
Learning to Accelerate Partial Differential Equations
via Latent Global Evolution

Tailin Wu
Department of Computer Science

Stanford University
tailin@cs.stanford.edu

Takashi Maruyama
NEC Corp. & Stanford University

49takashi@nec.com &
takashi279@cs.stanford.edu

Jure Leskovec
Department of Computer Science

Stanford University
jure@cs.stanford.edu

Abstract

Simulating the time evolution of Partial Differential Equations (PDEs) of large-
scale systems is crucial in many scientific and engineering domains such as fluid
dynamics, weather forecasting and their inverse optimization problems. However,
both classical solvers and recent deep learning-based surrogate models are typically
extremely computationally intensive, because of their local evolution: they need to
update the state of each discretized cell at each time step during inference. Here we
develop Latent Evolution of PDEs (LE-PDE), a simple, fast and scalable method
to accelerate the simulation and inverse optimization of PDEs. LE-PDE learns
a compact, global representation of the system and efficiently evolves it fully in
the latent space with learned evolution models. LE-PDE achieves speed-up by
having a much smaller latent dimension to update during long rollout as compared
to updating in the input space. We introduce new learning objectives to effectively
learn such latent dynamics to ensure long-term stability. We further introduce
techniques for speeding up inverse optimization of boundary conditions for PDEs
via backpropagation through time in latent space, and an annealing technique to
address the non-differentiability and sparse interaction of boundary conditions. We
test our method in a 1D benchmark of nonlinear PDEs, 2D Navier-Stokes flows
into turbulent phase and an inverse optimization of boundary conditions in 2D
Navier-Stokes flow. Compared to other strong baselines, we demonstrate up to
128⇥ reduction in the dimensions to update, and up to 15⇥ improvement in speed,
while achieving competitive accuracy. 1.

1 Introduction

Many problems across science and engineering are described by Partial Differential Equations (PDEs).
Among them, temporal PDEs are of huge importance. They describe how the state of a (complex)
system evolves with time, and numerically evolving such equations are used for forward prediction
and inverse optimization across many disciplines. Example application includes weather forecasting
[1], jet engine design [2], nuclear fusion [3], laser-plasma interaction [4], astronomical simulation
[5], and molecular modeling [6].

To numerically evolve such PDEs, decades of works have yielded (classical) PDE solvers that are
tailored to each specific problem domain [7]. Albeit principled and accurate, classical PDE solvers

1Project website and code can be found at http://snap.stanford.edu/le_pde/.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

http://snap.stanford.edu/le_pde/

Figure 1: LE-PDE schematic. In forward mode (green), LE-PDE evolves the dynamics in a global
latent space. In inverse optimization mode (red), it optimizes parameter p (e.g. boundary) through
latent unrolling. The compressed latent vector and dynamics can significantly speed up both modes.

are typically slow due to the small time steps or implicit method required for numerical stability,
and their time complexity typically scales linearly or super-linearly with the number of cells the
domain is discretized into [8]. For practical problems in science and engineering, the number of
cells at each time step can easily go up to millions or billions and may even require massively
parallel supercomputing resources [9, 10]. Besides forward modeling, inverse problems, such as
inverse optimization of system parameters and inverse parameter inference, also share similar scaling
challenge [11]. How to effectively speed up the simulation while maintaining reasonable accuracy
remains an important open problem.

Recently, deep learning-based surrogate models have emerged as attractive alternative to complement
[12] or replace classical solvers [13, 14]. They directly learn the dynamics from data and alleviate
much engineering effort. They typically offer speed-up due to explicit forward mapping [15, 16],
larger time intervals [14], or modeling on a coarser grid [12, 17]. However, their evolution scales
with the discretization, since they typically need to update the state of each discretized cell at each
time step, due to the local nature of PDEs [18]. For example, if a problem is discretized into 1 million
cells, deep learning-based surrogate models (e.g., CNNs, Graph Networks, Neural Operators) will
need to evolve these 1 million cells per time step. How to go beyond updating each individual cells
and further speed up such models remains a challenge.

Here we present Latent Evolution of PDEs (LE-PDE) (Fig. 1), a simple, fast and scalable method
to accelerate the simulation and inverse optimization of PDEs. Our key insight is that a common
feature of the dynamics of many systems of interest is the presence of dominant, low-dimensional
coherent structures, suggesting the possibility of efficiently evolving the system in a low-dimensional
global latent space. Based on this observation, we develop LE-PDE, which learns the evolution of
dynamics in a global latent space. Here by “global” we mean that the dimension of the latent state
is fixed, instead of scaling linearly with the number of cells as in local models. LE-PDE consists
of a dynamic encoder that compresses the input state into a dynamic latent vector, a static encoder
that encodes boundary conditions and equation parameters into a static latent vector, and a latent
evolution model that evolves the dynamic latent vector fully in the latent space, and decode via
a decoder only as needed. Although the idea of latent evolution has appeared in other domains,
such as in computer vision [19, 20, 21] and robotics [22, 23, 24, 25], these domains typically have
clear object structure in visual inputs allowing compact representation. PDEs, on the other hand,
model dynamics of continuum (e.g., fluids, materials) with infinite dimensions, without a clear object
structure, and sometimes with chaotic turbulent dynamics, and it is pivotal to model their long-term
evolution accurately. Thus, learning the latent dynamics of PDEs presents unique challenges.

We introduce a multi-step latent consistency objective, to encourage learning more stable long-term
evolution in latent space. Together with the multi-step loss in the input space, they encourage more
accurate long-term prediction. To accelerate inverse optimization of PDEs which is pivotal in engi-
neering (e.g. optimize the boundary condition so that the evolution of the dynamics optimizes certain
predefined objective), we show that LE-PDE can allow faster optimization, via backpropagation
through time in latent space instead of in input space. To address the challenge that the boundary
condition may be non-differentiable or too sparse to receive any gradient, we design an annealing
technique for the boundary mask during inverse optimization.

We demonstrate our LE-PDE in standard PDE-learning benchmarks of a 1D family of nonlinear
PDEs and a 2D Navier-Stokes flow into turbulent phase, and design an inverse optimization problem
in 2D Navier-Stokes flow to probe its capability. Compared with state-of-the-art deep learning-based

2

surrogate models and other strong baselines, we show up to 128⇥ reduction in the dimensions to
update and up to 15⇥ speed-up compared to modeling in input space, and competitive accuracy.

