S1 Organization of the Supplementary Material

We provide the pseudocode for the WSGM algorithm in Appendix S2. Appendix S3 contains an
introduction to wavelet transforms, and their whitening properties are presented in Appendix S4. The
proofs of Section 2 and Section 3 are gathered Appendix S5 and Appendix S6 respectively. Details
about the Gaussian model and the <p4 model are given in Appendix S7 and Appendix S8 respectively.
Finally, experimental details and additional experiments are described in Appendix S9.

S2  WSGM Algorithm

In Algorithm 1, we provide the pseudocode for WSGM. Notice that the training of score models at
each scale can be done in parallel, while the sampling is done sequentially one scale after the next.

Algorithm 1 Wavelet Score-based Generative Model

Require: J, ]Viterv N, T’{éj,m '9(],0};']:07 {xz)n}vqule
. //l WAVELET TRANSFORM ///
s forje{l,...,J}do
forme {1,...,M} do
x =y 'Galt 7 = v Gl > Wavelet transform of the dataset
end for
end for
/Il TRAINING ///
Train score network 5% at scale J with dataset {xf]n}%:o > Unconditional SGM training
9: forje{J,...,1} do > Can be run in parallel
10: forn € {0,..., Ny, — 1} do
11: Sample (z; ¢, z;) from {z]", m?}%zl
12: Sample ¢ in [0, T] and Z ~ N(0,1d)
13: J_:jJ = eitfi]"O =+ (]. — ei2t)1/22
14: €0n) = (e 250 — B54) — (1 = e_Qt)l/Qgéjm(t Zjlz)I?

PRAINR LY

15: 0; n41 = optimizer_update(; ,, Z(éj,n)) > ADAM optimizer step
16: end for

17: 0; = ejaNiler

18: end for

19: /// SAMPLING ///

20: x; = EulerMaruyama(7, N, 39}) > Euler-Maruyama recursion following (16)
21: forj e {J,...,1} do

22: Z; = EulerMaruyama(7, N, Sg (-, -lz;)) > Euler-Maruyama recursion following (17)

23: Ti_1 =" GTI]- + 'ijTi’j > Wavelet reconstruction
24: end for _
25: return {9;-, 9}}3-]:1, Zo > Returns learned parameters and generated samples

S3 Introduction to the Fast Orthogonal Wavelet Transform

This section introduces the fast orthogonal wavelet transform introduced in [30]. It is computed with
convolutional operators GG and G. In this section, we deal with the non-normalized wavelet transform,
which is obtained by setting v; = 1. To avoid confusion with normalized wavelet coefficients
(z;,7;), we denote the non-normalized wavelet coefficients with a w exponent: (z}, Z; ).

Let x; be a signal. The index w in ¢ (u) belongs to an n-dimensional grid of linear size L and hence
with L" sites, with n = 2 for images. Let us denote x;” the coarse-grained version of ;) at a scale

27 defined over a coarser grid with intervals 27 and hence (27j L)" sites. The coarser signal z;” is

iteratively computed from xqf,l by applying a coarse-graining operator, which acts as a scaling filter
G which eliminates high frequencies and subsamples the grid:

(G ) (u) = Zx}‘)_l(u/) G2u—u') . (S1)



The index u on the left-hand side runs on the coarser grid, whereas «’ tuns on the finer one.

The degrees of freedom of x;” 1 that are not in z;’ are encoded in orthogonal Wavelet coefficients
. The representatlon (z7 35T ) is an orthogonal change of basis calculated from :z: _1- The coarse
s1gna1 Jc is calculated in (Sl) with a low-pass scaling filter G and a subsampling. In dimension n,
the Wavelet coefficients :E;” have 2" — 1 channels computed with a convolution and subsampling
operator G. We thus have: B
zy =Guxy g and T = Gajl . (S2)
The wavelet filter G’ computes 2" — 1 wavelet coefficients z; (u, k) indexed by 1 < k < 2" — 1,
with separable high-pass filters G, (u):

Ty (u, k) = ZIJ 1 ( w(2u —u).

