a) = �⇡sa , so

inf
⇡exp

max
s,a

w
⇡exp

h
(s, a)�1

�̄h(s, a)2 _ ✏2
 max

s,a

�
�1
⇡sa

�̄h(s, a)2 _ ✏2



X

s,a

1

�̄h(s, a)2 _ ✏2

which proves the result.

Proof of Corollary 4. As in tabular MDPs, we can set ⇧ to correspond to the set of all deterministic
policies. However, since our MDP is also deterministic, at any given h, we only need to specify ⇡h(s)
for a single s—the state we will end up in at step h with probability 1. Thus, we can take ⇧ to be a
set of cardinality |⇧| = A

H . The result then follows directly from Lemma B.13 and Theorem 1.

Comparison to Lower Bound of Tirinzoni et al. (2022). The precise definition for �̄h

min is
�̄h

min := mins,a:�̄h(s,a)>0 �̄h(s, a) in the setting when every deterministic ✏-optimal policy will
reach the same (s, a) at step h, and �̄h

min := 0 otherwise.
The exact lower bound given in Tirinzoni et al. (2022) scales as '?(c) which does not have an

explicit form. However, they show that

max
h2[H]

X

s2S

X

a2A

log(1/4�)

4max{�̄h(s, a), �̄h

min, ✏}
2
 '

?(c) 
X

h2[H]

X

s2S

X

a2A

log(1/4�)

4max{�̄h(s, a), �̄h

min, ✏}
2
.

32



Up to H factors, then, this matches the complexity of our upper bound in every term but the �̄h

min

term. �̄h

min � �̄min, so this lower bound is potentially smaller than our upper bound in this
dependence. We remark, however, that the algorithm presented in Tirinzoni et al. (2022) obtains the
same scaling as we do, depending on �̄min instead of �̄h

min. Furthermore, in general we can think of
these quantities as scaling in a similar manner, since they each quantify the minimum policy gap.

C Experiment Design via Online Frank-Wolfe

C.1 Experiment Design in MDPs with General Objective Functions

While the experiment design in (5.1) is the natural design if our goal is to identify a near-optimal
policy, in general we may be interested in collecting data to minimize some other objective; that is,
solving an experiment design of the form:

inf
⇤exp2⌦h

f(⇤exp)

for some function f defined over the space of PSD matrices. For example, we could take f(⇤exp) =
k⇤�1

expkop = 1
�min(⇤exp)

, and the above experiment design would correspond to maximizing the
minimum eigenvalue of the collected covariates, or E-optimal design (Pukelsheim, 2006).

Motivated by this, in this section we generalize Theorem 5 and Algorithm 2 to handle a much
broader class of experiment design problems. In particular, we consider all smooth experiment design

objectives, which we define as follows.
Definition C.1 (Smooth Experiment Design Objectives). We say that f(⇤) : Sd+ ! R is a smooth

experiment design objective if it satisfies the following conditions:
• f is convex, differentiable, and � smooth in the norm k · k: krf(⇤) � rf(⇤0)k⇤ 
�k⇤�⇤0

k.
• f is L-lipschitz in the operator norm: |f(⇤)� f(⇤0)|  Lk⇤�⇤0

kop.
• Let ⌅⇤0 := �r⇤f(⇤)|⇤=⇤0 . Then ⌅⇤0 ⌫ 0 and tr(⌅⇤0) M for all ⇤0 ⌫ 0 satisfying
k⇤0kop  1.

We will often be interested in objectives f that satisfy f(a⇤) = a
�1

f(⇤) for a scalar a, in
which case the guarantee f(N�1 b⌃N )  N✏ reduces to f(b⌃N )  ✏. We note also that many typical
experiment design objectives are non-smooth. As we show in Appendix D, however, it is often
possible to derive smoothed versions of such objectives with negligible approximation error.

Through the remainder of Appendix C as well as Appendix D, we will be interested in the problem
of data collection in linear MDPs. In general, we will seek to collect data for a particular h 2 [H].
We will therefore consider the following truncation to our MDP.
Definition C.2 (Truncated Horizon MDPs). Given some MDP M with horizon H , we define the
h-truncated-horizon MDP Mtr,h to be the MDP that is identical to M for h0

 h, but that terminates
after reaching state sh and playing action ah.

We can simulated a truncated-horizon MDP by playing in our standard MDP M, and after taking
an action at step h, ah, taking random actions for h0

> h and ignoring all future observations.
The utility of considering truncated-horizon MDPs is that we can therefore guarantee the data

we collect, {{(sh0,⌧ , ah0,⌧ )}hh0=1}
K

⌧=1 is uncorrelated with the true next state and reward at step h

obtained in M, {(sh+1,⌧ , rh,⌧ )}K⌧=1. While we do not allow our algorithm to use {(sh+1,⌧ , rh,⌧ )}K⌧=1
in its operation, it is allowed to store this data and return it.

For the remainder of Appendix C and Appendix D, then, we assume there is some fixed h we are
interested in, and that we are running our algorithms in the h-truncated-horizon MDP defined with
respect to our original MDP. We will also drop the subscript of h from observations, so ⇤⇡ = ⇤⇡,h,
�⌧ = �⌧,h, and ⌦ = ⌦h.

Our main experiment design algorithm, OPTCOV, relies on a regret-minimization algorithm
satisfying the following guarantee.
Definition C.3 (Regret Minimization Algorithm). We say REGMIN is a regret minimization algo-
rithm if it has regret scaling as, with probability at least 1� �,

RK :=
KX

k=1

(V ?

0 � V
⇡k

0 ) 
p

C1K logp1(HK/�) + C2 log
p2(HK/�)
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for any deterministic reward function rh(s, a) 2 [0, 1].

Throughout this section, we will let ⇤ refer to covariates normalized by time, and ⌃ unnormalized
covariates. So, for example, we might have ⌃ =

P
T

⌧=1 �⌧�>
⌧

and ⇤ = 1
T

P
T

⌧=1 �⌧�>
⌧

.
The rest of this section is organized as follows. First, in Appendix C.2 we show that a variant of

the Frank-Wolfe algorithm that relies on only approximate updates enjoys a convergence rate similar
to the standard Frank-Wolfe rate. Next, in Appendix C.3 we show that for a smooth experiment
design objective, we can approximately optimize the objective in a linear MDP by approximating the
Frank-Wolfe updates via a regret minimization algorithm. Finally, in Appendix C.4 we present our
main experiment-design algorithm, OPTCOV, which relies on our online Frank-Wolfe procedure to
collect covariates that minimize an online experimental design objective up to an arbitrarily tolerance.

C.2 Approximate Frank-Wolfe

We will consider the following approximate variant of the Frank-Wolfe algorithm:

Algorithm 4 Approximate Frank-Wolfe
1: input: function to optimize f , number of iterations to run T , starting iterate x1

2: for t = 1, 2, . . . , T do

3: Set �t  1
t+1

4: Choose yt to be any point such that

rf(xt)
>yt  min

y2X
rf(xt)

>y + ✏t

5: xt+1  (1� �t)xt + �tyt

6: return xT+1

Lemma C.1. Consider running Algorithm 4 with some convex function f that is �-smooth with

respect to some norm k · k, and let R := supx,y2X kx� yk. Then for T � 2, we have

f(xT+1)� min
x2X

f(x) 
�R

2(log T + 1)

2(T + 1)
+

1

T + 1

TX

t=1

✏t.

Proof. Let x? = argminx2X f(x). Using that f is �-smooth, the definition of ys, and the convexity
of f , we have that for any s,

f(xs+1)� f(xs)  rf(xs)
>(xs+1 � xs) +

�

2
kxs+1 � xsk

2

 �srf(xs)
>(ys � xs) +

�

2
�
2
s
R

2

 �srf(xs)
>(x?

� xs) + �s✏s +
�

2
�
2
s
R

2

 �s(f(x
?)� f(xs)) + �s✏s +

�

2
�
2
s
R

2
.

Letting �s = f(xs)� f(x?), this implies that

�s+1  (1� �s)�s + �s✏s +
�

2
�
2
s
R

2
.

Unrolling this backwards gives

�T+1  (1� �T )�T + �T ✏T +
�

2
�
2
T
R

2

 (1� �T )(1� �T�1)�T�1 + (1� �T )(�T�1✏T�1 +
�

2
�
2
T�1R

2) + �T ✏T +
�

2
�
2
T
R

2



TX

t=1

 
TY

s=t+1

(1� �s)

!
(�t✏t +

�

2
�
2
t
R

2).
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We can write
TY

s=t+1

(1� �s) =
TY

s=t+1

s

s+ 1
=

t+ 1

T + 1

so
TX

t=1

 
TY

s=t+1

(1� �s)

!
�

2
�
2
t
R

2 =
TX

t=1

t+ 1

T + 1

�

2

1

(t+ 1)2
R

2

=
�R

2

2(T + 1)

TX

t=1

1

t+ 1


�R

2(log T + 1)

2(T + 1)

and
TX

t=1

 
TY

s=t+1

(1� �s)

!
�t✏t =

TX

t=1

t+ 1

T + 1

1

t+ 1
✏t

=
1

T + 1

TX

t=1

✏t

which proves the result.

Lemma C.2. When running Algorithm 4, we have

xT+1 =
1

T + 1

 
TX

t=1

yt + x1

!
.