2 Problem Setting and Related Work

We consider temporal Partial Differential Equations (PDEs) w.r.t. time t 2 [0, T] and multiple spatial
dimensions x = [x1, x2, ...xD] 2 X ✓ RD. We follow similar notation as in [7]. Specifically,

@tu = F (x,a,u, @xu, @xxu, ...), (t,x) 2 [0, T]⇥ X, (1)

u(0, x) = u0(x), B[u](t,x) = 0, x 2 X, (t,x) 2 [0, T]⇥ @X. (2)

Here u : [0, T] ⇥ X ! Rn is the solution, which is an infinite-dimensional function. a is time-
independent static parameters of the system, which can be defined on each location x, e.g. diffusion
coefficient that varies in space but static in time, or a global parameter. F is a linear or nonlinear
function on the arguments of (x,a,u, @xu, @xxu, ...). Note that in this work we consider time-
independent PDEs where F does not explicitly depend on t. u0(x) is the initial condition, and
B[u](t,x) = 0 is the boundary condition when x is on the boundary of the domain @X across all
time t 2 [0, T]. Here @xu = @u

@x , @xxu = @2u
@x2 are first- and second-order partial derivatives, which

are a matrix and a 3-order tensor, respectively (since x is a vector). Solving such temporal PDEs
means computing the state u(t,x) for any time t 2 [0, T] and location x 2 X given the above initial
and boundary conditions.

Classical solvers for solving PDEs. To numerically solve the above PDEs, classical numerical
solvers typically discretize the domain X into a finite grid or mesh X = {ci}Ni=1 with N non-
overlapping cells. Then the infinite-dimensional solution function of u(t,x) is discretized into
Uk = {uk

i }Ni=1 2 U for each cell i and time t = tk, k = 1, 2, ...K. a is similarly discretized into
{ai}Ni=1 with values in each cell. Mainstream numerical methods, including Finite Difference Method
(FDM) and Finite Volume Method (FVM), proceed to evolve such temporal PDEs by solving the
equation at state {uk+1

i } at time t = tk+1 from state {uk
i } at time tk. These solvers are typically

slow due to small time/space intervals required for numerical stability, and needing to update each
cell at each time steps. For more detailed information on classical solvers, see Appendix A

Deep learning-based surrogate modeling. There are two main approaches in deep learning-
based surrogate modeling. The first class of method is autoregressive methods, which learns the
mapping f✓ with parameter ✓ of the discretized states Uk between consecutive time steps tk and
tk+1: Ûk+1 = f✓(Ûk, p), k = 0, 1, 2, Here Ûk = {ûk

i }Ni=1 is the model f✓’s predicted state
for Uk = {uk

i }Ni=1 at time tk, with Û0 := U0. p = (@X, {ai}Ni=1) is the system parameter which
includes the boundary domain @X and discretized static parameters {ai}Ni=1. Repetitively apply f✓ at
inference time results in autoregressive rollout

Ûk+m = (f✓(·, p))(m) (Ûk),m � 1. (3)
Here f✓(·, p) : U ! U is a partial function whose second argument is fulfilled by the static system
parameter p. Typically f✓ is modeled using CNNs (if the domain X is discretized into a grid),
Graph Neural Networks (GNNs, if the domain X is discretized into a mesh). These methods all
involve local computation, where the value uk+1

i at cell i at time tk+1 depend on its neighbors
{uk

j }j2N (i) at time tk, where N (i) is the set of neighbors up to certain hops. Such formulation
includes CNN-based models [26], GNN-based models [7, 27, 28] and their hierarchical counterparts
[18, 29]. The surrogate modeling with local dynamics makes sense, since the underlying PDE is
essentially a local equation that stipulates how the solution function u’s value at location x depends
on the values at its infinitesimal neighborhood. The second class of method is Neural Operators
[14, 30, 31, 32, 33, 34, 35, 36], which learns a neural network (NN) that approximates a mapping
between infinite-dimensional functions. Although having the advantage that the learned mapping is
discretization invariant, given a specific discretization, Neural Operators still needs to update the state
at each cell based on neighboring cells (and potentially cells far away), which is still inefficient at
inference time, especially dealing with larger-scale problems. In contrast to the above classes of deep
learning-based approaches that both requires local evolution at inference time, our LE-PDE method
focuses on improving efficiency. Using a learned global latent space, LE-PDE removes the need for
local evolution and can directly evolve the system dynamics via a global latent vectors zk 2 Rdz for
time tk. This offers great potential for speed-up due to the significant reduction in representation.

3

Inverse optimization. Inverse optimization is the problem of optimizing the parameters p of the
PDE, including boundary @X or static parameter a of the equation, so that a predefined objective
Ld[a, @X] =

R te
t=ts

`d[u(t,x)]dt is minimized. Here the state u(t,x) implicitly depends on a, @X
through the PDE (Eq. 1) and the boundary condition (Eq. 2). Such problems have huge importance
in engineering, e.g. in designing jet engines [2] and materials [37] where the objective can be
minimizing drag or maximizing durability, and inverse parameter inference (i.e. history matching)
[38, 39, 40] where the objective can be maximum a posteriori estimation. To solve such problem,
classical methods include adjoint method [41, 42], shooting method [43], collocation method [44],
etc. One recent work [45] explores optimization via backpropagation through differential physics in
the input space, demonstrating speed-up and improved accuracy compared to classical CEM method
[46]. However, for long rollout and large input size, the computation becomes intensive to the point
of needing to save gradients in files. In comparison, LE-PDE allows backpropagation in latent space,
and due to the much smaller latent dimension and evolution model, it can significantly reduce the
time complexity in inverse optimization.

Reduced-order modeling. A related class of work is reduced-order modeling. Past efforts typically
use linear projection into certain basis functions [47, 48, 49, 50, 51, 52, 53, 54] which may not have
enough representation power. A few recent works explore NN-based encoding [55, 56, 57, 58, 59, 60]
for fluid modeling. Compared to the above works, we focus on speeding up simulation and inverse
optimization of more general PDEs using expressive NNs, with novel objectives, and demonstrate
competitive performance compared to state-of-the-art deep learning-based models for PDEs.

3 Our approach LE-PDE

In this section, we detail our Latent Evolution of Partial Differential Equations (LE-PDE) method.
We first introduce the model architecture (Sec. 3.1, and then we introduce learning objective to
effectively learn faithfully long-term evolution (Sec. 3.2). In Sec. 3.3, we introduce efficient inverse
optimization in latent space endowed by our method.