As an example, the Haar wavelet leads to a block averaging filter G. In dimension n = 1
W) = x5 (2u) + x4 (2u+ 1)
J = V2 )
and there is a single wavelet channel in Z7'. The corresponding wavelet filter G computes the wavelet
coefficients with increments divided by v/2:
7 ) — xi 1 (2u) — i1 (2u + 1).
V2

If n = 2, then there are 2" — 1 = 3 wavelet channels as shown in Figure 1.

xT

The fast wavelet transform cascades (S2) for 1 < 5 < J to compute the decomposition of the
high-resolution signal zg into its orthogonal wavelet representation over .J scales:

{=7, 27} s (S3)

The wavelet orthonormal filters G and G define a unitary transformation, which satisfies:
GG'=GG" =0and G'G+G'G=1d,
where Id is the identity. Conjugate mirror conditions are given in [30] on the Fourier transforms of G

and G to build such unitary filters. The filtering equations (S2) can then be inverted with the adjoint
operators:

a¥  =Glaf +GFY . (S4)

The adjoint G enlarge the grid size of xj by inserting a zero between each coefficients, and then

filters the output:
Z T G(2u" —u).

The adjoint of G’ performs the same operatlons over the 2" — 1 channels and adds them:

2" —1
(G ) (w) = > ay (W, k) G20 — u).

k=1 o/

The fast inverse wavelet transform [30] recovers x, from its wavelet representation (S3) by progres-
sively recovering ;_; from z;’ and Z; with (S4), for j going from .J to 1.

S4 Orthogonal Wavelet Bases and Preconditioning of Operators

This appendix relates the fast discrete wavelet transform to decomposition of finite energy functions
in orthonormal bases of L?([0,1]"). Although the covariance of normalized wavelet coefficients of
multiscale processes are badly conditioned, after normalisation these covariance matrices become
well conditioned because the normalisation acts as a preconditioning operator [15]. This is a central
result to prove Theorem 3. The results of this appendix are based on the multiresolution theory
[30, 31] and the representation of elliptic singular operators in wavelet orthonormal bases [34].



Orthonormal wavelet bases From an input discrete signal 23(u) = x(u) defined over an n-
dimensional grid of width L, we introduced in (14) a normalized wavelet transform which computes
wavelet coefficients Z; (u, k) having 2" —1 channels 1 < k < 2". The orthonormal wavelet transform
without renormalization is obtained by setting v; = 1 and has been introduced in appendix S3. We
write 2 = (Z}, ] ) j<; the vector of non-normalized wavelet coefficients.

The multiresolution wavelet theory [31, 34] proves that the coefficients of Z* can also be written as
the decomposition coefficients of a finite energy function, in a wavelet orthonormal basis of the space

L2 (R™) of finite energy functions. These wavelets arise from the cascade of the convolutional filters
G and G in (2?) when we iterate on j [31]. This wavelet orthonormal basis is thus entirely specified
by the choice of the filters G and G. A wavelet orthonormal basis is defined by a scaling function

¥°(v) for v € R™ which has a unit integral [¢°(v)dv = 1, and 2" — 1 wavelets which have a
zero integral [ ¢¥(v) dv = 0 for 1 < k < 2". Each of these functions are dilated and translated by
u€Z" forl <k<2"andj € Z:

Uha() =270k — ).
The main result proved in [31, 34], is that for appropriate filters G and G such that (G, G) is unitary,
the family of translated and dilated wavelets up to the scale 27

0 k
{Vrus Yiuhicher < uez
is an orthonormal basis of L?(R"). A periodic wavelet basis of L?([0,1]") is defined by replacing
each wavelet 1/);% by the periodic function ) 7 _,» 1/);»“’“(11 — r) which we shall still write z/)fu

The properties of the wavelets 1/);% depend upon the choice of the filters GG and G. If these filters
have a compact support then one can verify [31] that all wavelets 7,[1?7u have a compact support of

size proportional to 27 With an appropriate choice of filters, one can also define wavelets having ¢
vanishing moments, which means that they are orthogonal to any polynomial Q(v) of degree strictly
smaller than q:

f[O,l]" Q(v) ¢f,u(v) dv = 0.
One can also ensure that wavelet are g times continuously differentiable. Daubechies wavelets [31]
are examples of orthonormal wavelets which can have g vanishing moments and be C? for any g.
The relation between the fast wavelet transform and these wavelet orthonormal bases proves [31] that
any discrete signal x,(u) of width L can be written as a discrete approximation at a scale 2t =7t
(¢ < 0) of a (non-unique) function f € L2([07 1]™). The support of f is normalized whereas the
approximation scale 2% decreases as the number of samples L increases. The coefficients zq(u) are
inner products of f with the orthogonal family of scaling functions at the scale 2' for all u € Z" and
2% € [0,1]™:
xO(u) = f[oy”" f(U) wg,u(v) dv = <fv ¢?,u>
Let V, be the space generated by the orthonormal family of scaling functions {1/)2u}2zu 01" and