Proof. We have:

xT+1 =
TX

t=1

 
TY

s=t+1

(1� �s)

!
�tyt +

 
TY

s=1

(1� �s)

!
x1

=
TX

t=1

t+ 1

T + 1

1

t+ 1
yt +

1

T + 1
x1

=
1

T + 1

TX

t=1

yt +
1

T + 1
x1.

C.3 Online Frank-Wolfe via Regret Minimization

Algorithm 5 Online Frank-Wolfe via Regret Minimization (FWREGRET)
1: input: function to optimize f , number of iterates T , episodes per iterate K

2: Play any policy for K episodes, denote collected covariates as �0, collected data as D0

3: ⇤1  K
�1�0

4: for t = 1, 2, . . . , T do

5: Set �t  1
t+1

6: Run REGMIN on reward r
t

h
(s, a) = tr(⌅⇤t

· �(s, a)�(s, a)>)/M for K episodes, denote
collected covariates as �t, collected data as Dt

7: ⇤t+1  (1� �t)⇤t + �tK
�1�t

8: return ⇤T+1, [T
t=0Dt
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Lemma C.3. Consider running Algorithm 5 with a function f satisfying Definition C.1 and a regret

minimization algorithm satisfying Definition C.3. Denote K0(T,�,M, �) the minimum integer value

of K satisfying

K � max

⇢
72T 2

M
2 log(4T/�)

�2R4
,
8T 2

M
2
C1 log

p1(2HKT/�)

�2R4
,
3TMC2 log

p2(2HKT/�)

�R2

�
.

Then as long as K � K0(T,�,M, �), we have that, with probability at least 1� �,

f(⇤T+1)� inf
⇤2⌦

f(⇤) 
�R

2(log T + 3)

2(T + 1)

for R = sup
⇡,⇡0 k⇤⇡ �⇤⇡0k.

Proof. Note that by Lemma C.2 and since k�(s, a)k2  1, we can bound k⇤tkop  1 and
k�(s, a)�(s, a)>kop  1. Definition C.1 it follows that r

t

h
(s, a) 2 [0, 1] for all s, a, since

tr(⌅⇤t
· �(s, a)�(s, a)>)  k�(s, a)�(s, a)>kop · tr(⌅⇤t

)  tr(⌅⇤t
)  M , and tr(⌅⇤t

·

�(s, a)�(s, a)>) � 0 since ⌅⇤t
⌫ 0. If we run REGMIN for K episodes on reward function

r
t

h
, by Definition C.1 and Definition C.3 we then have that, with probability at least 1� �/2T ,

p
C1K logp1(2HKT/�) + C2 log

p2(2HKT/�) � K sup
⇡

E⇡[tr(⌅⇤t
· ��>)/M ]�

KX

k=1

E⇡k
[tr(⌅⇤t

· ��>)/M ]

= K sup
⇡

tr(⌅⇤t
⇤⇡)/M �Ktr(⌅⇤t

·K
�1

KX

k=1

⇤⇡k
)/M

which implies
r

M2C1 log
p1(2HKT/�)

K
+

MC2 log
p2(2HKT/�)

K
� sup

⇡

tr(⌅⇤t
⇤⇡)� tr(⌅⇤t

·K
�1

KX

k=1

⇤⇡k
).

Furthermore, we have that
�����tr(⌅⇤t

·K
�1

KX

k=1

⇤⇡k
)� tr(⌅⇤t

·K
�1�t)

����� =

�����
1

K

KX

k=1

tr(⌅⇤t
⇤⇡k

)�
1

K

KX

k=1

tr(⌅⇤t
�k�

>
k
)

����� .

Note that E⇡k
[tr(⌅⇤t

�k�>
k
)] = tr(⌅⇤t

⇤⇡k
), tr(⌅⇤t

�k�>
k
) 2 [0,M ], and ⇡k is Fk�1-measurable.

We can therefore apply Azuma-Hoeffding (Lemma A.4) to get that, with probability at least 1��/2T ,
�����tr(⌅⇤t

·K
�1

KX

k=1

⇤⇡k
)� tr(⌅⇤t

·K
�1�t)

����� 
r

8M2 log(4T/�)

K
.

Therefore,
r

8M2 log(4T/�)

K
+

r
M2C1 log

p1(2HKT/�)

K
+

MC2 log
p2(2HKT/�)

K

� sup
⇡

tr(⌅⇤t
⇤⇡)� tr(⌅⇤t

·K
�1�t).

Given our condition on K, we have
r

8M2 log(4T/�)

K
+

r
M2C1 log

p1(2HKT/�)

K
+

MC2 log
p2(2HKT/�)

K


�R
2

T

which implies

sup
⇡

tr(⌅⇤t
⇤⇡)� tr(⌅⇤t

·K
�1�t) 

�R
2

T
. (C.1)

Note that, for any ⇤ 2 ⌦, we have

tr(⌅⇤t
⇤) = tr(⌅⇤t

E⇡⇠![⇤⇡]) = E⇡⇠![tr(⌅⇤t
⇤⇡)]
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so

sup
⇤2⌦

tr(⌅⇤t
⇤) = sup

!2⌦⇡

E⇡⇠![tr(⌅⇤t
⇤⇡)] = sup

⇡

tr(⌅⇤t
⇤⇡)

By definition, ⌅⇤t
= �r⇤f(⇤)|⇤=⇤t

, so it follows that

� sup
⇤02⌦

tr(⌅⇤t
⇤0) = inf

⇤02⌦
tr(r⇤f(⇤)|⇤=⇤t

·⇤0).

It follows that (C.1) is precisely the guarantee required on yt by Algorithm 4 with ✏t =
�R

2

T
.

Since f is �-smooth by Definition C.1 and since the set ⌦ is convex and compact by Lemma A.9, we
can apply Lemma C.1 with a union bound over t to get the result.

C.4 Data Collection via Online Frank-Wolfe

Algorithm 6 Collect Optimal Covariates (OPTCOV)
1: input: functions to optimize (fi)i, constraint tolerance ✏, confidence �

2: for i = 1, 2, 3, . . . do

3: Ti  2i, Ki  2iT 2
i

4: if Ki �
eK0(Ti,�i,Mi,

�

4i2 )T
2
i
+ eK1(Ti,�i,Mi,

�

4i2 )Ti for eK0 and eK1 as in Lemma C.5
then

5: b⇤,Di  FWREGRET(fi, Ti � 1,Ki)
6: if fi(b⇤)  KiTi✏ and fi(b⇤) � �iR

2(log Ti+3)
Ti

then

7: return b⇤, KiTi, Di

Theorem 7. Let (fi)i denote some sequence of functions which satisfy Definition C.1 with constants

(�i, Li,Mi) and assume �i � 1. Let (�, L,M) be some values such that �i  �, Li  L,Mi M

for al i, and let f be some function such that fi(⇤)  f(⇤) for all i and ⇤ ⌫ 0. Denote fmin a

lower bound on all fi: mini inf⇤2⌦ fi(⇤) � fmin.

Define

N
?(✏; f) :=

inf⇤2⌦ f(⇤)

✏
. (C.2)

Then, if we run Algorithm 6 on (fi)i with constraint tolerance ✏ and confidence �, we have that with

probability at least 1� �, it will run for at most

5N?(✏; f) + poly
�
2p1+p2 , C1, C2,M,�, R, L, f

�1
min, log 1/�

�

episodes, and will return data {�⌧}
N

⌧=1 with covariance b⌃N =
P

N

⌧=1 �⌧�>
⌧

such that

fbi(N
�1 b⌃N )  N✏,

wherebi is the iteration on which OPTCOV terminates.

Corollary 6. Instantiating REGMIN with the computationally efficient version of the FORCE algo-

rithm of Wagenmaker et al. (2021a), we obtain a complexity of

5N?(✏; f) + poly
�
d,H,M,�, R, L, f

�1
min, log 1/�

�
.

Proof. This result is immediate since FORCE satisfies Definition C.3 with

C1 = c1d
4
H

4
, C2 = c2d

4
H

3
, p1 = 3, p2 = 7/2

for universal numerical constants c1 and c2.

Proof of Theorem 8. We first show that the condition fi(b⇤) � �R
2(log Ti+3)

Ti

is sufficient to ensure a
2-approximate minimum of fi, and then show a sufficient condition on Ki and Ti that will guarantee
the condition on Line 6 is met.
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Guaranteeing 2-optimality. We first show that for a fixed i, the condition fi(b⇤) � �iR
2(log Ti+3)

Ti

will only be met once

fi(b⇤)  2 · inf
⇤2⌦

fi(⇤)

and that it will take at most

Ti �
2�R2(log Ti + 3)

inf⇤2⌦ fi(⇤)

iterations to do so, as long as

TiKi �
L
2

2(d log(1 + 8
p
TiKi) + log(4i2/�)) · (inf⇤2⌦ fi(⇤))2

.

The first part follows by applying Lemma C.3. Note that the if statement on Line 4 will only be
met once

Ki � K0(Ti,�i,Mi, �/4i
2).

This follows by Lemma C.5. Thus, the condition on Ki required by Lemma C.3 will be met, so it
follows that with probability at least 1� �/(4i2),

fi(b⇤)� inf
⇤2⌦

fi(⇤) 
�iR

2(log Ti + 3)

2Ti

.