3.1 Model architecture

The model architecture of LE-PDE consists of four components: (1) a dynamic encoder q : U ! Rdz

that maps the input state Uk = {uk
i }Ni=1 2 U to a latent vector zk 2 Rdz ; (2) an (optional) static

encoder r : P ! Rdzp that maps the (optional) system parameter p 2 P to a static latent embedding
zp; (3) a decoder h : Rdz ! U that maps the latent vector zk 2 Rdz back to the input state Uk;
(4) a latent evolution model g : Rdz ⇥ Rdzp ! Rdz that maps zk 2 Rdz at time tk and static latent
embedding zp 2 Rdzp to zk+1 2 Rdz at time tk+1. We employ the temporal bundling trick [7] where
each input state Uk can include states over a fixed length S of consecutive time steps, in which case
each latent vector zk will encode such bundle of states, and each latent evolution will predict the
latent vector for the next bundle of S steps. S is a hyperparameter and may be chosen depending
on the problem, and S = 1 reduces to no bundling. A schematic of the model architecture and its
inference is illustrated in Fig. 1. Importantly, we require that for the dynamic encoder q, it needs
to have a flatten operation and MultiLayer Perception (MLP) head that maps the feature map into
a single fixed-length vector z 2 Rdz . In this way, the dimension of the latent space does not scale
linearly with the dimension of the input, which has the potential to significantly compress the input,
and can make the long-term prediction much more efficient. At inference time, LE-PDE performs
autoregressive rollout in latent space Rdz :

Ûk+m = h � g (·, r(p))(m) � q(Ûk) ⌘ h

✓
g(·, r(p)) � ... � g(·, r(p))| {z }

composing m times

⇣
q(Ûk)

⌘◆
. (4)

Compared to autoregressive rollout in input space (Eq. 3), LE-PDE can significantly improve
efficiency with a much smaller dimension of zk 2 Rdz compared to Uk 2 U. Here we do not limit
the architecture for encoder, decoder and latent evolution models. Depending on the input Uk, the
encoder q and decoder h can be a CNN or GNN with a (required) MLP head. In this work, we focus
on input that is discretized as grid, so the encoder and decoder are both CNN+MLP, and leave other
architecture (e.g. GNN+MLP) for future work. For static encoder r, it can be a simple MLP if the
system parameter p is a vector (e.g. equation parameters) or CNN+MLP if p is a 2D or 3D tensor
(e.g. boundary mask, spatially varying diffusion coefficient). We model the latent evolution model g

4

as an MLP with residual connection from input to output. The architectures used in our experiments,
are detailed in Appendix C, together with discussion of its current limitations.

3.2 Learning objective

Learning surrogate models that can faithfully roll out long-term is an important challenge. Given
discretized inputs {Uk}, k = 1, ...K +M , we introduce the following objective to address it:

L =
1

K

KX

k=1

(Lk
multi-step + Lk

recons + Lk
consistency). (5)

where

8
><

>:

Lk
multi-step =

PM
m=1 ↵m`(Ûk+m, Uk+m),

Lk
recons = `(h(q(Uk)), Uk)

Lk
consistency =

PM
m=1

||g(·,r(p))(m)�q(Uk)�q(Uk+m)||22
||q(Uk+m)||22

(6)

Here ` is the loss function for individual predictions, which can typically be MSE or L2 loss. Ûk+m

is given in Eq. (4). Lk
recons aims to reduce reconstruction loss. Lk

multi-step performs latent multi-step
evolution given in Eq. (4) and compare with the target Uk+m in input space, up to time horizon
M . ↵m are weights for each time step, which we find that (↵1,↵2, ...↵M) = (1, 0.1, 0.1, ...0.1)
works well. Besides encouraging better prediction in input space via Lk

multi-step, we also want a
stable long-term rollout in latent space. This is because in inference time, we want to mainly
perform autoregressive rollout in latent space, and decode to input space only when needed. Thus,
we introduce a novel latent consistency loss Lk

consistency, which compares the m-step latent rollout
g (·, r(p))(m) � q(Uk) with the latent target q(Uk+m) in latent space. The denominator ||q(Uk+m)||22
serves as normalization to prevent the trivial solution that the latent space collapses to a single point.
Taken together, the three terms encourage a more accurate and consistent long-term evolution both in
latent and input space. In Sec. 4.4 we will investigate the influence of Lk

consistency and Lk
multi-step.

3.3 Accelerating inverse optimization

In addition to improved efficiency for forward simulation, LE-PDE also allows more efficient inverse
optimization, via backpropagation through time (BPTT) in latent space. Given a specified objective
Ld[p] =

Pke

k=ks
`(Uk) which is a discretized version of Ld[a, @X] in Sec. 2, we define the objective:

Ld[p] =
keX

m=ks

`d(Û
m(p)) (7)

where Ûm = Ûm(p) is given by Eq. (4) setting k = 0 using our learned LE-PDE, which starts at
initial state of U0, encode it and p into latent space, evolves the dynamics in latent space and decode
to Ûm as needed. The static latent embedding zp = r(p) influences the latent evolution at each time
step via g(·, r(p)). An approximately optimal parameter p can then be found by computing gradients
@Ld[p]

@p , using optimizers such as Adam [61] (The gradient flow is visualized as the red arrows in Fig.
1). When p is a boundary parameter, e.g. location of the boundary segments or obstacles, there is
a challenge. Specifically, for CNN encoder q, the boundary information is typically provided as a
binary mask indicating which cells are outside the simulation domain ⌦. The discreteness of the
mask prevents the backpropagation of the model. Moreover, the boundary cells may interact sparsely
with the bulk, which can lead to vanishing gradient during inverse optimization. To address this,
we introduce a function that maps p to a soft boundary mask with temperature, and during inverse
optimization, anneal the temperature from high to low. This allows the gradient to pass through mask
to p, and stronger gradient signal. For more information, see Appendix B.

4 Experiments

In the experiments, we aim to answer the following questions: (1) Does LE-PDE able to learn
accurately the long-term evolution of challenging systems, and compare competitively with state-of-
the-art methods? (2) How much can LE-PDE reduce representation dimension and improving speed,
especially with larger systems? (3) Can LE-PDE improve and speed up inverse optimization? For
the first and second question, since in general there is a fundamental tradeoff between compression

5

Table 1: Performance of models in 1D for scenarios E1,E2, E3. Accumulated error = 1
nx

P
t,x MSE.

Representation dimension (= S ⇥ nx here) is the number of dimensions to update at each time step.
The bold values represent the best performance for experiments and underline shows second best.

Accumulated Error # Runtime [ms] # Representation dim #
(nt, nx) WENO5 FNO-RNN FNO-PF MP-PDE LE-PDE

(ours) WENO5 MP-PDE LE-PDE
full (ours)

LE-PDE
evo (ours) MP-PDE LE-PDE

(ours)
E1 (250, 100) 2.02 11.93 0.54 1.55 1.13 1.9⇥ 103 90 20 8 2500 128
E1 (250, 50) 6.23 29.98 0.51 1.67 1.20 1.8⇥ 103 80 20 8 1250 128
E1 (250, 40) 9.63 10.44 0.57 1.47 1.17 1.7⇥ 103 80 20 8 1000 128
E2 (250, 100) 1.19 17.09 2.53 1.58 0.77 1.9⇥ 103 90 20 8 2500 128
E2 (250, 50) 5.35 3.57 2.27 1.63 1.13 1.8⇥ 103 90 20 8 1250 128
E2 (250, 40) 8.05 3.26 2.38 1.45 1.03 1.7⇥ 103 80 20 8 1000 128
E3 (250, 100) 4.71 10.16 5.69 4.26 3.39 4.8⇥ 103 90 19 6 2500 64
E3 (250, 50) 11.71 14.49 5.39 3.74 3.82 4.5⇥ 103 90 19 6 1250 64
E3 (250, 40) 15.94 20.90 5.98 3.70 3.78 4.4⇥ 103 90 20 8 1000 128