Py, f be the orthogonal projection of f in V,. The signal z, gives the orthogonal decomposition
coefficients of Py, f in this family of scaling functions. One can prove [31] that the non-normalized

wavelet coefficients Z; of x, computed with a fast wavelet transform are equal to the orthogonal
wavelet coefficients of f at the scale 271, for all u € Z™ and 27w € [0, 1]™:

jéﬂ (U, k) = f[O,l]" f(’U) ?/’ﬁe,u(”) dv = <f7 w?+é,u>'
and at the largest scale 27

xi})(ua k) = f[O,l]" f(U) ’L/).(}Jrl,u(v) dv = <f7 w;€+.l,u>'

Normalized covariances We now consider a periodic stationary multiscale random process x(u)
of width L. It covariance is diagonalised in a Fourier basis and its power spectrum (eigenvalues) has a
power-law decay P(w) = ¢(€" + |w|") ", for frequencies w = 2wm/L with m € {0,..., L —1}".
The following lemma proves that the covariance matrix ¥ of the normalized wavelet coefficients =
of = is well conditioned, with a condition number which does not depend upon L. It relies on an
equivalence between Sobolev norms and weighted norms in a wavelet orthonormal basis.



Lemma S4. For a wavelet transform corresponding to wavelets having q > 1 vanishing moments,
which have a compact support and are q times continuously differentiable, there exists Cy > C; > 0
such that for any L the covariance ¥ of T = (Z,1 ;) j< ; satisfies:

C;ld<E <0, 1d. (S5)

The remaining of the appendix is a proof of this lemma. Without loss of generality, we shall suppose
that E[z] = 0. Let 032-, . be the variance of Z7'(u, k), and D be the diagonal matrix whose diagonal
values are o ,i . The vector of normalized wavelet coefficients = (Z;,z ;)< are related to the
non-normalized wavelet coefficients " by a multiplication by D:

z=Dz".
Let ¥, be the covariance of z". It results from this equation that the covariance ¥ of Z and the
covariance ¥, of 7" satisfy: - -
¥ =D%,D.
The diagonal normalization D is adjusted so that the variance of each coefficient of Z is equal to 1,
which implies that the diagonal of ¥ is the identity. We must now prove that X satisfies (S5), which
is equivalent to prove that there exists C'; and C'; such that:

C,1d< DS,D < C, 1d. (S6)

To prove (S6), we relate it to Sobolev norm equivalences that have been proved in harmonic analysis.
We begin by stating the result on Sobolev inequalities and then prove that it implies (S6) for
appropriate constants C; and CS.

Let X be the singular self-adjoint convolutional operator over L? (R™) defined in the Fourier domain
forall w € R™:

Socf (@) = F(w) €+ w]).
Observe that: )
(Socfs 1) = e Jar 1F @) (€7 + || dw

is a Sobolev norm of exponent 7. Such Sobolev norms are equivalent to weighted norms in wavelet
bases, as proved in Theorem 4, Chapter 3 in [34]. To take into account the constant £, we introduce a

maximum scale 2J’ = 5_1. Forall f € L2(R"), there exists B > A > 0 such that:
AT fo f) S Puenn 270G (S7)
J 2" —1 5—j E o\ (2
+Zj=—oo ZueZn Zk:l 2 1 ‘<fa wj,uH S B<Zoof7 f>

The remaining of the proof shows that these inequalities imply similar inequalities over the covariance
of discrete wavelet coefficients. This is done by first restricting it to a finite support and then using
the correspondence between the orthonormal wavelet coefficients of f and the discrete wavelet
coefficients 2" of z,.

