
A Appendix

We provide supplemental descriptions, experiments, and analysis below.

A.1 Potential Applications of Foundation Posteriors

In Section 8, we presented some preliminary results using the foundation posterior as a prior
distribution for Metropolis Hastings. Further, in Section 5, we presented an equivalent technique
for seeding variational inference. Here, we more broadly motivate the relationship of foundation
posteriors to existing inference techniques for potential future directions.

1. As we did with Metropolis Hastings, it is similarly possible to treat the foundation posterior
as a prior or proposal distribution for MCMC, HMC, and NUTS. Ideally, a better proposal
would reduce the necessary mixing time.

2. Given the contextual embedding of a new probabilistic program, can we predict the mixing
time of MCMC/HMC as a downstream transfer task? A dataset can be collected from
PosteriorDB with program embeddings as inputs and true mixing times as target labels.
This could be practically important to helping practioners properly use sampling-based
approximate inference techniques.

3. Similar to the application above, can we predict other design choices for HMC such as
step size, learning rate, or mass matrix? There is a potential to abstract away many of the
inference hyperparameters and leverage program embeddings to learn good default choices
conditioned on the program text.

Given how established VI, MCMC, and NUTS are as inference algorithms, an immediate practical
application of foundation posteriors may be as a preprocessing step for inference methods with more
theoretical guarantees, as exemplied in the list above.

A.2 Additional Figures

Figure 7 shows an example of annotating a probabilistic program and randomly masking assigned
observations from three different executions.

(a) (b)

Figure 7: On the left, a standard probabilistic program is reformatted such that observe statements
are replaced with annotations. On the right are 3 executions with randomly masked variables.

A.3 Toy Experiments

Program Descriptions Latent: Two Gaussian random variables, N (µ1,�2
1) and N (µ2,�2

2) where
µ2 is a random affine function of a sample z1 ⇠ N (µ1,�2

1). We choose �1 ⇠ U(0, 20), �2 ⇠
U(0.5, 10).
Clustering: Two samples z1, z2 ⇠ N (0, 100) are divided into two groups g1 ⇠ N (µ1,�2

1) or
g2 ⇠ N (µ2,�2

2) using an if statement. We choose µ1, µ2 ⇠ N (�15, 15) and �1,�2 ⇠ U(0.5, 50).
Hierarchical: Three random variables g ⇠ N (µg,�2

g), t ⇠ N (g,�2), z ⇠ N (t,�2) each with a
mean chosen as a sample from the parent. We choose µg ⇠ U(�5, 5),�g ⇠ U(0, 50),� ⇠ U(0, 10).
Multi-level: Similar to Hierarchical but child random variables are modelled as a regression of parent
samples where slope and intercept are randomly chosen.

Milky way: A probabilistic model for the velocity of two sallite galaxies v1 ⇠ N (m⇥ 2, 5), v2 ⇠
N (m+ 5, 2). The log mass m of the Milky Way is sampled from N(5, 10).

14

Rosenbrock: Computes a noisy Rosenbrock function on samples from two Gaussian variables. The
Rosenbrock function is treated as a library import and its code is not provided to the model.

We more thoroughly describe the toy probabilistic programs used in Section 3.3. An equivalent
description can be found on pages 17-20 in https://arxiv.org/pdf/2103.00737.pdf.

Latent µ1 ⇠ U(�5, 5);�1 ⇠ U(0, 20); z1 ⇠ N (µ1,�2
1); c1 ⇠ U(�33); z2 = z1 ⇥ c1; c2 ⇠

U(�10, 10); z3 = z2 + c2;�2 ⇠ U(0.5, 10); z4 ⇠ N (z3,�2
2).