(reduction of dimensions to represent a state) and accuracy [62, 63], i.e. the larger the compression
to improve speed, the more lossy the representation is, we will need to sacrifice certain amount of
accuracy. Therefore, the goal of LE-PDE is to maintain a reasonable or competitive accuracy (maybe
slightly underperform state-of-the-art), while achieving significant compression and speed up. Thus,
to answer these two questions, we test LE-PDE in standard benchmarks of a 1D family of nonlinear
PDEs to test its generalization to new system parameters (Sec. 4.1), and a 2D Navier-Stokes flow up
to turbulent phase (Sec. 4.2). The PDEs in the above scenarios have wide and important application
in science and engineering. In each domain, we compare LE-PDE’s long-term evolution performance,
speed and representation dimension with state-of-the-art deep learning-based surrogate models in
the domain. Then we answer question (3) in Section 4.3. Finally, in Section 4.4, we investigate the
impact of different components of LE-PDE and important hyperparameters.

4.1 1D family of nonlinear PDEs

Data and Experiments. In this section, we test LE-PDE’s ability to generalize to unseen equations
with different parameters in a given family. We use the 1D benchmark in [7], whose PDEs are

⇥
@tu+ @x(↵u

2 � �@xu+ �@xxu)
⇤
(t, x) = �(t, x) (8)

u(0, x) = �(0, x), �(t, x) =
JX

j=1

Ajsin(!jt+ 2⇡`jx/L+ �j) (9)

Here the parameter p = (↵,�, �). The term � is a forcing term [64] with J = 5, L = 16 and
coefficients Aj and !j sampled uniformly from Aj ⇠ U [�0.5, 0.5], !j ⇠ U [�0.4, 0.4], `j 2
{1, 2, 3}, �j ⇠ U [0, 2⇡). Space is uniformly discretized to nx = 200 in [0, 16) and time is uniformly
discretized to nt = 250 points in [0, 4]. Space and time are further downsampled to resolutions of
(nt, nx) 2 {(250, 100), (250, 50), (250, 40)}. The @x(↵u2) advection term makes the PDE nonlinear.
There are 3 scenarios with increasing difficulty: E1: Burgers’ equation without diffusion p = (1, 0, 0);
E2: Burgers’ equation with variable diffusion p = (1, ⌘, 0) where ⌘ 2 [0, 0.2]; E3: mixed scenario
with p = (↵,�, �) where ↵ 2 [0, 3],� 2 [0, 0.4] and � 2 [0, 1]. E1 tests the model’s ability to
generalize to new conditions with same equation. E2 and E3 test the model’s ability to generalize
to novel parameters of PDE with the same family. We compare LE-PDE with state-of-the-art deep
learning-based surrogate models for this dataset, specifically MP-PDE [7] (a GNN-based model)
and Fourier Neural Operators (FNO) [14]. For FNO, we compare with two versions: FNO-RNN is
the autoregressive version in Section 5.3 of their paper, trained with autoregressive rollout; FNO-PF
is FNO improved with the temporal bundling and push-forward trick as implemented in [7]. To
ensure a fair comparison, our LE-PDE use temporal bundling of S = 25 time steps as in MP-PDE
and FNO-PF. We perform hyperparameter search over latent dimension of {64, 128} and use the
model with best validation performance. In addition, we compare with downsampled ground-truth
(WENO5), which uses a classical 5th-order WENO scheme [65] and explicit Runge-Kutta 4 solver
[66, 67] to generate the ground-truth data and downsampled to the specified resolution. For all
models, we autoregressively roll out to predict the states starting at step 50 until step 250, and record
the accumulated MSE, runtime and representation dimension (the dimension of state to update at
each time step). Details of the experiments are given in Appendix D.

Results. The result is shown in Table 1. We see that since LE-PDE uses 7.8 to 39-fold smaller
representation dimension, it achieves significant smaller runtime compared to the MP-PDE model

6

LE-PDE
Prediction:

Figure 2: Visualization of rollout for 2D Navier-Stokes PDE (Re = 104), for ground-truth (upper) and
LE-PDE (lower, trained with ⌫ = 10�4, N = 104). LE-PDE captures detailed dynamics faithfully.

(which is much faster than the classical WENO5 scheme). Here we record the latent evolution time
(LE-PDE evo) which is the total time for 200-step latent evolution, and the full time (LE-PDE full),
which also includes decoding to the input space at each time step. The time for “LE-PDE evo” is
relevant when the downstream application is only concerned with state at long-term future (e.g. [4]);
the time for “LE-PDE full” is relevant when every intermediate prediction is also important. LE-PDE
achieves up to 15⇥ speed-up with “LE-PDE evo” and 4⇥ speed-up with “LE-PDE full”.

With above 7.8⇥ compression and above 4⇥ speed-up, LE-PDE still achieves competitive accuracy.
For E1 scenario, it significantly outperforms both original versions of FNO-RNN and MP-PDE, and
only worse than the improved version of FNO-PF. For E3, LE-PDE outperforms both versions of
FNO-RNN and FNO-PF, and the performance is on par with MP-PDE and sometimes better. For E2,
LE-PDE outperforms all state-of-the-art models by a large margin. Fig. 4 in Appendix D shows our
model’s representative rollout compared to ground-truth. We see that during long-rollout, our model
captures the shock formation faithfully. This 1D benchmark shows that LE-PDE is able to achieve
significant speed-up, generalize to novel PDE parameters and achieve competitive long-term rollout.

4.2 2D Navier-Stokes flow

Data and Experiments. We test LE-PDE in a 2D benchmark [14] of Navier-Stokes equation.
Navier-Stokes equation has wide application science and engineering, including weather forecasting,
jet engine design, etc. It becomes more challenging to simulate when entering the turbulent phase,
which shows multiscale dynamics and chaotic behavior. Specifically, we test our model in a viscous,
incompressible fluid in vorticity form in a unit torus:

@tw(t, x) + u(t, x) ·rw(t, x) = ⌫�w(t, x) + f(x), x 2 (0, 1)2, t 2 (0, T] (10)

r · u(t, x) = 0, x 2 (0, 1)2, t 2 [0, T] (11)

w(0, x) = w0(x), x 2 (0, 1)2 (12)
Here w(t, x) = r ⇥ u(t, x) is the vorticity, ⌫ 2 R+ is the viscosity coefficient. The domain is
discretized into 64⇥64 grid. We test with viscosities of ⌫ = 10�3, 10�4, 10�5. The fluid is turbulent
for ⌫ = 10�4, 10�5 (Re � 104). We compare state-of-the-art learning-based model Fourier Neural
Operator (FNO) [14] for this problem, and strong baselines of TF-Net [26], U-Net [68] and ResNet
[69]. For FNO, the FNO-2D performs autoregressive rollout, and FNO-3D directly maps the past 10
steps into all future steps. To ensure a fair comparison, here our LE-PDE uses past 10 steps to predict

Table 2: Performance of different models in 2D Navier-Stokes flow. Runtime is using the ⌫ =
10�3, N = 1000 for predicting 40 steps in the future.