One can verify that the equivalence (S7) remains valid for functions f & Lz([O, 11" decomposed
over periodic wavelet bases, because functions in L ([0, 1]") can be written f(v) = dorezn flo=7)
with f € L*(R"):

ACaf £) £ o 2 IS0y 1

+ Z;'Jz—oo Zgjue[OJ]" i:;l 27jn |<fa ¢;€,u>|2 < B <Eoof7 .f>

Applying this result to f € V, is equivalent to restricting ¥, to V,, which proves that ¥, =
Py, 3 Py, satisfies:

AES ) <300 o 27, P (S8)

+ Zj:é-{-l Zg’@qoﬂ" i:?l 2*j77 |<f7 1/1;€,u>|2 S B <2€f7 f>

The operator 3, = Py, X, Py, is covariant with respect to shifts by any m2" form € Z" be-
cause Py, and X are covariant to such shifts. Its representation in the basis of scaling functions



{z/Jgu}fu €0,1]" is thus a Toeplitz matrix which is diagonalized by a Fourier transform. There exists
0 < A, < B, such that forall ¢ < O and all w € [-2 ‘x, 2" 7]",

Ay (€7 + |w]") < Py(w) < By (&7 + |w]). (9
Indeed, the spectrum of X, is ¢ (£ + |w|”) for w € R™ and Py, performs a filtering with the scaling

function w}? whose support is essentially restricted to the frequency interval [—7r2_e, 7r2_é] so that
the spectrum of Py, Y., Py, is equivalent to the spectrum of %, restricted to this interval.

The lemma hypothesis supposes that the covariance ¥ of z, has a spectrum equal to ¢ (€ + |wm !

and hence that the spectrum of S s et (€" + |w|™). Since x are decomposition coefficients of
f € V, in the basis of scaling functions, equation (S9) can be rewritten for any f € V:

Ay e (S wg,20) < (S0f, f) < By e (3w, x0). (S10)

Since the orthogonal wavelet coefficients Z defines an orthonormal representation of z, the

—w

covariance 3, of 7% satisfies (5,7, 7%) = (S &, 7). Moreover, we saw that that the wavelet
coefficients Z* of x satisfy z7' (u, k) = (f, ¢§+E’u> and at the largest scale T (u, k) = (f, 1/}3“#).
Hence for J + ¢ = J', we derive from (S8) and (S10) that:

AA (B8, 30) < Yo 2T e W)
J 2" —1 5—(j+2 —w 2 o—1l-w —w
+ 3 Y oyt a2 @ (u k)P < BBy e (5,120, 2Y).

It results that for Ay = A A; c and By, = B By ¢ we have:
Ay (8512, 27) < 27O 2P 4 27U g < B, (52", 7).
j=1

Let D be the diagonal operator over the wavelet coefficients ", whose diagonal values are 9 i+0/2

at all scales 2’. These inequalities can be rewritten as operator inequalities:
A St < D* < By St

w

and hence: o
A, Id<DY,D < B, 1d. (S11)

Since D2 is the diagonal of ¥, we derive from (S11) that:
Ay D> <D ?<By,D2
Inserting this equation in (S11) proves that:
A, By'1d< DS, D < B, Ay 1d,
and since & = D, D it proves the lemma result (S6), with C; = A,B5 " and Cy = BgAgl.

S5 Proof of Theorems 1 and 2

In this section, we first present the continuous-time framework in a Gaussian setting in Appendix S5.1.
The general outline of the proof of Theorem 1 is presented in Appendix S5.2. Technical lemmas are
gathered in Appendix S5.3. The proof of Theorem 2 is presented in Appendix S5.4.

S5.1 Gaussian setting

In what follows we present the Gaussian setting used in the proof of Theorem 1. We assume that
po = N(0,%) with ¥ € S4(R),. Let D € My(R).. adiagonal positive matrix such that ¥ = P DP
with P an orthonormal matrix. We consider the following forward dynamics

dz, = —z,dt + V2dw,,



with £(xy) = py. We also consider the backward dynamics given by
dys = {ys + 2V log pr_s(y,)}dt + V2dw,,

with £(yo) = pa = N(0,1d). Note that since for any ¢ € [0, 7] and z € R?, Vlogp,(z) = —X; '
with ¥, = exp[—2t]¥ + (1 — exp[—2t]) Id, we have that (y;),c[o,r) is a Gaussian process. In
particular, we can compute the mean and the covariance matrix of y, in a closed form for any
t € [0, T)]. The results of Proposition S5 will not be used to prove Theorem 1. However, they provide
some insights regarding the evolution of the mean and covariance of the backward process.

Proposition S5. For anyt € [0,T), we have that L(y,) = N(0, %) with
5, = P ((1 — exp[—21])D, + exp[—2]D})P,
and ~
D, = Id+(D —Id) exp[—2(T — t)]) @ (Id +(D — Id) exp[—2T]) .