Clustering µ1 ⇠ U(�15, 15);�1 ⇠ U(0.5, 50); g1 ⇠ N (µ1,�2
1);µ2 ⇠ U(�15, 15);�2 ⇠

U(0.5, 50); g2 ⇠ N (µ2,�2
2); t1 ⇠ N (0, 100);m1 = if (t1 > 0)g1 else g2;�3 ⇠

U(0.5, 10); z1 ⇠ N (m1,�2
3); t2 ⇠ N (0, 100);m2 = if (t2 > 0)g1 else g2; z2 ⇠ N (m2,�2

3).

Hierarchical µ1 ⇠ U(�5, 5);�1 ⇠ U(0, 50); g ⇠ N (µ1,�2
1);�2 ⇠ U(0, 10); t1 ⇠ N (g,�2

2);�3 ⇠
U(0, 10); t2 ⇠ N (g,�2

3);�4 ⇠ U(0.5, 10); z1 ⇠ N (t1,�2
4);�5 ⇠ U(0.5, 10); z2 ⇠ N (t2,�2

5).

Multi-Level µ1 ⇠ U(�10, 10);�1 ⇠ U(0, 100); a0 ⇠ N (µ1,�2
1);�2 ⇠ U(0, 10); a1 ⇠

N (a0,�2
2);�3 ⇠ U(0, 10); a2 ⇠ N (a0,�2

3);µ2 ⇠ U(�5, 5);�4 ⇠ U(0, 10); b ⇠ N (µ2,�2
4); c1 ⇠

U(�5, 5); t1 = b ⇥ c1; t2 = a1 + t1;�5 ⇠ U(0.5, 10); z1 ⇠ N (t2,�2
5); c2 ⇠ U(�5, 5); t3 =

b⇥ c2; t4 = a2 + t3;�6 ⇠ U(0.5, 10); z2 ⇠ N (t4,�2
6).

Milky Way µ1 ⇠ U(�10, 10);�1 ⇠ U(0, 30);m0 ⇠ N (µ1,�2
1); c1 ⇠ U(�2, 2);m1 =

m0 ⇥ c1;�2 ⇠ U(0, 10); g1 ⇠ N (m1,�2
2); c2 ⇠ U(�5, 5);m2 = m0 + c2;�3 ⇠ U(0, 10); g2 ⇠

N (m2,�2
3);�4 ⇠ U(0.5, 10); z1 ⇠ N (g1,�2

4);�5 ⇠ U(0.5, 10); z1 ⇠ N (g2,�2
5).

Rosenbrock µ1 ⇠ U(�8, 8);�1 ⇠ U(0, 5); z1 ⇠ N (µ1,�2
1);µ2 ⇠ U(�8, 8);�2 ⇠ U(0, 5); z2 ⇠

N (µ2,�2
2); r = rosenbrock(z1, z2);�3 ⇠ U(0.5, 10); z3 ⇠ N (r,�2

3).

Hyperparameters and Training Details A dataset of 10 000 examples are generated by re-
executing the probabilistic program. A separate dataset of 1 000 examples are generated and held-out
in training. For the transformer, we use a RoBERTa [41] architecture, a maximum length of 200,
linear learning rate scheduling with 5 000 warmup steps, and finetune only the top 6 transformer
layers. In the loss, we set ↵ = 0.1, the weight on the loss from the inference head. In optimization,
we use Adam [38] with a batch size of 16, a learning rate of 4e-3, clip gradients norms at max 1, for
300 epochs. We take the checkpoint with the best loss on a dev set for test evaluation.

Additional Analysis We note that for half of the toy programs (especially, hierarchical or multi-
level), the variance of log IW is noticeably higher than for the other programs. This pattern persists
for the ablation. To study this more, we visualize the histogram of log IWs for the standard MLI and
ablation on the ‘hierarchical’ program in Figure 8. We observe that the majority of the test runs result
in log IWs near zero, meaning high quality inference. However, there are a number of examples that
the log IW is significantly higher for. The trained MLI model does not generalize as well to these
points. Without the MLM loss, we observe these “difficult” cases to be more frequent and severe. In
the right subfigure, we ommited points with log IW > 1 000 for visibility.