Method Representation
dimensions

Runtime
full [ms]

Runtime
evo [ms]

⌫ = 10�3

T = 50
N = 1000

⌫ = 10�4

T = 30
N = 1000

⌫ = 10�4

T = 30
N = 10000

⌫ = 10�5

T = 20
N = 1000

FNO-3D [14] 4096 24 24 0.0086 0.1918 0.0820 0.1893
FNO-2D [14] 4096 140 140 0.0128 0.1559 0.0834 0.1556
U-Net [68] 4096 813 813 0.0245 0.2051 0.1190 0.1982
TF-Net [26] 4096 428 428 0.0225 0.2253 0.1168 0.2268
ResNet [69] 4096 317 317 0.0701 0.2871 0.2311 0.2753
LE-PDE (ours) 256 48 15 0.0146 0.1936 0.1115 0.1862

7

(a) Trajectory generated by ground-truth solver with an
initial randomly generated boundary parameter.

(b) Trajectory generated by ground-truth solver with
boundary parameter optimized by LE-PDE.

FNO-2D

LE-PDE-⇠⇠⇠⇠latent

LE-PDE

(c) Runtime.

LE-PDE-⇠⇠⇠⇠latent

FNO-2D

LE-PDE

(d) Objective function. (e) Smoke amount at lower outlet.

Figure 3: Numerical results associated with inverse optimization of boundary (inlet and outlet
designing) in Sec. 4.3. (a) shows a trajectory generated by ground-truth (GT) solver with an initial
randomly generated boundary parameters (y-position of inlet and two outlets), with lower outlet
passing 55.18% of smoke; (b) with optimized boundary parameters, with lower outlet passing 31.79%
of smoke, very near the objective percentage of 30%. (c) Runtime and (d) learning curve (Eq. 7) for
inverse optimization at different iteration steps; (e) For LE-PDE, fraction of smoke passing through
the lower outlet computed by GT solver (green) and estimated by LE-PDE (orange). Error bar denotes
95% confidence interval over 50 runs with random initial conditions.

one future step and temporal bundling S = 1 (no bundling), the same setting as in FNO-2D. We use
relative L2 norm (normalized by ground-truth’s L2 norm) as metric, same as in [14].

Results. The results are shown in Table 2. Similar to 1D case, LE-PDE is able to compress the
representation dimension by 16-fold. Hence, compared with FNO-2D which is also autoregressive,
LE-PDE achieves 9.3-fold speed-up with latent evolution and 2.9-fold speed-up with full decoding.
Compared with FNO-3D that directly maps all input time steps to all output times steps (which cannot
generalize beyond the time range given), LE-PDE’s runtime is still 1.6⇥ faster for latent evolution.
For rollout L2 loss, LE-PDE significantly outperforms strong baselines of ResNet and U-Net, and
TF-Net which is designed to model turbulent flow. Its performance is on par with FNO-3D with
⌫ = 10�4, N = 1000 and the most difficult ⌫ = 10�5, N = 1000 and slightly underperforms
FNO-2D in other scenarios. Fig. 2 shows the visualization of LE-PDE comparing with ground-truth,
under the turbulent ⌫ = 10�4, N = 10000 scenario. We see that LE-PDE captures the detailed
dynamics accurately. For more details, see Appendix E. To explore how LE-PDE can model and
accelerate the simulation of systems with a larger scale, in Appendix F we explore modeling a 3D
Navier-Stokes flow with millions of cells per time step, and show more significant speed-up.

4.3 Accelerating inverse optimization of boundary conditions

Table 3: Comparison of LE-PDE with baselines.

GT-solver Error
(Model estimated Error)

Runtime
[s]

LE-PDE-⇠⇠⇠latent 0.305 (0.123) 86.42
FNO-2D 0.124 (0.004) 111.14

LE-PDE (ours) 0.035 (0.036) 49.81

Data and Experiments. In this subsection, we
set out to answer question (3), i.e. Can LE-
PDE improve and speed up inverse optimiza-
tion? We are interested in long time frame sce-
narios where the pre-defined objective Ld in Eq.
(7) depends on the prediction after long-term
rollout. Such problems are challenging and have
implications in engineering, e.g. fluid control [70, 71], laser design for laser-plasma interaction [4]
and nuclear fusion [72]. To evaluate, we build a 2D Navier-Stokes flow in a family of boundary
conditions using PhiFlow [73] as our ground-truth solver, shown in Fig. 3a, 3b. Specifically, we
create a cubical boundary with one inlet and two outlets on a grid space of size 1282. We initialize
the velocity and smoke on this domain and advect the dynamics by performing rollout. The objective

8

of the inverse design here is to optimize the boundary parameter p, i.e. the y-locations of the inlet
and outlets, so that the amount of smoke passing through the two outlets coincides with pre-specified
proportions 0.3 and 0.7. This setting is challenging since a slight change in boundary (up to a few
cells) can have large influence in long-term rollout and the predefined objective.

As baseline methods, we use our LE-PDE’s ablated version without latent evolution (essentially a
CNN, which we call LE-PDE-⇠⇠⇠latent) and the FNO-2D [14], both of which update the states in input
space, while LE-PDE evolves in a 128-dimensional latent space (128⇥ compression). To ensure a
fair comparison, all models predict the next step using 1 past step without temporal bundling, and
trained with 4-step rollout. We train all models with 400 generated trajectories of length 100 and test
with 40 trajectories. After training, we perform inverse optimization w.r.t. the boundary parameter
p with the trained models using Eq. 7, starting with 50 initial configurations each with random
initial location of smoke and random initial configuration of p. For LE-PDE-⇠⇠⇠latent and FNO-2D,
they need to backpropagate through 80 steps of rollout in input space as in [45, 74], while LE-PDE
backpropagates through 80 steps of latent rollout. Then the optimized boundary parameter is fed to
the ground-truth solver for rollout and evaluate. For the optimized parameter, we measure the total
amount of smoke simulated by the solver passing through two respective outlets and take their ratio.
The evaluation metric is the average ratio across all 50 configurations: see also Appendix G.