Note that Dy = Id and Dy = D @ (Id +(D — Id) exp[—2T1]) ~ D. Hence, we have £ ~ ¥ and
therefore L(yr) =~ po.

Proof. First, note that for any ¢ € [0, 7] we have that
¢ - t -
Yt =Yo + fo (Id _QETit)yt + \/iwt = Yo + fo (Id _QPTDTitht + \@wm
with Dp_y = exp[—2(T' — ¢)|D + (1 — exp[—2(T — ¢)]) Id. Denote {ytp}te[O,T] = {Py; }refo,1)-
Using that P " P = Id, we have that for any ¢ € [0, T]
i = + Jo(1d=2D71 )y + v2uwy,
where {wf}te[o’ﬂ = {Pw}icpo,r)- Note that since P is orthonormal, {wf}te[O,T] is also
a d-dimensional Brownian motion. We also have that L(yo) = N(0,1d). Hence for any
{ {yf “Yeepo,1) }?:1 is a collection of d independent Gaussian processes, where for any ¢ € {1,...,d}
and ¢ € [0,7], 5" = (y; , e;) and {ei_}f:l is the canonical basis of R?. Leti € {1,...,d} and
for any ¢ € [0, 7] denote u; = Ely} ] and v; = E[(y;"")?]. We have that for any ¢ € [0,7],
dyuy = (1 — 1/Dy)ug with ug = 0 and D = exp[—2t|D; + 1 — exp[—2t]. Hence, we get that for
any t € [0,7], u; = 0. Using It6’s lemma we have that
vy = {2 —4/Dl_ vl + 2, (S12)
with v = 1. Denote oy = (D' — 1) exp[—2T], we have that for any ¢t € [0,7], D5_, =
1 + o exp(2t]. Therefore, we get that for any ¢ € [0, T
2 —4/Dh_, = =242 x (2a%) exp[2t] /(1 + oy exp[2t]) = —2 + 20, log(1 + oy exp[2t]).
Hence, we have that for any ¢ € [0, T
[32 —4/Dh_,ds = —2t +log((1 + ol exp[2t])* /(1 + af)?).
Hence, there exists CtZ e C'([0,T],R) such that for any ¢ € [0,T], v = C]exp[—2](1 +
orp exp(2t])® /(1 + o )?. Using (S12), we have that for any ¢ € [0, 7]
8,C5 = 2exp2A]((1 + ol expl2t]) /(1 + a)) > = —(1/al)(1 + alp)?0,(1 + alp exp[2e]) ™.
Hence, we have that for any ¢ € [0, 7]
Ci = (/) (1+ )’ [(1+af) ™" = (1+ af exp[2t]) '] + 4,
with A > 0. Hence, we get that for any ¢ € [0, T
vp = (1/or) exp[=2t](1 + ap exp[2t])[(1 + o exp[2t]) /(1 + ar) — 1]
+ Aexp[—2t](1 + ok exp[2t])? /(1 + o).
In addition, we have that v(i) = 1 and therefore A = 1. Therefore, for any ¢ € [0, 7] we have
v = (1/ar) exp[=2t](1 + a7 exp[2t])[(1 + o exp[2t]) /(1 + ar) — 1]
+ exp[—2¢](1 + a exp[2t])*/(1 + o)
= (1 — exp[-2])(1 + a exp(2t]) /(1 + o) + exp[~2](1 + o exp[21])*/ (1 + o),
which concludes the proof. O



S5.2 Convergence results for the discretization

In what follows, we denote (Y}, )rcqo,...n—1} = (Z¢, Jkefo,...,N—1}» the sequence given by (6). The
following result gives an expansion of the covariance matrix and the mean of Y}, i.e. the output of
SGM, in the case where p = N(u, X).

Theorem S6. Let N € N, § > 0 and T' = N§. Then, we have that T, . ~ N(fiy, Sy) with
Sy =3+ exp[—4T|Sp + 6Bp + 52RT,5 ) fiy = p+exp[—2Tfip + dép + 527"T,5 )

where XAJT,EAJPRT’(; e R4 fu, p, T 5 € R” and IRz 5]l + |77 5|l < R not dependent on T' > 0
and § > 0. We have that

Sp = —(Z - 1)(Zx7)?,
Ep =1d—(1/2)2*(2 — 1d) " log(%) 4 exp[—2T]|E . (S13)
In addition, we have
fir = —S7'Sp
ér = {257 — (1/DE(S ~ 1)~ log(£)}p + exp[-2Tfir
with ET, it bounded and not dependent on T'.