Therefore, if fi(b⇤) � �iR
2(log Ti+3)

Ti

, we have

fi(b⇤)� inf
⇤2⌦

fi(⇤) 
1

2
fi(b⇤) =)

1

2
fi(b⇤)  inf

⇤2⌦
fi(⇤)

=) fi(b⇤)  2 · inf
⇤2⌦

fi(⇤).

We will show a sufficient condition for fi(b⇤) � �R
2(log Ti+3)

Ti

, which implies that fi(b⇤) �
�iR

2(log Ti+3)
Ti

since �i  �. By Lemma C.2 and the procedure run by Algorithm 5, we have that
b⇤ = 1

TiKi

P
TiKi

⌧=1 �⌧�>
⌧

where at episodes ⌧ we run some F⌧�1-measurable policy ⇡⌧ to acquire �⌧ .
Now if b⇤ = e⇤ for some e⇤ 2 ⌦, then the second part follows trivially since inf⇤2⌦ fi(⇤)  fi(e⇤),
so a sufficient condition for fi(b⇤) � �R

2(log Ti+3)
Ti

is that inf⇤2⌦ fi(⇤) � �R
2(log Ti+3)

Ti

. However,
since b⇤ is stochastic, we may not have that b⇤ 2 ⌦. Let e⇤ := 1

TiKi

P
TiKi

⌧=1 ⇤⇡⌧
and note that e⇤ 2 ⌦.

Applying Lemma C.4, we have that with probability at least 1� �/(4i2),

���e⇤� b⇤
���
op


s
8d log(1 + 8

p
TiKi) + 8 log(4i2/�)

TiKi

for e⇡ the uniform mixture of {⇡⌧}
TiKi

⌧=1 . By the Lipschitz condition of Definition C.1, this implies

fi(b⇤) � fi(e⇤)� Lik
b⇤� e⇤kop

� fi(e⇤)� Lkb⇤� e⇤kop

� fi(e⇤)� L

s
8d log(1 + 8

p
TiKi) + 8 log(4i2/�)

TiKi

� inf
⇤2⌦

fi(⇤)� L

s
8d log(1 + 8

p
TiKi) + 8 log(4i2/�)

TiKi

.

Thus, a sufficient condition for fi(b⇤) � �R
2(log Ti+3)

Ti

is that

inf
⇤2⌦

fi(⇤)� L

s
8d log(1 + 8

p
TiKi) + 8 log(4i2/�)

TiKi

�
�R

2(log Ti + 3)

Ti
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() Ti �
�R

2(log Ti + 3)

inf⇤2⌦ fi(⇤)� L

q
8d log(1+8

p
TiKi)+8 log(4i2/�)
TiKi

.

If

TiKi �
L
2

2(d log(1 + 8
p
TiKi) + log(4i2/�)) · (inf⇤2⌦ fi(⇤))2

it follows that a sufficient condition is

Ti �
2�R2(log Ti + 3)

inf⇤2⌦ fi(⇤)
.

Union bounding over the events considered above for all i, we have that the total probability of
failure is bounded as

1X

i=1

(
�

4i2
+

�

4i2
) =

⇡
2

12
�  �.

Termination Guarantee. We next show a sufficient condition to ensure that the if statements on
Line 4 and Line 6 are met.

Assume the if statement on Line 4 has been met and that we are in the regime where

TiKi �
L
2

2(d log(1 + 8
p
TiKi) + log(4i2/�)) · f2

min

, Ti �
2�R2(log Ti + 3)

fmin
. (C.3)

By the argument above and since inf⇤2⌦ fi(⇤) � fmin, these conditions are sufficient to guarantee
a 2-optimal solutions has been found, that is,

fi(b⇤)  2 · inf
⇤2⌦

fi(⇤),

and that the condition fi(b⇤) � �R
2(log Ti+3)

Ti

has been met. Thus, if (C.3) holds, a sufficient condition
for fi(b⇤)  TiKi✏ is

2 · inf
⇤2⌦

fi(⇤)  TiKi✏.

It follows that this condition will be met (assuming (C.3) holds) once TiKi � N
?( ✏2 ; fi). Since

fi  f , N?( ✏2 ; fi)  N
?( ✏2 ; f), so a sufficient condition is that TiKi � N

?( ✏2 ; f).
To upper bound the total complexity, it suffices then to guarantee that we run for enough epochs

so that

Ki = 23i � eK0(Ti,�i,Mi,
�

4i2
)T 2

i
+ eK1(Ti,�i,Mi,

�

4i2
)Ti (C.4)

TiKi = 24i �
L
2

2(d log(1 + 8
p
TiKi) + log(4i2/�)) · f2

min

(C.5)

Ti = 2i �
2�R2(log Ti + 3)

fmin
(C.6)

TiKi = 24i � N
?(

✏

2
; f). (C.7)

Here (C.4) guarantees the if statement on Line 4 is met, and (C.5)-(C.7) guarantee the if statement on
line Line 6 is met.

By assumption, Mi M and �i � 1, and note that eK0(Ti,�i,Mi,
�

4i2 ) and eK1(Ti,�i,Mi,
�

4i2 )
are both increasing in Mi and decreasing in �i. Thus, a sufficient condition to ensure (C.4) is met is

23i � eK0(2
i
, 1,M,

�

4i2
)22i + eK1(2

i
, 1,M,

�

4i2
)2i. (C.8)

Some calculation shows that

eK0(2
i
, 1,M,

�

4i2
)  (5i)p1 eK0(2, 1,M,

�

4
), eK1(2

i
, 1,M,

�

4i2
)  (4i)p2 eK1(2, 1,M,

�

4
)
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so a sufficient condition to meet (C.8) is

2i � 2(5i)p1 eK0(2, 1,M,
�

4
), 22i � 2(4i)p2 eK1(2, 1,M,

�

4
).

By Lemma A.2 and some calculation, this will be met once

i � max

⇢
4p1 log2(2p1) + 2 log2(2(5)

p1 eK0(2, 1,M,
�

4
)), 2p2 log2(p2) + 2 log2(2(4)

p2 eK1(2, 1,M,
�

4
))

�
=: i0.

To meet (C.5) it suffices to take

i �
1

4
log2

L
2

df
2
min

=: i1

By Lemma A.2, a sufficient condition to meet (C.6) is that

Ti � max

⇢
6�R2

fmin
,
4�R2

fmin
log

4�R2

fmin

�

so it suffices that

i � log2

✓
6�R2

fmin
log

4�R2

fmin

◆
=: i2.

Finally, to meet (C.7), it suffices that

i �
1

4
log2 N

?(✏/2; f) =: i3.

If we terminate at epochbi, the total sample complexity will be bounded by
biX

i=1

TiKi =

biX

i=1

24i 
16

15
· 24

bi
.

By the above argument, we can boundbi  dmax{i0, i1, i2, i3}e. Furthermore, we see that

24di0e = poly (2p1 , 2p2 ,M, C1, C2, log 1/�)

24di1e = poly(L, f�1
min)

24di2e = poly(�, R, f
�1
min)

24di3e  2N?(✏/2; f)

so we can bound the total sample complexity by

16

15
· 24dmax{i0,i1,i2,i3}e 

32

15
N

?(✏/2; f) + poly
�
2p1 , 2p2 ,�, R, L, f

�1
min,M, C1, C2, log 1/�

�
.

This completes the proof since N
?( ✏2 ; f) = 2N?(✏; f) and since, by Lemma C.2, b⇤ is simply the

average of the observed feature vectors: b⇤ = 1
TiKi

P
TiKi

⌧=1 �⌧�>
⌧

.

Lemma C.4. Let ⇤K denote the time-normalized covariates obtained by playing policies {⇡k}
K

k=1,

where ⇡k is Fk�1-measurable. Then, with probability at least 1� �,

�����
1

K

KX

k=1

⇤⇡k
�⇤K

�����
op



s
8d log(1 + 8

p
K) + 8 log 1/�

K
.

Proof. Let V denote an ✏-net of Sd�1, for some ✏ to be chosen. Then,
�����
1

K

KX

k=1

⇤⇡k
�⇤K

�����
op

= sup
v2Sd�1

�����v
>

 
1

K

KX

k=1

⇤⇡k
�⇤K

!
v

�����
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 sup
ev2V

�����ev
>

 
1

K

KX

k=1

⇤⇡k
�⇤K

!
ev

�����
| {z }

(a)

+ sup
v2Sd�1

inf
ev2V

�����v
>

 
1

K

KX

k=1

⇤⇡k
�⇤K

!
v � ev>

 
1

K

KX

k=1

⇤⇡k
�⇤K

!
ev

�����
| {z }

(b)

.

Via a union bound over V and application of Azuma-Hoeffding, we can bound, with probability at
least 1� �,

(a) 

r
2 log |V|/�

K
.

We can bound (b) as

(b)  sup
v2Sd�1

inf
ev2V

2

�����v
>

 
1

K

KX

k=1

⇤⇡k
�⇤K

!
(v � ev)

�����

 sup
v2Sd�1

inf
ev2V

2kv � evk2

�����
1

K

KX

k=1

⇤⇡k
�⇤K

�����
op

 4✏

where the last inequality follows since k 1
K

P
K

k=1 ⇤⇡k
kop  1, and k 1

K
⇤Kkop  1, and since V is

an ✏-net. Setting ✏ = 1/(4
p
K), Lemma A.1 gives that |V|  (1 + 8

p
K)d, and we conclude that

with probability at least 1� �:�����
1

K

KX

k=1

⇤⇡k
�⇤K

�����
op



r
2 log |V|/�

K
+ 4✏



s
2d log(1 + 8

p
K) + 2 log 1/�

K
+

1
p
K

 2

s
2d log(1 + 8

p
K) + 2 log 1/�

K
.