Results. We observe that LE-PDE improves the overall speed by 73% compared with LE-PDE-⇠⇠⇠latent
and by 123% compared with FNO-2D (Fig. 3c, Table 3). The result indicates a corollary of the use
of low dimensional representation because Jacobian matrix of evolution operator is reduced to be of
smaller size and suppresses the complexity associated with the chain rule to compute gradients of
the objective function. While achieving the significant speed-up, the capability of the LE-PDE to
design the boundary is also reasonable. Fig. 3d shows the loss of the objective function achieved
the lowest value while the others are comparably large. The estimated proportion of smoke hit the
target fraction 0.3 at an early stage of design iterations and coincide with the fraction simulated by
the ground-truth solver in the end (Fig. 3e). As Table 3 shows, FNO-2D achieves the lowest score
in model estimated error from the target fraction 0.3 while its ground-truth solver (GT-solver) error
is 30⇥ larger. This shows “overfitting” of the boundary parameter by FNO-2D, i.e. the optimized
parameter is not sufficiently generalized to work for a ground-truth solver. In this sense, LE-PDE
achieved to design the most generalized boundary parameter: the difference between the two errors is
the smallest among the others.

4.4 Ablation study

Table 4: Error for ablated versions of
LE-PDE in 1D and 2D.

1D 2D
LE-PDE (ours) 1.127 0.1861

no Lmulti-step 3.337 0.2156
no Lconsistency 6.386 0.2316

no Lrecons 1.506 0.2025
Time horizon M = 1 5.710 0.2860
Time horizon M = 3 1.234 0.2010
Time horizon M = 4 1.127 0.1861
Time horizon M = 6 1.924 0.1923

In this section, we investigate how each component of our
LE-PDE influences the performance. Importantly, we are
interested in how each of the three components: multi-step
loss Lmulti-step, latent consistency loss Lconsistency and recon-
struction loss Lrecons contribute to the performance, and
how the time horizon M and the latent dimension dz in-
fluence the result. For dataset, we focus on representative
scenarios in 1D (Sec. 4.1) and 2D (Sec. 4.2), specifically
the E2 scenario with (nt, nx) = (250, 50) for 1D, and
(⌫ = 10�5, T = 20, N = 1000) scenario for 2D, which
lies at mid- to difficult spectrum of each dataset. We have
observed similar trends in other scenarios. From Table 4,
we see that all three components Lmulti-step, Lconsistency and Lrecons are necessary and pivotal in ensuring
a good performance. The time horizon M in the loss is also important. If too short (e.g. M = 1),
it does not encourage accurate long-term rollout. Increasing M helps reducing error, but will be
countered by less number of examples (since having to leave room for more steps in the future). We
find the sweet spot is at M = 4, which achieves a good tradeoff. In Fig. 6 in Appendix H, we show
how the error and evolution runtime change with varying size of latent dimension dz . We observe
that reduction of runtime with decreasing latent dimension dz , and that the error is lowest at dz = 64
for 1D and dz = 256 for 2D, suggesting the intrinsic dimension of each problem.

9

5 Discussion and Conclusion

In this work, we have introduced LE-PDE, a simple, fast and scalable method for accelerating
simulation and inverse optimization of PDEs, including its simple architecture, objective and inverse
optimization techniques. Compared with state-of-the-art deep learning-based surrogate models,
we demonstrate that it achieves up to 128 ⇥ reduction in the dimensions to update and up to 15⇥
improvement in speed, while achieving competitive accuracy. Ablation study shows both multi-step
objective and latent-consistency objectives are pivotal in ensuring accurate long-term rollout. We
hope our method will make a useful step in accelerating simulation and inverse optimization of PDEs,
pivotal in science and engineering.

Acknowledgments and Disclosure of Funding

We thank Sophia Kivelson, Jacqueline Yau, Rex Ying, Paulo Alves, Frederico Fiuza, Jason Chou,
Qingqing Zhao for discussions and for providing feedback on our manuscript. We also grate-
fully acknowledge the support of DARPA under Nos. HR00112190039 (TAMI), N660011924033
(MCS); ARO under Nos. W911NF-16-1-0342 (MURI), W911NF-16-1-0171 (DURIP); NSF under
Nos. OAC-1835598 (CINES), OAC-1934578 (HDR), CCF-1918940 (Expeditions), NIH under
No. 3U54HG010426-04S1 (HuBMAP), Stanford Data Science Initiative, Wu Tsai Neurosciences
Institute, Amazon, Docomo, GSK, Hitachi, Intel, JPMorgan Chase, Juniper Networks, KDDI, NEC,
and Toshiba.

The content is solely the responsibility of the authors and does not necessarily represent the official
views of the funding entities.

References
[1] P. Lynch, “The origins of computer weather prediction and climate modeling,” Journal of

computational physics, vol. 227, no. 7, pp. 3431–3444, 2008.
[2] M. Athanasopoulos, H. Ugail, and G. G. Castro, “Parametric design of aircraft geometry using

partial differential equations,” Advances in Engineering Software, vol. 40, no. 7, pp. 479–486,
2009.

[3] F. Carpanese, “Development of free-boundary equilibrium and transport solvers for simulation
and real-time interpretation of tokamak experiments,” EPFL, Tech. Rep., 2021.

[4] N. Sircombe, T. Arber, and R. Dendy, “Kinetic effects in laser-plasma coupling: Vlasov theory
and computations,” in Journal de Physique IV (Proceedings), vol. 133. EDP sciences, 2006,
pp. 277–281.

[5] R. Courant, K. Friedrichs, and H. Lewy, “On the partial difference equations of mathematical
physics,” IBM journal of Research and Development, vol. 11, no. 2, pp. 215–234, 1967.

[6] T. Lelievre and G. Stoltz, “Partial differential equations and stochastic methods in molecular
dynamics,” Acta Numerica, vol. 25, pp. 681–880, 2016.

[7] J. Brandstetter, D. E. Worrall, and M. Welling, “Message passing neural PDE solvers,”
in International Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=vSix3HPYKSU

[8] D. E. Keyes, D. R. Reynolds, and C. S. Woodward, “Implicit solvers for large-scale nonlinear
problems,” in Journal of Physics: Conference Series, vol. 46, no. 1. IOP Publishing, 2006, p.
060.

[9] Y. Dubois and R. Teyssier, “Cosmological MHD simulation of a cooling flow cluster,” Astronomy

& Astrophysics, vol. 482, no. 2, pp. L13–L16, 2008.
[10] P. Chatelain, A. Curioni, M. Bergdorf, D. Rossinelli, W. Andreoni, and P. Koumoutsakos,

“Billion vortex particle direct numerical simulations of aircraft wakes,” Computer Methods in

Applied Mechanics and Engineering, vol. 197, no. 13-16, pp. 1296–1304, 2008.
[11] L. T. Biegler, O. Ghattas, M. Heinkenschloss, and B. v. Bloemen Waanders, “Large-scale

pde-constrained optimization: an introduction,” in Large-Scale PDE-Constrained Optimization.
Springer, 2003, pp. 3–13.