(a) With MLM (b) Without MLM

Figure 8: With and without the MLM loss, we see the majority of the log IWs are near zero, suggesting
high quality inference. However, there are a number of data points for which the log IW is higher.
We observe this to be more frequent and more severe without MLM.

A.4 Visualizing Attention

We provide more details on the programs and additional results.

15

https://arxiv.org/pdf/2103.00737.pdf

Independent Gaussians µ1 ⇠ U(�5, 0);�1 ⇠ U(0, 5); z1 ⇠ N (µ1,�2
1);µ2 ⇠ U(0, 5);�2 ⇠

U(0, 5); y1 ⇠ N (µ2,�2
2); z2 = z1 ⇥ 2; y2 = y1 ⇥ 2. We expect z2 ? y2 and z1 ? y1.

Conditional Independence p ⇠ U(0, 1); z ⇠ Bern(p); a = if (z = 1)1 else 10; b =
if (z = 1)3 else � 3;x ⇠ N (a, 1); y ⇠ N (b, 1). We expect x ? y|z, a ? b|z.

Common Effect px ⇠ U(0, 1); py ⇠ U(0, 1);x ⇠ Bern(px); y ⇠ Bern(py); z =
if (x or y)1 else 0. We expect that knowing both y and z should determine x.

Tabular Results We include a table reporting log probability and variance of log IW for the three
programs above. As these are “simpler” programs than even those in the MLI toy experiments, we
observe more favorable results.

Program Test Set Evaluation
log p(z|x) var

n
log p(x,z)

q(z|x)

o

Independent Gaussians 0.856 0.779
Conditional Independence 0.616 0.674
Common Effect 1.215 0.889

Table 3: Analogous results to Table 4 for the toy problems for visualizing attention.

Hyperparameters and Training Details With the exception of a maximum sequence length of
100, we use the same hyperparameters as in Appendix A.3.

A.5 Importance Weights

We review how to derive log importance weights. Assume an observed variable x and a latent variable
z. Fix a realization x ⇠ p(x) from some data distribution p. Then log p(x) = log

P
z p(x, z) =

log
⇣P

z q(z|x)
⇣

p(x,z)
q(z|x)

⌘⌘
= log

⇣
Eq(z|x)

h
p(x,z)
q(z|x)

i⌘
� Eq(z|x)

h
log p(x,z)

q(z|x)

i
= IW. The rightmost

expression is called a log importance weight. We compute the variance of log importance weights
by sampling several z1, . . . , zn ⇠ q(z|x) and computing Variance{log p(x,z)

q(z|x) , z 2 {z1, . . . zn}}. The
better the importance distribution q, the smaller the variance. Observe that if q(z|x) = p(z|x),
meaning the approximate posterior is indeed the true posterior, then IW = Ep(z|x)

h
log p(x,z)

p(z|x)

i
=

Ep(z|x) [log p(x)] = log p(x), a constant. The variance of a constant independent of z is 0.

A.6 Additional Results for MLI

In addition to the results in Table 4, we include an additional ablation in Table 4 where the weights of
the transformer backbone are initialized using CodeBERT [22] rather than RoBERTa (the default).

Program Ablation: CodeBERT
log p(z|x) var

n
log p(x,z)

q(z|x)

o

Latent �1.428±0.1 5.01±2.7

Clustering �3.263±0.2 4.962±4.3

Hierarchical �3.691±0.0 30.59±17

Multi-level �3.054±0.1 69.47±16

Milky way �2.571±0.0 38.07±34

Rosenbrock �2.041±0.2 11.36±4.8

Table 4: Ablation of MLI on the six toy probabilistic programs. We initialize the transformer
backbone with CodeBERT rather than RoBERTa.

We observe lower variance than with RoBERTa, suggesting that CodeBERT is a viable (perhaps
preferrable) alternative. For all STAN experiments, we use CodeBERT.