Lemma C.5. We can bound

K0(T,�,M, �)  eK0(T,�,M, �)T 2 + eK1(T,�,M, �)T
for

eK0(T,�,M, �) := max

⇢
72M2 log(4T/�)

�2R4
,
8M2

C1

�2R4
· (2p1)

p1 logp1

✓
32p1HT

3
M

2
C1

�2R4�

◆�

eK1(T,�,M, �) :=
3MC2

�R2
· (2p2)

p2 logp2

✓
12p2HT

2
MC2

�R2�

◆
,

Proof. By definition K0(T,�,M, �) is the smallest integer value of K that satisfies:

K � max

⇢
72T 2

M
2 log(4T/�)

�2R4
,
8T 2

M
2
C1 log

p1(2HKT/�)

�2R4
,
3TMC2 log

p2(2HKT/�)

�R2

�
.

(C.9)
By Lemma A.2, we have that if

K �
8T 2

M
2
C1

�2R4
· (2p1)

p1 logp1

✓
8T 2

M
2
C1

�2R4
·
4p1HT

�

◆
, K �

3TMC2

�R2
· (2p2)

p2 logp2

✓
3TMC2

�R2
·
4p2HT

�

◆

and

K �
72T 2

M
2 log(4T/�)

�2R4

then Equation (C.9) will be satisfied. Some algebra gives the result.

41



D XY-Optimal Design

We are interested in optimizing the function

XYopt(⇤) = max
�2�
k�k2A(⇤)�1 for A(⇤) = ⇤+⇤0

with ⇤0 � 0 some fixed regularizer. This objective, however, is not smooth, so we relax it to the
following:

fXYopt(⇤) := LogSumExp
⇣
{e

⌘k�k2
A(⇤)�1

}�2�; ⌘
⌘
=

1

⌘
log

0

@
X

�2�

e
⌘k�k2

A(⇤)�1

1

A . (D.1)

We first offer some properties on how well fXYopt(⇤) approximates XYopt(⇤), and then show
that we can bound the smoothness constant of fXYopt(⇤). Throughout this section, we will denote
�� := max�2� k�k2 and let f(⇤) := fXYopt(⇤).

D.1 Approximating Non-Smooth Optimal Design with Smooth Optimal Design

Lemma D.1.

|XYopt(⇤)� fXYopt(⇤)| 
log |�|

⌘
, XYopt(⇤)  fXYopt(⇤).

Proof. This result is standard but we include the proof for completeness. We prove it for some
generic sequence (ai)ni=1. Take ⌘ > 0. Clearly,

exp(max
i

⌘ai) 
nX

i=1

exp(⌘ai)  n exp(max
i

⌘ai)

so

max
i

⌘ai  log

 
nX

i=1

exp(⌘ai)

!
 log n+max

i

⌘ai.

The result follows by rearranging and dividing by ⌘.

Lemma D.2. If ⌘ � e⌘ � 0, then fXYopt(⇤; ⌘)  fXYopt(⇤; e⌘).

Proof. We will prove this for some generic sequence (ai)ni=1, ai � 0. Note that,

d

d⌘

1

⌘
log

 
X

i

e
⌘ai

!
= �

1

⌘2
log

 
X

i

e
⌘ai

!
+

1

⌘

1P
i
e⌘ai

·

X

i

aie
⌘ai .

We are done if we can show this is non-positive. Note that,

log

 
X

i

e
⌘ai

!
� max

i

log (e⌘ai) = max
i

⌘ai

so

�
1

⌘2
log

 
X

i

e
⌘ai

!
+

1

⌘

1P
i
e⌘ai

·

X

i

aie
⌘ai  �

1

⌘
max

i

ai +
1

⌘

1P
i
e⌘ai

·

X

i

aie
⌘ai

 �
1

⌘
max

i

ai +
1

⌘
max

i

ai

= 0.

The result follows since fXYopt has this form.

Lemma D.3. We have,

inf
⇤⌫0,k⇤kop1

XYopt(⇤) �
��

1 + k⇤0kop
.
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Proof. Note that kA(⇤)kop  1 + k⇤0kop, so

inf
⇤⌫0,k⇤kop1

max
�2�
k�k2A(⇤)�1 � inf

⇤⌫0,k⇤kop1+k⇤0kop

k�k2A(⇤)�1 �
max�2� k�k2
1 + k⇤0kop

.

Lemma D.4. Assume that we set ⌘ �
2
��

(1 + k⇤0kop) · log |�|. Then

N
?(✏; fXYopt(⇤))  2N?(✏;XYopt(⇤)).

Proof. Denote f(⇤)  LogSumExp
⇣
{e

⌘k�k2
A(⇤)�1

}�2�; ⌘
⌘

. By Lemma D.1 and Lemma D.3,
we have

|max
�2�
k�k2A(⇤)�1 � f(⇤)| 

log |�|

⌘


��

2(1 + k⇤0kop)
 min

⇤⌫0,k⇤kop1

1

2
f(⇤)

=) f(⇤)  2max
�2�
k�k2A(⇤)�1 .

Let ⇤? denote the matrix that minimizes max�2� k�k2A(⇤)�1 over the constraint set:
max�2� k�k2A(⇤?)�1 = inf⇤2⌦ max�2� k�k2A(⇤)�1 . Then it follows that, by definition of
N

?(✏; max�2� k�k2A(⇤)�1):

max
�2�
k�k2A(⇤?)�1  ✏ ·N

?(✏; max
�2�
k�k2A(⇤)�1).

However, this implies

1

2
f(⇤?)  ✏ ·N

?(✏; max
�2�
k�k2A(⇤)�1),

so (⇤?
, 2N?(✏; max�2� k�k2A(⇤)�1)) is a feasible solution to the optimization (C.2) for f . As

N
?(✏; f) is the minimum solution, it follows that N?(✏; f)  2N?(✏; max�2� k�k2A(⇤)�1).

D.2 Bounding the Smoothness

Lemma D.5. f(⇤) = fXYopt(⇤) satisfies all conditions of Definition C.1 with

L = k⇤�1
0 k

2
op, � = 2k⇤�1

0 k
3
op(1 + ⌘k⇤�1

0 kop), M = k⇤�1
0 k

2
op

r⇤f(⇤) =

0

@
X

�2�

e
⌘k�k2

A(⇤)�1

1

A
�1

·

X

�2�

e
⌘k�k2

A(⇤)�1A(⇤)�1��>A(⇤)�1 =: ⌅⇤.

Proof. Using Lemma D.6, the gradient of f(⇤) with respect to ⇤ij is

r⇤ij
f(⇤) = �

0

@
X

�2�

e
⌘k�k2

A(⇤)�1

1

A
�1

·

X

�2�

e
⌘k�k2

A(⇤)�1�>A(⇤)�1eie
>
j
A(⇤)�1�

from which the expression for r⇤f(⇤) follows directly.
To bound the Lipschitz constant of f , by the Mean Value Theorem it suffices to bound

sup
⇤,e⇤⌫0,k⇤kop1,ke⇤kop1

|tr(rf(⇤)> e⇤)| 

0

@
X

�2�

e
⌘k�k2

A(⇤)�1

1

A
�1

·

X

�2�

e
⌘k�k2

A(⇤)�1
kA(⇤)�1

k
2
opk
e⇤kop

 k⇤�1
0 k

2
op

where the last inequality follows since A(⇤) ⌫ ⇤0 for all ⇤. This also suffices as a bound on M .
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To bound the smoothness, again by the Mean Value Theorem it suffices to bound the operator
norm of the Hessian. Standard calculus gives that, using r2

f(⇤)[e⇤, ⇤̄] to denote the Hessian of f
in direction (e⇤, ⇤̄):

r
2
f(⇤)[e⇤, ⇤̄] = �

d

dt

0
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We can bound this as

sup
⇤,e⇤,⇤̄⌫0,k⇤kop1,ke⇤kop1,k⇤̄kop1

|r
2
f(⇤)[e⇤, ⇤̄]|  2⌘k⇤�1

0 k
4
op + 2k⇤�1

0 k
3
op.

Convexity of f(⇤) follows since it is the composition of a convex function with a strictly increasing
convex function, so it is itself convex.

Lemma D.6. For ⇤ invertible,
d

dt
(⇤+ teie>j )

�1 = �⇤�1eie>j ⇤
�1

.

Proof. We can compute the gradient as

d

dt
(⇤+ teie

>
j
)�1 = lim

t!0

(⇤+ teie>j )
�1
�⇤�1

t
.

By the Sherman-Morrison formula,

(⇤+ teie
>
j
)�1 = ⇤�1

�
t⇤�1eie>j ⇤

�1

1 + te>
j
⇤�1ei

so as t! 0,

(⇤+ teie
>
j
)�1
! ⇤�1

� t⇤�1eie
>
j
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Thus,
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t!0

(⇤+ teie>j )
�1
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t
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⇤�1
� t⇤�1eie>j ⇤

�1
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t
= �⇤�1eie

>
j
⇤�1

.