10

https://openreview.net/forum?id=vSix3HPYKSU

[12] K. Um, R. Brand, Y. R. Fei, P. Holl, and N. Thuerey, “Solver-in-the-loop: Learning from
differentiable physics to interact with iterative pde-solvers,” Advances in Neural Information

Processing Systems, vol. 33, pp. 6111–6122, 2020.
[13] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia, “Learning

to simulate complex physics with graph networks,” in International Conference on Machine

Learning. PMLR, 2020, pp. 8459–8468.
[14] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya, A. Stuart, and

A. Anandkumar, “Fourier neural operator for parametric partial differential equations,”
in International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=c8P9NQVtmnO

[15] M. Tang, Y. Liu, and L. J. Durlofsky, “A deep-learning-based surrogate model for data assimi-
lation in dynamic subsurface flow problems,” Journal of Computational Physics, vol. 413, p.
109456, 2020.

[16] T. Wu, Q. Wang, Y. Zhang, R. Ying, K. Cao, R. Sosic, R. Jalali, H. Hamam, M. Maucec,
and J. Leskovec, “Learning large-scale subsurface simulations with a hybrid graph network
simulator,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining, 2022, pp. 4184–4194.
[17] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer, “Machine learning–

accelerated computational fluid dynamics,” Proceedings of the National Academy of Sciences,
vol. 118, no. 21, 2021.

[18] A. Sanchez, D. Kochkov, J. A. Smith, M. Brenner, P. Battaglia, and T. J. Pfaff, “Learning latent
field dynamics of PDEs,” Advances in Neural Information Processing Systems, 2020.

[19] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and A. Tacchetti, “Visual interaction
networks: Learning a physics simulator from video,” Advances in neural information processing

systems, vol. 30, 2017.
[20] S. van Steenkiste, M. Chang, K. Greff, and J. Schmidhuber, “Relational neural

expectation maximization: Unsupervised discovery of objects and their interactions,”
in International Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=ryH20GbRW

[21] S.-M. Udrescu and M. Tegmark, “Symbolic pregression: discovering physical laws from
distorted video,” Physical Review E, vol. 103, no. 4, p. 043307, 2021.

[22] C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare, “Deepmdp: Learning
continuous latent space models for representation learning,” in International Conference on

Machine Learning. PMLR, 2019, pp. 2170–2179.
[23] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson, “Learning latent

dynamics for planning from pixels,” in International conference on machine learning. PMLR,
2019, pp. 2555–2565.

[24] R. C. Julian, E. Heiden, Z. He, H. Zhang, S. Schaal, J. J. Lim, G. S. Sukhatme, and K. Hausman,
“Scaling simulation-to-real transfer by learning a latent space of robot skills,” The International

Journal of Robotics Research, vol. 39, no. 10-11, pp. 1259–1278, 2020.
[25] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine, “Stochastic latent actor-critic: Deep

reinforcement learning with a latent variable model,” Advances in Neural Information Processing

Systems, vol. 33, pp. 741–752, 2020.
[26] R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu, “Towards physics-informed deep

learning for turbulent flow prediction,” in Proceedings of the 26th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, 2020, pp. 1457–1466.
[27] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia, “Learning mesh-based

simulation with graph networks,” in International Conference on Learning Representations,
2021.

[28] Z. Li and A. B. Farimani, “Graph neural network-accelerated lagrangian fluid simulation,”
Computers & Graphics, vol. 103, pp. 201–211, 2022.

[29] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net: learning
dense volumetric segmentation from sparse annotation,” in International conference on medical

image computing and computer-assisted intervention. Springer, 2016, pp. 424–432.

11

https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=ryH20GbRW

[30] M. Raissi, “Deep hidden physics models: Deep learning of nonlinear partial differential equa-
tions,” The Journal of Machine Learning Research, vol. 19, no. 1, pp. 932–955, 2018.

[31] Y. Zhu and N. Zabaras, “Bayesian deep convolutional encoder–decoder networks for surrogate
modeling and uncertainty quantification,” Journal of Computational Physics, vol. 366, pp.
415–447, 2018.

[32] S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, and S. Kaushik, “Prediction of aerodynamic
flow fields using convolutional neural networks,” Computational Mechanics, vol. 64, no. 2, pp.
525–545, 2019.

[33] Y. Khoo, J. Lu, and L. Ying, “Solving parametric pde problems with artificial neural networks,”
European Journal of Applied Mathematics, vol. 32, no. 3, pp. 421–435, 2021.

[34] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar,
“Neural operator: Graph kernel network for partial differential equations,” arXiv preprint

arXiv:2003.03485, 2020.
[35] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, A. Stuart, K. Bhattacharya, and A. Anandkumar,

“Multipole graph neural operator for parametric partial differential equations,” Advances in

Neural Information Processing Systems, vol. 33, pp. 6755–6766, 2020.
[36] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. Karniadakis, “Learning nonlinear operators via deeponet

based on the universal approximation theorem of operators. nature mach. intell. 3 (3), 218–229
(2021).”

[37] K. T. Butler, J. M. Frost, J. M. Skelton, K. L. Svane, and A. Walsh, “Computational materials
design of crystalline solids,” Chemical Society Reviews, vol. 45, no. 22, pp. 6138–6146, 2016.

[38] I. Vernon, M. Goldstein, and R. Bower, “Galaxy formation: Bayesian history matching for the
observable universe,” Statistical science, pp. 81–90, 2014.

[39] D. Williamson, M. Goldstein, L. Allison, A. Blaker, P. Challenor, L. Jackson, and K. Yamazaki,
“History matching for exploring and reducing climate model parameter space using observations
and a large perturbed physics ensemble,” Climate dynamics, vol. 41, no. 7, pp. 1703–1729,
2013.

[40] D. S. Oliver and Y. Chen, “Recent progress on reservoir history matching: a review,” Computa-

tional Geosciences, vol. 15, no. 1, pp. 185–221, 2011.
[41] O. Talagrand and P. Courtier, “Variational assimilation of meteorological observations with the

adjoint vorticity equation. i: Theory,” Quarterly Journal of the Royal Meteorological Society,
vol. 113, no. 478, pp. 1311–1328, 1987.

[42] J. Tromp, C. Tape, and Q. Liu, “Seismic tomography, adjoint methods, time reversal and
banana-doughnut kernels,” Geophysical Journal International, vol. 160, no. 1, pp. 195–216,
2005.

[43] H. B. Keller, Numerical solution of two point boundary value problems. SIAM, 1976.
[44] J. T. Betts, “Survey of numerical methods for trajectory optimization,” Journal of guidance,

control, and dynamics, vol. 21, no. 2, pp. 193–207, 1998.
[45] K. R. Allen, T. Lopez-Guevara, K. Stachenfeld, A. Sanchez-Gonzalez, P. Battaglia, J. Ham-

rick, and T. Pfaff, “Physical design using differentiable learned simulators,” arXiv preprint

arXiv:2202.00728, 2022.
[46] R. Y. Rubinstein and D. P. Kroese, “The cross-entropy method: A unified approach to monte

carlo simulation, randomized optimization and machine learning,” Information Science &

Statistics, Springer Verlag, NY, 2004.
[47] A. Treuille, A. Lewis, and Z. Popović, “Model reduction for real-time fluids,” ACM Transactions

on Graphics (TOG), vol. 25, no. 3, pp. 826–834, 2006.
[48] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decomposition in the analysis

of turbulent flows,” Annual review of fluid mechanics, vol. 25, no. 1, pp. 539–575, 1993.
[49] M. Gupta and S. G. Narasimhan, “Legendre fluids: a unified framework for analytic reduced

space modeling and rendering of participating media,” in Symposium on Computer Animation,
2007, pp. 17–25.