16

A.7 Scientific Notation

We attempted to structure the inference head h to output scientific notation: output two numbers
a ⇥ 10b. The potential upside of this design is more resilience to outliers as it requires a smaller
change to represent a difference in magnitude of order. However, we found both instability in training
as well as worse average performance. This was due to a one-off error in b. Note that being off by one
unit in b represents an entire magnitude of order. Future work can explore more stable representations
of real numbers. For this paper, we opted for the direct representation in lieu of scientific notation.

A.8 Toy Experiment with Plating

To measure the impact of plating with finetuning, we study a toy experiment with item response
theory (IRT) [21, 31, 51, 66, 67], which estimates student ability (a latent variable) using student
responses (the observations) to an exam via a generative model. The Rasch model [51] says:

p(responseij = 1|abilityi, difficultyj) = sigmoid(abilityi � difficultyj) (5)

where abilityi is the ability of the i-th student; difficultyj is the difficulty level of the j-th
question; and responseij is the binary correctness of the i-th student’s response to the j-th question.

We highlight that both difficulty and ability are unknown, which makes inference hard as many
choices of ability and difficulty result in the same difference (and hence probability). In practice,
every student answers all the same questions, and each student answers multiple questions. With
sufficiently many questions, it is possible to triangulate ability accurately.

Figure 9: Comparison of finetuning to
zero-shot on plated IRT.

To set up the toy experiment, we write a probabilistic pro-
gram where each student answers 30 questions, where
abilityi ⇠ N (0, 1) and difficultyj ⇠ N (0, 1) are
both drawn from standard Gaussians [51]. Next, we gen-
erate a dataset of 10k programs by ancestral sampling,
and optimize Equation 2 (masking random subsets of vari-
ables). We do this three times with different minibatch
sizes of k = 1, 2, and 5 as thirty responses is too long to
fit into 512 tokens (for transformer inputs). Separately, we
generate 100 test programs not used in training, masking
only the ability variable in each.

We study three different ways to do plated inference for
ability: the goal is that during test time, we would like
to use all student responses (to the 30 questions) rather
than just a minibatch of k questions. We compare fine-

tuning with Equation 4 to “zero-shot”, a baseline that infers ability using only k observations.
Additionally, we include a stronger zero-shot baseline (called “product”): for a test program, we
build several minibatches, all of size k but composed of different randomly sampled questions.
For each minibatch, perform inference for ability, resulting in a posterior Gaussian. Finally, given
several Gaussians, apply a product of experts [34, 68] to arrive at a final posterior. Figure 9 plots
log p(abilityi|... rest of program ...) averaged over test programs for the three approaches. We
find that while product improves upon zero-shot performance (by incorporating more information),
finetuning achieves higher quality inference still (at the cost of more computation).

Review of Product of Experts Suppose we are given k Gausian distirbutions. Then, a product of
these Gaussian “experts” is itself Gaussian [11] with mean µ = (

P
i µiTi)(

P
i Ti)�1 and covariance

⌃ = (
P

i Ti)�1, where µi, ⌃i are the parameters of the i-th Gaussian expert, and Ti = ⌃�1
i is the

inverse of the covariance (i.e., the precision).

Tabular Results We include a table reporting log probability for the three approaches to inferring
ability. This shows the same results as in Figure 9.

Hyperparameters and Training Details We separate the choices for pretraining (MLI) and
finetuning. In pretraining, we use a maximum length of 512 and a maximum gradient norm of 5. All
other parameters are identical to Appendix A.3. For the product of experts, we resample minibatches

17

Approach k log p(z|x)
zero shot 1 0.5174 ±0.0122

zero shot 2 0.6930 ±0.0226

zero shot 5 1.2824 ±0.0077

product 1 0.7231 ±0.0008

product 2 0.7707 ±0.1154

product 5 1.3201 ±0.0858

fientune 1 0.8743 ±0.0069

fientune 2 1.0836 ±0.0866

fientune 5 1.7331 ±0.0728

Table 5: Analogous results to Figure 9 for inferring ability from plated IRT models.