D.3 Obtaining Well-Conditioned Covariates

Lemma D.7. Consider running policies (⇡⌧ )T⌧=1, for ⇡⌧ F⌧�1-measurable, and collecting covari-

ance ⌃T =
P

T

⌧=1 �⌧�>
⌧

. Then as long as

�min(⌃T ) � 12544d log
2 + 32T

�
.

with probability at least 1� �, if we rerun each (⇡⌧ )T⌧=1, we will collect covariates e⌃T such that

�min(e⌃T ) �
1

2
�min(⌃T ).
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Algorithm 7 Collect Well-Conditioned Covariates (CONDITIONEDCOV)
1: input: Scale N , minimum eigenvalue �, confidence �

2: for j = 1, 2, 3, . . . do

3: Tj  poly(2j , d,H, log 1/�)

4: ✏j  2�j , �2
j
 

2�j

max{12544d log
2N(2+32Tj)

�
,�}

, �j  �/(4j2)

5: Run Algorithm 5 of Wagenmaker et al. (2022) with parameters (✏j , �2
j
, �j), obtain covariates

e⌃ and store policies run as e⇧
6: if �min(e⇤) � max{12544d log 2N(2+32Tj)

�
,�} then

7: break

8: Rerun every policy ⇡ 2 e⇧ dN/|e⇧|e times, collect covariates ⌃̄
9: return e⌃+ ⌃̄

Proof. Let N be an 1
8T -net of Sd�1. Let ⌃ ⌫ 0 be any matrix with k⌃kop  T and let v be the

minimum eigenvalue of ⌃. Let ev 2 N be the element of N closest to v in the `2 norm. Then:

�min(⌃) = v>⌃v = ev>⌃ev + (v>⌃v � ev>⌃ev)
� ev>⌃ev � |v>⌃v � v>⌃ev|� |v>⌃ev � ev>⌃ev|
� ev>⌃ev � 2k⌃kopkev � vk2.

By the construction of N and since k⌃kop  T , we can bound 2k⌃kopkev � vk2  1/4, so

ev>⌃ev � 2k⌃kopkev � vk2 � ev>⌃ev � 1/4

which implies

�min(⌃) + 1/4 � ev>⌃ev � min
ev2N

ev>⌃ev. (D.2)

By Lemma A.1, we can bound |N |  (1 + 16T )d.
Note that Var[v>�⌧ |F⌧�1]  E⇡⌧

[(v>�⌧ )2] so
P

T

⌧=1 Var[v
>�⌧ |F⌧�1] 

v>E[⌃T |⇡1, . . . ,⇡T ]v for E[⌃T |⇡1, . . . ,⇡T ] =
P

T

⌧=1 E⇡⌧
[�⌧�>

⌧
]. By Freedman’s Inequality

(Lemma A.5), for all v 2 N simultaneously, we will have, with probability at least 1� �,

��v>⌃Tv � v>E[⌃T |⇡1, . . . ,⇡T ]v
��  2

r
v>E[⌃T |⇡1, . . . ,⇡T ]v log

2|N |

�
+ log

2|N |

�
(D.3)

���v> e⌃Tv � v>E[⌃T |⇡1, . . . ,⇡T ]v
���  2

r
v>E[⌃T |⇡1, . . . ,⇡T ]v log

2|N |

�
+ log

2|N |

�
. (D.4)

Rearranging (D.3), some algebra shows that

v>E[⌃T |⇡1, . . . ,⇡T ]v  v>⌃Tv + 3 log
2|N |

�
+ 2

r
v>⌃Tv log

2|N |

�
+ 2 log2

2|N |

�

 v>⌃Tv + 6 log
2|N |

�
+ 2

r
v>⌃Tv log

2|N |

�

 3v>⌃Tv + 8 log
2|N |

�

where the last inequality uses
p
ab  max{a, b}. Thus, if (D.3) and (D.4) hold, we have

v> e⌃Tv � v>⌃Tv � 4

r
v>E[⌃T |⇡1, . . . ,⇡T ]v log

2|N |

�
� 2 log

2|N |

�

� v>⌃Tv � 4

r
3v>⌃Tv log

2|N |

�
� 14 log

2|N |

�

Therefore, as long as

v>⌃Tv � 12544 log
2|N |

�
,
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we can lower bound

v>⌃Tv � 4

r
3v>⌃Tv log

2|N |

�
� 14 log

2|N |

�
�

3

4
v>⌃Tv �

3

4
�min(⌃T )

so, for all v 2 N ,

v> e⌃Tv �
3

4
�min(⌃T ).

By assumption, �min(⌃T ) � 12544d log 2+32T
�

, which implies, since |N |  (1 + 16T )d, that for
all v 2 S

d�1, v>⌃Tv � 12544 log 2|N |
�

, so the above condition will be met.

Since ke⌃T kop  T , we can apply (D.2) to then get that

�min(e⌃T ) �
3

4
�min(⌃T )� 1/4 �

1

2
�min(⌃T ) +

1

4
(�min(⌃T )� 1).

Since we have already establishes that �min(⌃T ) � 12544d log 2+32T
�

, we have �min(⌃T )� 1 � 0,
so we can lower bound

�min(e⌃T ) �
1

2
�min(⌃T ).

Lemma D.8. With probability at least 1� �, Algorithm 7 will terminate after at most

N + poly log

✓
1

sup
⇡
�min(⌃⇡)

, d,H,�, log
N

�

◆
·

 
dmax{d log N

�
,�}

sup
⇡
�min(⌃⇡)2

+
d
4
H

3 log7/2 1
�

sup
⇡
�min(⌃⇡)

!

episodes, and will return covariates ⌃ such that

�min(⌃) � N ·min

(
sup

⇡
�min(⌃⇡)2

d
,
sup

⇡
�min(⌃⇡)

d3H3 log7/2 1/�

)
· poly log

✓
1

sup
⇡
�min(⌃⇡)

, d,H,�, log
N

�

◆�1

+max{d log 1/�,�}

and

k⌃kop  N + poly log

✓
1

sup
⇡
�min(⌃⇡)

, d,H,�, log
N

�

◆
·

 
dmax{d log N

�
,�}

sup
⇡
�min(⌃⇡)2

+
d
4
H

3 log7/2 1
�

sup
⇡
�min(⌃⇡)

!
.

Proof. By Theorem 4 of Wagenmaker et al. (2022), as long as Algorithm 5 of Wagenmaker et al.
(2022) is run with parameters ✏ and �

2, it will terminate after at most

c1 ·
1

✏
max

⇢
dm

�2
log

dm

✏�2
, d

4
H

3
m

7/2 log3/2(d/�2) log7/2
c2mdH log(d/�2)

�

�

episodes for m = dlog(2/✏)e (to get the slightly more precise bound on the number of episodes
collected than that given in Theorem 4 of Wagenmaker et al. (2022), we use the precise definition of
Ki given at the start of Appendix B). Furthermore, if ✏  sup

⇡
�min(⌃⇡), with probability at least

1� � it will collect covariates e⌃ satisfying �min(e⌃) � ✏/�
2.

It follows that, by our choice of ✏j = 2�j , �2
j
= 2�j

max{12544d log
2N(2+32Tj)

�
,�}

, and �j = �/(4j2),

for every j we will collect at most

c1 · 2
j max

⇢
2jdj2 max{d log

2N(2 + 32Tj)

�
,�} log(djaj), d

4
H

3
j
5 log3/2(daj) log

7/2 c2j
4
dH log(daj)

�

�

episodes, where we denote aj := max{12544d log 2N(2+32Tj)
�

,�}. Note that Tj is an upper bound
on this complexity. Furthermore, once j is large enough that 2�j

 sup
⇡
�min(⌃⇡), Theorem 4 of

Wagenmaker et al. (2022) implies that the condition �min(e⌃) � ✏j/�
2
j

will be met. By our choice
of �2

j
and ✏j , it follows that the if condition on Line 6 will be met once 2�j

 sup
⇡
�min(⌃⇡).
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Since 2�j decreases by a factor of 2 each time, it follows that the if statement on Line 6 will have
terminated once 2�j

� sup
⇡
�min(⌃⇡)/2. This implies that the total number of episodes collected

before the if statement on Line 6 is met is bounded as

poly log

✓
1

sup
⇡
�min(⌃⇡)

, d,H,�, log
N

�

◆
·

 
dmax{d log N

�
,�}

sup
⇡
�min(⌃⇡)2

+
d
4
H

3 log7/2 1
�

sup
⇡
�min(⌃⇡)

!
(D.5)

By Lemma D.7, since �min(e⌃) � max{12544d log 2N(2+32Tj)
�

,�} and Tj is an upper bound on the
number of episodes run at epoch j, every time we run all policies ⇡ 2 e⇧, with probability at least
1� �/(2N), we will collect covariates ⌃ such that

�min(⌃) � �min(e⌃)/2 �
1

2
max{12544d log

2N(2 + 32Tj)

�
,�}.

Thus, if we rerun every policy dN/|e⇧|e times to create covariates ⌃̄, with probability at least 1� �/2,
we have

�min(⌃̄) �
N

2|e⇧|
max{12544d log

2N(2 + 32Tj)

�
,�}.