[50] M. Wicke, M. Stanton, and A. Treuille, “Modular bases for fluid dynamics,” ACM Transactions

on Graphics (TOG), vol. 28, no. 3, pp. 1–8, 2009.

12

[51] B. Long and E. Reinhard, “Real-time fluid simulation using discrete sine/cosine transforms,” in
Proceedings of the 2009 symposium on Interactive 3D graphics and games, 2009, pp. 99–106.

[52] T. De Witt, C. Lessig, and E. Fiume, “Fluid simulation using laplacian eigenfunctions,” ACM

Transactions on Graphics (TOG), vol. 31, no. 1, pp. 1–11, 2012.
[53] T. Kim and J. Delaney, “Subspace fluid re-simulation,” ACM Transactions on Graphics (TOG),

vol. 32, no. 4, pp. 1–9, 2013.
[54] B. Liu, G. Mason, J. Hodgson, Y. Tong, and M. Desbrun, “Model-reduced variational fluid

simulation,” ACM Transactions on Graphics (TOG), vol. 34, no. 6, pp. 1–12, 2015.
[55] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep

convolutional generative adversarial networks,” in 4th International Conference on Learning

Representations, 2016. [Online]. Available: https://arxiv.org/abs/1511.06434
[56] S. Wiewel, M. Becher, and N. Thuerey, “Latent space physics: Towards learning the temporal

evolution of fluid flow,” in Computer graphics forum, vol. 38, no. 2. Wiley Online Library,
2019, pp. 71–82.

[57] B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and B. Solenthaler, “Deep fluids: A
generative network for parameterized fluid simulations,” in Computer Graphics Forum, vol. 38,
no. 2. Wiley Online Library, 2019, pp. 59–70.

[58] K. Lee and K. T. Carlberg, “Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders,” Journal of Computational Physics, vol. 404, p. 108973,
2020.

[59] S. Wiewel, B. Kim, V. C. Azevedo, B. Solenthaler, and N. Thuerey, “Latent space subdivision:
stable and controllable time predictions for fluid flow,” in Computer Graphics Forum, vol. 39,
no. 8. Wiley Online Library, 2020, pp. 15–25.

[60] P. R. Vlachas, G. Arampatzis, C. Uhler, and P. Koumoutsakos, “Multiscale simulations of
complex systems by learning their effective dynamics,” Nature Machine Intelligence, vol. 4,
no. 4, pp. 359–366, 2022.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
International Conference on Learning Representations (Poster), 2015. [Online]. Available:
http://arxiv.org/abs/1412.6980

[62] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,” arXiv preprint

physics/0004057, 2000.
[63] T. Wu and I. Fischer, “Phase transitions for the information bottleneck in representation

learning,” in International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=HJloElBYvB

[64] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, “Learning data-driven discretizations
for partial differential equations,” Proceedings of the National Academy of Sciences, vol. 116,
no. 31, pp. 15 344–15 349, 2019.

[65] C.-W. Shu, “High-order finite difference and finite volume weno schemes and discontinuous
galerkin methods for cfd,” International Journal of Computational Fluid Dynamics, vol. 17,
no. 2, pp. 107–118, 2003.

[66] C. Runge, “Über die numerische auflösung von differentialgleichungen,” Mathematische An-

nalen, vol. 46, no. 2, pp. 167–178, 1895.
[67] W. Kutta, “Beitrag zur naherungsweisen integration totaler differentialgleichungen,” Z. Math.

Phys., vol. 46, pp. 435–453, 1901.
[68] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image

segmentation,” in International Conference on Medical image computing and computer-assisted

intervention. Springer, 2015, pp. 234–241.
[69] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[70] A. McNamara, A. Treuille, Z. Popović, and J. Stam, “Fluid control using the adjoint method,”
ACM Transactions On Graphics (TOG), vol. 23, no. 3, pp. 449–456, 2004.

13

https://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=HJloElBYvB

[71] P. Holl, N. Thuerey, and V. Koltun, “Learning to control pdes with differentiable
physics,” in International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=HyeSin4FPB

[72] A. Zylstra, O. Hurricane, D. Callahan, A. Kritcher, J. Ralph, H. Robey, J. Ross, C. Young,
K. Baker, D. Casey et al., “Burning plasma achieved in inertial fusion,” Nature, vol. 601, no.
7894, pp. 542–548, 2022.

[73] “Phiflow,” https://github.com/tum-pbs/PhiFlow.
[74] Q. Zhao, D. B. Lindell, and G. Wetzstein, “Learning to solve pde-constrained inverse problems

with graph networks,” International Conference on Machine Learning, 2022.
[75] K. Roberts and H. L. Berk, “Nonlinear evolution of a two-stream instability,” Physical Review

Letters, vol. 19, no. 6, p. 297, 1967.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] In Appendix C.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] In

Appendix I
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] The Appendix
includes full details on model architecture, training and evaluation to reproduce the
experimental results. Code and data will be released upon publication of the paper.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Important training details are included in main text, and full details
to reproduce the experiments are included in the Appendix.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] Yes in Section 4.4. For Sections 4.1 and 4.2, the
benchmarks do not include the error bars and we use the same format.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In Appendix D,E,F,G.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] In Appendix D,E,F,G.
(b) Did you mention the license of the assets? [Yes] In Appendix D,E,F,G.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

In Appendix D,E,F,G.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] In Appendix D,E,F,G.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] In Appendix D,E,F,G.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

https://openreview.net/forum?id=HyeSin4FPB
https://github.com/tum-pbs/PhiFlow

	Introduction
	Problem Setting and Related Work
	Our approach LE-PDE
	Model architecture
	Learning objective
	Accelerating inverse optimization

	Experiments
	1D family of nonlinear PDEs
	2D Navier-Stokes flow
	Accelerating inverse optimization of boundary conditions
	Ablation study

	Discussion and Conclusion
	Classical Numerical Solvers for PDEs
	Boundary Interpolation and Annealing Technique
	Model Architecture for LE-PDE
	Details for experiments in 1D family of nonlinear PDEs
	Details for 2D Navier-Stokes flow
	3D Navier-Stokes flow
	Details for inverse optimization of boundary conditions
	More ablation experiments with varying latent dimension
	Broader social impact
	Pareto efficiency of FNO vs. LE-PDE
	Comparison of LE-PDE with LFM
	Influence of varying noise amplitude
	Ablation of LE-PDE using pretrained autoencoder or VAE