10 times. In downstream finetuning, we take gradient steps on the top 6 layers of the transformer,
initializezd with pretraining weights. We perform a separate optimization for all 100 test programs
with batch size of 4, learning rate 4e-3, for 1000 iterations and no gradient clipping. We maintained
the linear learning rate scheduler with 5 000 warmup steps. These hyperparameters were taken from
the default RoBERTa config in Huggingface.

A.9 Stan Experiments

We provide a few more details for the Stan experiments. PosteriorDB can be
found at https://github.com/stan-dev/posteriordb. We use the python li-
brary posteriordb-python. We filter all posteriors by which ones have ground-
truth posterior samples. We remove the following programs: arma-arma11,
bball_drive_event_0-hmm_drive_0, bball_drive_event_1-hmm_drive_1,
garch-garch11, hmm_example-hmm_example, hudson_lynx_hare-lotka_volterra,
mcycle_gp-accel_gp, and one_comp_mm_elim_abs-one_comp_mm_elim_abs. We randomly
chose 3 programs for the test set: kidiq-kidscore_interaction, earnings-logearn_height,
and nes1976-nes. In pretraining, we generate 10 000 executions (with randomly masked variables)
for each program for a total of 380 000 training programs. We randomly choose minibatches of size 5
for programs with more observations than can fit within a 512 token sequence. Different executions
would result in different minibatches. We initialize the RoBERTa network from HuggingFace
pretrained weights, finetuning the top 6 transformer layers using MLI. We set the weight ↵ = 0.001.
We use batch size 4, learning rate 4e-3, 5 000 warmup steps, gradient clipping of 1 for 50 epochs. In
finetuning, we initialize weights from the foundation posterior and separately optimize for each of
the three test programs. All optimization choices stay the same, but we optimize the ELBO objective
weighted by the ratio between full observation size and minibatch size. We save checkpoints at 10,
100, and 1000 iterations and record wall clock time at each point.

For Stan NUTS, we use 10 chains, thin set to 10, adaptive delta set to 0.8, and vary the number of
sampling and warmup iterations as tuples (100, 50), (200, 100), (500, 200), (1000, 500), (2000, 1000),
(5000, 2000), (10k, 5k), (20k, 10k), (50k, 10k). For Stan ADVI, we choose a mean field algorithm,
100 ELBO samples, 1 gradient sample, and vary the number of iterations to be amongst 100, 1k, 5k,
10k, 50k, 100k, 500k, 1M.

A.10 Resources

We used a single Titan X GPU for optimizing all deep learning models, with 4-16 CPU background
workers for loading data. NUTS and ADVI experiments were run in the same context but without GPU
support. We used the PosteriorDB code base https://github.com/stan-dev/posteriordb for
Stan experiments, which has no prohibitive license specified. We used CmdStan-Py for fitting Stan
models https://github.com/stan-dev/cmdstanpy which is licensed under new BSD.

18

https://github.com/stan-dev/posteriordb
https://github.com/stan-dev/posteriordb
https://github.com/stan-dev/cmdstanpy

	Introduction
	Background
	Masked Language Inference
	Objective
	Orderless Auto-Regressive Decoding
	Toy Experiments
	Visualizing Attention Maps

	Meta-Amortized Inference
	Program Augmentations
	Toy Experiment with Augmentations

	Variational Finetuning
	Foundation Posterior
	Related Work
	Discussion
	Appendix
	Potential Applications of Foundation Posteriors
	Additional Figures
	Toy Experiments
	Visualizing Attention
	Importance Weights
	Additional Results for MLI
	Scientific Notation
	Toy Experiment with Plating
	Stan Experiments
	Resources