Note that this procedure will complete after at most N + |e⇧| episodes. Furthermore, |e⇧|  (D.5), so
we can lower bound

�min(⌃̄) � N ·min

(
sup

⇡
�min(⌃⇡)2

d
,
sup

⇡
�min(⌃⇡)

d3H3 log7/2 1/�

)
· poly log

✓
1

sup
⇡
�min(⌃⇡)

, d,H,�, log
N

�

◆�1

.

The final lower bound on the returned covariates follows since we return ⌃̄+ e⌃, and we know that
�min(e⌃) � max{12544d log 2N(2+32Tj)

�
,�}. The upper bound on k⌃̄+ e⌃kop follows since every

feature vector encountered has norm of at most 1.
The failure probability of each call to Algorithm 5 of Wagenmaker et al. (2022) is �/(4j2), so the

total failure probability of Algorithm 7 is
1X

j=1

�

4j2
=

⇡
2

24
�  �/2.

D.4 Online XY-Optimal Design

Theorem 8 (Full version of Theorem 5). Consider running OPTCOV with some ✏ > 0 and functions

fi(⇤) fXYopt(⇤)

for ⇤0  (TiKi)�1⌃i =: ⇤i and

⌘i =
2

��
· (1 + k⇤ikop) · log |�|

Li = k⇤
�1
i
k
2
op, �i = 2k⇤�1

i
k
3
op(1 + ⌘ik⇤

�1
i
kop), Mi = k⇤

�1
i
k
2
op

where ⌃i is the matrix returned by running CONDITIONEDCOV with N  TiKi, �  �/(2i2), and

some � � 0. Then with probability 1� 2�, this procedure will collect at most

20 ·
inf⇤2⌦ max�2� k�k2A(⇤)�1

✏exp
+ poly

✓
d,H, log 1/�,

1

�
?

min

,
1

��
,�, log |�|, log

1

✏exp

◆

episodes, where

A(⇤) = ⇤+min

(
(�?

min)
2

d
,

�
?

min

d3H3 log7/2 1/�

)
· poly log

✓
1

�
?

min

, d,H,�, log
1

�

◆�1

· I,

and will produce covariates b⌃+⌃i such that

max
�2�
k�k2

(b⌃+⌃i)�1  ✏exp

and

�min(b⌃+⌃i) � max{d log 1/�,�}.

47



Proof. Note that the total failure probability of our calls to CONDITIONEDCOV is at most
1X

i=1

�

2i2
=

⇡
2

12
�  �.

For the remainder of the proof, we will then assume that we are on the success event of CONDI-
TIONEDCOV, as defined in Lemma D.8.

By Lemma D.5, fi(⇤) satisfies Definition C.1 with constants

Li = k⇤
�1
i
k
2
op, �i = 2k⇤�1

i
k
3
op(1 + ⌘ik⇤

�1
i
kop), Mi = k⇤

�1
i
k
2
op

for ⇤i  (TiKi)�1⌃i.
By Lemma D.8, on the success event of Lemma D.8 we have that

�min(⇤i) � min

(
(�?

min)
2

d
,

�
?

min

d3H3 log7/2 1/�

)
· poly log

✓
1

�
?

min

, d,H,�, i, log
1

�

◆�1

(note that the poly log(i)�1 dependence arises because we take N  TiKi = 24i). Thus, we can
bound, for all i (using the upper bound on k⌃ikop given in Lemma D.8 to upper bound ⌘i),

Li = Mi  max

⇢
d
2

(�?

min)
4
,
d
6
H

6 log7 1/�

(�?

min)
2

�
· poly log

✓
1

�
?

min

, d,H,�, i, log
1

�

◆
,

�i  poly

✓
d,H, log 1/�,

1

�
?

min

,
1

��
,�, i, log |�|

◆
.

Assume that the termination condition of OPTCOV forbi satisfying

bi  log

✓
poly

✓
1

✏exp
, d,H, log 1/�,

1

�
?

min

,
1

��
,�, log |�|

◆◆
. (D.6)

We assume this holds and justify it at the conclusion of the proof. For notational convenience, define

◆ := poly

✓
log

1

✏exp
, d,H, log 1/�,

1

�
?

min

,
1

��
,�, log |�|

◆
.

Given this upper bound onbi, set

L = M := max

⇢
d
2

(�?

min)
4
,
d
6
H

6 log7 1/�

(�?

min)
2

�
· poly log ◆, � := ◆.

With this choice of L,M,�, we have Li  L,Mi M,�i  � for all i  bi.
Now take f(⇤) fXYopt(⇤; ⌘,⇤0) with

⇤0  min

(
(�?

min)
2

d
,

�
?

min

d3H3 log7/2 1/�

)
·

1

poly log ◆
· I (D.7)

and

⌘ =
2 log |�|

��
·

 
1 + min

(
(�?

min)
2

d
,

�
?

min

d3H3 log7/2 1/�

)
·

1

poly log ◆

!
.

Note that in this case, we have k⇤0kop  �min(⇤i) for all i, so ⇤0 � ⇤i and ⌘  ⌘i. By the
construction of fXYopt and Lemma D.2, it follows that f(⇤) � fi(⇤) for all ⇤ ⌫ 0, so this is a valid
choice of f , as required by Theorem 8. Furthermore, we can set R = 2, since k⇤⇡kF  1 for all ⇡.

To apply Theorem 8, it remains only to find a suitable value of fmin. By Lemma D.1 and
Lemma D.3, we can lower bound fi by ��

1+k⇤ikop
. By Lemma D.8, we can lower bound

��

1 + k⇤ikop
�

��

2 + poly log ◆ ·
⇣

dmax{d log 1
�
,�}

(�?

min)
2 +

d4H3 log7/2 1
�

�
?

min

⌘ .
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We then take this as our choice of fmin.
We can now apply Theorem 8, using the complexity for OPTCOV instantiated with FORCE given

in Corollary 6, and get that with probability at least 1� �, OPTCOV will terminate in
N  5N? (✏exp/2; f) + ◆

episodes, and will return (time-normalized) covariates b⇤ such that

fbi(
b⇤)  N✏exp.

By Lemma D.4, our choice of ⌘ and ⇤0, we can upper bound

N
? (✏exp/2; f)  2N? (✏exp/2;XYopt) =

4 inf⇤2⌦ max�2� k�k2A(⇤)�1

✏exp

where here A(⇤) = ⇤+⇤0 for ⇤0 as in (D.7). Furthermore, by Lemma D.1 we have

max
�2�
k�k2

(b⌃+⇤0)�1  fbi(
b⇤).

The final upper bound on the number of episodes collected and the lower bound on the minimum
eigenvalue of the covariates follows from Lemma D.8.

It remains to justify our bound on bi, (D.6). Note that by definition of OPTCOV, if we run for
a total of N̄ episodes, we can bound bi  1

4 log2(N̄). However, we see that the bound on bi given
in (D.6) upper bounds 1

4 log2(N̄) for N̄ the upper bound on the number of samples collected by
OPTCOV stated above. Thus, our bound onbi is valid.

E Suboptimality of Optimistic Algorithms

E.1 Linear Bandit Construction

In the linear bandit setting, at each time step t, the learner chooses some zt 2 Z , and observes yt.
We will consider the case when the noise is Bernoulli so that yt ⇠ Bernoulli(h✓?, zti+ 1/2), and
will set

✓? = e1, Z = {⇠e1, e2, . . . , ed,x2, . . . ,xd}, xi = (⇠ ��)e1 + �ei
for some ⇠,�,↵ to be chosen. In this setting, the optimal arm is z? = ⇠e1, and �(ei) = ⇠, i � 2,
�(xi) = �.

We will assume:
1

52d
� ⇠ � max{�/

p

d,

p

�}, max

⇢
⇣ :=

2C1
(d/�2)1�↵

+
2C2�2

d
,�

�
 �

2
. (E.1)

We provide explicit values for ⇠,�, and � that satisfy this in Lemma E.3.
Definition E.1 (�-correct). We say a stopping rule ⌧ is �-correct if P[bz⌧ = z?] � 1� �, where bz⌧ is
the arm recommended at time ⌧ .
Lemma E.1. Consider running some low-regret algorithm satisfying Definition 4.1 on the linear

bandit instance described above and let ⌧ be some stopping time. Then if ⌧ is �-correct, we must

have that

E[⌧ ] � d� 1

48�2
· log

1

2.4�
.

Proof. This proof follows closely the proof of Theorem 1 of Fiez et al. (2019) and relies on the
Transportation Lemma of Kaufmann et al. (2016).

Bounding the number of pulls to {e2, . . . , ed}. By assumption, we collect data with a low-regret
algorithm satisfying Definition 4.1. Every time we pull ei, i � 2, we incur a loss of 1/2. Thus, we
can lower bound

E[V ?

0 � V
⇡k

0 ] �
1

2

dX

i=2

E[P⇡k
[zk = xi]]

so, letting T (xi) denote the total number of pulls to xi, we have

C1K
↵ + C2 �

KX

k=1

E[V ?

0 � V
⇡k

0 ] �
1

2

KX

k=1

dX

i=2

E[P⇡k
[zk = xi]] =

1

2

dX

i=2

E[T (xi)]. (E.2)
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Applying the Transportation Lemma. Let ⇥alt denote the set of ✓ vectors such that ⇠e1 is not
the optimal arm, that is, maxz2X h✓, zi > h✓, ⇠e1i. Let ⌫✓,z = Bernoulli(h✓, zi+ 1/2). Then by
the Transportation Lemma of Kaufmann et al. (2016), for any ✓ 2 ⇥alt, assuming our stopping rule
is �-correct, we have

X

z2Z
E[T (z)]KL(⌫✓?,z||⌫✓,z) � log

1

2.4�
.

Combining this with our constraint (E.2), it follows that
P

z2Z E[T (z)] �
P

z2Z tz for any (tz)z2Z
that is a feasible solution to

min
X

z2Z
tz s.t. min

✓2⇥alt

X

z2Z
tzKL(⌫✓?,z||⌫✓,z) � log

1

2.4�
, C1(

X

z2Z
tz)

↵ + C2 �
1

2

dX

i=2

txi
.

(E.3)

We can rearrange the second constraint to

2C1
(
P

z2Z tz)1�↵
+

2C2P
z2Z tz

�

P
d

i=2 txiP
z2Z tz

.

Assume that the optimal value of (E.3) satisfies
P

z2Z tz �
d

�2 , then this constraint can be weakened
to

⇣ :=
2C1

(d/�2)1�↵
+

2C2�2

d
�

P
d

i=2 txiP
z2Z tz

.

It follows then that if the optimal value to

min
X

z2Z
tz s.t. min

✓2⇥alt

X

z2Z
tzKL(⌫✓?,z||⌫✓,z) � log

1

2.4�
, ⇣ �

P
d

i=2 txiP
z2Z tz

(E.4)

is at least d/�2, then the optimal value to (E.3) is also at least d/�2, so our assumption thatP
z2Z tz �

d

�2 will be justified.
For z 6= z?, let ✓z(✏, t) denote the instance

✓? �
(y>

z ✓? + ✏)eA(t)�1yz

y>
z
eA(t)�1yz

for yz = z?
� z, eA(t) =

P
z2Z

tzP
z02Z tz0

zz> + diag([⇠2, �2
/d, . . . , �

2
/d]), and ✏  min{�, ⇠}.

Note that y>
z ✓z(✏, t) = �✏ < 0 which implies that ✓z(✏, t) 2 ⇥alt. Furthermore, we can bound:

Claim E.2. For all z,v 2 Z ,

KL(⌫✓?,v||⌫✓z(✏,t),v)  16(y>
z ✓? + ✏)2

y>
z
eA(t)�1vv> eA(t)�1yz

(y>
z
eA(t)�1yz)2

.

This implies that, for any t,

X

v2Z
tvKL(⌫✓?,v||⌫✓z(✏,t),v)  16

X

v2Z
tv(y

>
z ✓? + ✏)2

y>
z
eA(t)�1vv> eA(t)�1yz

(y>
z
eA(t)�1yz)2

= 16
X

v2Z
tv · (y>

z ✓? + ✏)2
y>
z
eA(t)�1(

P
v2Z

tvP
v02Z tv0

vv>)eA(t)�1yz

(y>
z
eA(t)�1yz)2

 16
X

v2Z
tv · (y>

z ✓? + ✏)2
y>
z
eA(t)�1 eA(t)eA(t)�1yz

(y>
z
eA(t)�1yz)2

=
X

v2Z
tv ·

16(y>
z ✓? + ✏)2

kyzk
2
eA(t)�1
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Thus:

(E.4) � min
X

v2Z
tv s.t. min

z 6=z?

X

v2Z
tvKL(⌫✓?,v||⌫✓z(✏,t),v) � log

1

2.4�
, ⇣ �

P
d

i=2 txiP
v2Z tv

� min
X

v2Z
tv s.t.

X

v2Z
tv � max

z 6=z?

kyzk
2
eA(t)�1

16(y>
z ✓? + ✏)2

· log
1

2.4�
, ⇣ �

P
d

i=2 txiP
v2Z tv

= inf
�2e4

max
z 6=z?

kyzk
2
eA(�)�1

16(y>
z ✓? + ✏)2

· log
1

2.4�

where eA(�) =
P

z2Z �zzz> and e4 = {� 2 4Z : ⇣ �
P

d

i=2 �xi
}. We can further lower bound

this by

� inf
�2e4

max
i�2

kz?
� xik

2
eA(�)�1

16((z? � xi)>✓? + ✏)2
· log

1

2.4�

= inf
�2e4

max
i�2

k�e1 � �eik2eA(�)�1

16(�+ ✏)2
· log

1

2.4�
.

By Lemma E.4, we have
inf
�2e4

max
i�2
k�e1 � �eik

2
eA(�)�1

� inf
�24d

max
i�2

(�e1 � �ei)
>
⇣
2⇠2e1e

>
1 + 2max{⇣, �2

}�ieie
>
i
+ diag([⇠2, �2

/d, . . . , �
2
/d])

⌘�1
(�e1 � �ei)

� inf
�24d

max
i�2

(�e1 � �ei)
>
⇣
3⇠2e1e

>
1 + (2max{⇣, �2

}�i + �
2
/d)eie

>
i

⌘�1
(�e1 � �ei)

=
�2

3⇠2
+ inf

�24d

max
i�2

1

2�i + 1/d

where in the final equality we have used that ⇣  �
2. However, this is clearly minimized by choosing

�i = 1/(d� 1), which gives a lower bound of
1

2/(d� 1) + 1/d
�

d� 1

3
.

Putting all of this together, we have shown that any feasibly solution (tz)z2Z to (E.3) must satisfy
X

z2Z
tz �

d� 1

48(�+ ✏)2
· log

1

2.4�
.

Using that any feasible solution to (E.3) lower bounds
P

z2Z E[T (z)] and taking ✏ ! 0 gives the
result.

Lemma E.3. Take some � > 0 satisfying:

�  min

(
1

2704d2
,

r
1

10816C2
,

✓
1

10816d↵C1

◆ 1
2(1�↵)

)

and set

⇠ =
1

52d
, � = max

⇢
2C1

(d/�2)1�↵
+

2C2�2

d
, d�

�
.

Then this choice of ⇠, �, � satisfies (E.1) and, furthermore, kzk2  1 for all z 2 Z .

Proof. To satisfy (E.1), we must have 1
52

p
d
� �. Thus, if

� 
1

2704d2
, � 

r
1

10816C2
, � 

✓
1

10816d↵C1

◆ 1
2(1�↵)

,

some computation shows that choosing � as prescribed will meet the constraint 1
52

p
d
� � and will

also satisfy � �
p
d�. The norm bound follows by our choice of ⇠ and since ⇠ � �/

p
d �
p
�.
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E.1.1 Additional Proofs

Proof of Claim E.2. We first show that |h✓z(✏, t),vi|  13d⇠ for all z,v 2 Z . Note that for all
v 2 Z , |hv,✓?i|  ⇠.

Case 1: z = z?
. In this case, hyz,✓?i = 0 so the result follows from our condition on ✏.

Case 2: z = ei, i � 2. Let e4 = {� 2 4Z : ⇣ �
P

d

i=2 �xi
}. In this case, hz,✓?i = 0 and

hyz,✓?i = ⇠. Furthermore, by Lemma E.4,

y>
z
eA(t)�1yz � inf

�2e4
y>
z

⇣
2
X

z02Z
�z0diag([(z0)2]) + diag([⇠2, �2

/d, . . . , �
2
/d])

⌘�1
yz

� y>
z

⇣
2⇠2e1e

>
1 + 2max{⇣, �2

}eie
>
i
+ diag([⇠2, �2

/d, . . . , �
2
/d])

⌘�1
yz

� ⇠
2 3

⇠2
+

1

2max{⇣, �2}+ �2/d

= 3 +
1

2max{⇣, �2}+ �2/d

�
1

3�2

where the last inequality follows from our assumption that ⇣  �
2. In the other direction, we can

bound

v> eA(t)�1yz  v>diag([⇠2, �2
/d, . . . , �

2
/d])�1yz 

1

⇠2
+

d

�2


2d

�2

where the last inequality follows by our assumption that ⇠ � �/
p
d. Putting this together, we have

|h✓z(✏, t),vi|  ⇠ + (⇠ + ✏)
2d/�2

1/3�2
 13d⇠.

Case 3: z = xi. In this case hyz,✓?i = �. We can apply a calculation analogous to above to
lower bound y>

z
eA(t)�1yz , but in this case obtain

y>
z
eA(t)�1yz � �2 3

⇠2
+

�
2

2max{⇣, �2}+ �2/d
�

1

3
.

Similarly, we can upper bound

v> eA(t)�1yz  v>diag([⇠2, �2
/d, . . . , �

2
/d])�1yz 

�

⇠2
+

d�

�2


2d

�
.

This gives a final upper bound of

|h✓z(✏, t),vi|  ⇠ + (�+ ✏)
6d

�
 ⇠ +

12d�
p
�
 13d⇠.

Combining these three cases gives that |h✓z(✏, t),vi|  13d⇠ for all z,v 2 Z . By our assumption
that ⇠  1

52d , it follows that |h✓z(✏, t),vi|  1/4 for all z,v 2 Z .
By Lemma D.2 of Wagenmaker et al. (2022), as long as h✓z(✏, t),vi + 1/2 2 (0, 1) and

h✓?,vi+ 1/2 2 (0, 1), which will be the case by the definition of ✓? and since |h✓z(✏, t),vi|  1/4
as noted above, we have

KL(⌫✓?,v||⌫✓z(✏,t),v) 
h✓z(✏, t)� ✓?,vi2

(h✓z(✏, t),vi+ 1/2)(1/2� h✓z(✏, t),vi)
.

Using what we have just shown, we can upper bound this as

h✓z(✏, t)� ✓?,vi2

(h✓z(✏, t),vi+ 1/2)(1/2� h✓z(✏, t),vi)


h✓z(✏, t)� ✓?,vi2

(�1/4 + 1/2)(1/2� 1/4)

= 16h✓z(✏, t)� ✓?,vi
2
.
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By our choice of ✓z(✏, t), this is equal to:

16(y>
z ✓? + ✏)2

y>
z
eA(t)�1vv> eA(t)�1yz

(y>
z
eA(t)�1yz)2

which completes the proof.

Lemma E.4.

X

z2Z
�zzz

>
� 2

X

z2Z
�zdiag(z

2).

Proof. This follows since every z 2 Z has at most two non-zero entries, and since (ax+ by)(ax+
by)> � 2a2xx> + 2b2yy>.

E.2 Mapping to Linear MDPs

We can map this linear bandit (with parameters chose as in Lemma E.3) to a linear MDP with state
space S = {s0, s1, s̄2, . . . , s̄d+1}, action space A = Z [ {ed+1/2}, parameters

✓1 = 0, ✓2 = e1

µ1(s1) = [2✓?, 1], µ1(s̄i) =
1

d
[�2✓?, 1],

and feature vectors

�(s0, ed+1) = ed+1/2, �(s0, z) = [z/2, 1/2], 8z 2 Z

�(s1, z) = e1, �(s̄i, z) = ei, i � 2, 8z 2 A.

Note that, if we take action z in state s0, our expected episode reward is

P1(s1|s0, z) · 1 +
d+1X

i=2

P1(s̄i|s0, z) · 0 = h✓?, zi+ 1/2

since we always acquire a reward of 1 in any state s1, and a reward of 0 in any state s̄i, and the reward
distribution is Bernoulli.
Lemma E.5. The MDP constructed above is a valid linear MDP as defined in Definition 3.1.

Proof. For z 2 Z we have,

P1(s1|s0, z) = h�(s0, z),µ1(s1)i = h✓?, zi+ 1/2 � 0

P1(s̄i|s0, z) = h�(s0, z),µ1(s̄i)i =
1

d
(�h✓?, zi+ 1/2) � 0

where the inequality follows since |h✓?, zi|  O(1/d) for all z 2 Z . In addition,

P1(s1|s0, z) +
d+1X

i=2

P1(s̄i|s0, z) = h✓?, zi+ 1/2 + d ·
1

d
(�h✓?, zi+ 1/2) = 1.

Thus, P1(·|s0, z) is a valid probability distribution for z 2 Z . A similar calculation shows the same
for z = ed+1/2.

It remains to check the normalization bounds. Clearly, by our construction of Z , k�(s, a)k2  1
for all s and a. It is also obvious that k✓0k2 

p
d and k✓1k2 

p
d. Finally,

k|µ1(S)|k2 =

������

X

s2S\s0

|µ1(s)|

������
2

= k[2✓?, 1] + d ·
1

d
[2✓?, 1]k2 

p

d.

Thus, all normalization bounds are met, so this is a valid linear MDP.
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Proof of Proposition 2. If we assume that the learner has prior access to the feature vectors, and also
knows this is a linear MDP, then, even with no knowledge of the dynamics, we can guarantee an
optimal policy is contained in the set of policies ⇡z,z0

defined as:

⇡
z,z0

1 (s0) = z,⇡z,z0

2 (s0) = z0
,⇡

z,z0

h
(s1) = ⇠e1,⇡

z,z0

h
(s̄i) = ⇠e1

This holds because in states s1 and s̄i, the performance of each action is identical since the feature
vectors are identical, so it doesn’t matter which action we choose in these states. In this case, we can
bound |⇧|  |Z|

2
 4d2.

Now, for z 2 A, z 6= ed+1/2, we have

�
⇡z,z0

,1 = [z/2, 1/2]

�
⇡z,z0

,2 = (h✓?, zi+ 1/2)e1 +
1

d
(�h✓?, zi+ 1/2)

X

i�2

ei

and if z = ed+1/2, �
⇡z,z0

,1 = ed+1/2, �
⇡z,z0

,2 = e1/2 +
1
2d

P
i�2 ei. Let ⇡exp be the policy that

plays action e2 in state s0 at step h = 1. Then,

⇤⇡exp,2 =
1

2
e1e1 +

1

2d

X

i�3

eie
>
i
.

Since h✓?, zi  O(1/d) and [z]1  O(1/d) for all z by construction, it follows that we can bound,
for all z, z0,

k�
⇡z,z0

,2k
2
⇤�1

⇡exp,2
= O

0

@1 +
X

i�2

1

d2
· d

1

A = O(1)

so

inf
⇡exp

max
⇡2⇧

k�⇡,2k
2
⌃�1

⇡exp,2

max{V ?

0 � V
⇡

0 ,�⇧
min, ✏}

2
 O(1/✏2).

Now let ⇡exp be the policy that, at step h = 1, plays ⇠e1 with probability 1/4, ed+1 with
probability 1/4, and plays ei with probability 1

4(d�1) for i � {2, . . . , d}. In this setting, we have

⇤⇡exp,1 =
1

4
⇠
2e1e

>
1 +

1

4
ed+1ed+1 +

1

4(d� 1)

X

i2{2,...,d}

eie
>
i
.

Note that V ?

0 � V
⇡
z,z0

0 = ⇠ � h✓?, zi, so for z = e2, . . . , ed+1, we have V
?

0 � V
⇡
z,z0

0 = ⇠ =

O(1/d), while for z = ⇠e1,x2, . . . ,xd, we have V
?

0 � V
⇡
z,z0

0 = �.
It’s easy to see that for z = e2, . . . , ed+1, we have k�

⇡z,z0
,1k⇤�1

⇡exp,1
 O(d), and for z =

⇠e1,x2, . . . ,xd, k�
⇡z,z0

,1k⇤�1
⇡exp,1

 O(1 + d�
2) = O(1). Combining these bounds with the gap

values, we conclude that

inf
⇡exp

max
⇡2⇧

k�⇡,1k
2
⌃�1

⇡exp,1

max{V ?

0 � V
⇡

0 ,�⇧
min, ✏}

2
 O(1/✏2 + poly(d)).

The result then follows by Theorem 6.

Lower bounding the performance of low-regret algorithms. Assume that we have access to
the linear bandit instance constructed in Appendix E.1 with parameters chosen as in Lemma E.3.
That is, at every timestep t we can choose an arm zt 2 Z and obtain and observe reward yt ⇠

Bernoulli(h✓?, zti+ 1/2). Using the mapping up, we can use this bandit to simulate a linear MDP
as follows:

1. Start in state s0 and choose any action zt 2 A
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2. Play action zt in our linear bandit. If reward obtained is yt = 1, then in MDP transition to
any of the states s1. If reward obtained is yt = 0 transition to any of the states s̄2, . . . , s̄d+1,
each with probability 1/d. If the chosen action was zt = ed+1/2, then play any action in the
linear bandit and transition to state s1 with probability 1/2 and s̄2, . . . , s̄d+1 with probability
1/2d, regardless of yt

3. Take any action in the state in which you end up, and receive reward of 1 if you are in s1,
and reward of 0 if you are in s̄2, . . . , s̄d+1.

Note that this MDP has precisely the transition and reward structure as the MDP constructed above.
Lemma E.6. Assume ⇡ is ✏ < �/2-optimal in the MDP constructed above. Then, z? =
argmaxz2A ⇡1(z|s0).

Proof. Note that the value of ⇡ in the linear MDP is given by V
⇡

0 =
P

z2Z ⇡1(z|s0)(hz,✓?i+1/2)+
⇡1(ed+1/2|s0)/2 and the optimal policy is ⇡1(z?

|s0) = 1 and has value V
?

0 = hz?
,✓?i + 1/2. It

follows that if ⇡ is ✏-optimal, then
X

z2Z
⇡1(z|s0)(hz,✓?i+ 1/2) + ⇡1(ed+1/2|s0)/2 � hz

?
,✓?i+ 1/2� ✏

=) ⇡1(z
?
|s0)(⇠ + 1/2) +

X

z2A,z 6=z?

⇡1(z|s0)(⇠ ��+ 1/2) � ⇠ + 1/2� ✏

=) ��
X

z2A,z 6=z?

⇡1(z|s0) � �✏

=) ✏ � �
X

z2A,z 6=z?

⇡1(z|s0).

If ✏ < �/2, this implies that
P

z2A,z 6=z? ⇡1(z|s0) < 1/2, so it must be the case that ⇡1(z?
|s0) >

1/2.

Proof of Proposition 3. Consider running the above procedure for some number of steps. By
Lemma E.6, if we can identify an ✏ < �/2-optimal policy in this MDP, we can use it to deter-
mine z?, the optimal arm in the linear bandit. As we have used no extra information other than
samples from the linear bandit to construct this, it follows that to find an ✏ < �/2-optimal policy in
the MDP, we must take at least the number of samples prescribed by Lemma E.1.
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