Before turning to the proof of Theorem S6, we state a few consequences of this result.
Corollary S7. Let {Z,, }kNZO the sequence defined by (6). We have that T, , ~ N(uy, Xy ) with
Yy =X+ 085 +exp[—4T|Er + X5 1,
pn = o+ Ops + exp[=2T up + psp
with
Sr=—(Z-1d)%?,
S5 =1d—(1/2)23(2 — 1d) ' log(D) ,
pir = g,
s = {=257" = (1/4)5(2 — 1d) ™ log(2)}u .
In addition, we have lims_,o 7, 1 o [| X5 7|/ (6 + exp[—4T]) = 0 and lims_,o 17—, 4 o ||pts 7|l /(0 +

exp[—2T]) = 0.

At first sight, it might appear surprising that ¥~ ! does not appear in X7 and pp. Note that in the
extreme case where > = 0 and § — 0, i.e. we only consider the error associated with the fact that
T # 400, then we have no error. This is because in this case the associated continuous-time process
is an Ornstein-Uhlenbeck bridge which has distribution N(y, 0) at time 7.

We will use the following result.

Lemma S8. Ler m; = N(p;, %) for i € {0,1}, with pg, py € R and 3¢, %, € Sg(R) . Then, we
have that

KL(mo||m) = (1/2){log(det(%,)/ det(3g)) — d + Tr(X7 ' So) + (11 — 110) ' S1 (111 — pa)}-
In particular, applying Lemma S8 we have that for any ¥ € S;(R)
KL(N(0,2)|IN(0,Id)) = (1/2){—log(det(X)) + Tr(X2) — d}. (S14)

Proposition S9. Let {z,, }szo the sequence defined by (6). We have that T, . ~ N(uy, Xy ), with
N, 2N given by Corollary S7. We have that

KL(N(p, 2)|[N(pn, En)) < 8] Te(S7'55)| + exp[—4T]| Te(S7 ' Sg)| + exp[—AT )" Sp+ Ers
with Erp 5 a higher order term such that limr_, | o 5,0 Er 5/(0 + exp[—4T]) = 0.

We now prove Theorem S6.



Proof. For any k, denote Y}, = 7, _, . First, we recall that for any k € {0,...,N—1}andx € R,
Viog pr_p(z) = —E;l_,mx where for any ¢ € [0, 7]

Y, = (1 — exp[—2t]) Id + exp[—2t]Z .
Hence, we get that for any k£ € {0,...,N — 1}

Y1 = ((1+7)1d 72’7251—10/)}//@ + 272;1—k7MT—k7 + V2724, (S15)
where for any ¢ € [0,T], M; = exp[—t]u. Therefore, we get that for any k € {0,...,N}, Y, isa
Gaussian random variable. Using (S23), we have that for any k € {0,...,N — 1}

E[YkJrl?kTH] =((1+~)Id _272;£k'y)ED}kYII]((1 +7)1d —QVZ;L«Y) +2yId,  (S16)
where for any k£ € {0,..., N}, YV, =Y, — E[Y,]. There exists P € R¥*? orthogonal such that
D = PP’ is diagonal. Note that for any k € {0,...,N — 1}, we have that A, = P((1 +
v)1d —2y57L, )P is diagonal. For any k € {0,..., N}, define H;, = PE[V, ;' JP". Note that
H, = Id. Using (S16), we have that for any k € {0,...,N — 1}

Hyyq = AZH), +2v1d . (S17)
Hence, for any k € {0,..., N}, H;, is diagonal. For any diagonal matrix C' € R™? denote
{c',..., "} its diagonal elements. Leti € {1,...,d}. Using (S17), we have that for any k €

{0,....N =1} | -
hier = (AR)?hi + 2y .
Using this result we have that for any k£ € {0,..., N}
hi = (Te20 A0)” +27 20050 (TTj=p Me-1-3)" = (TTe2g M) +20 X050 (T2he X3)° -
Let ky,ky € {0,...,N} with k; < ky. In what follows, we derive an expansion of I, , =
H:ikl Ai w.r.t. v > 0. We have that

iy gy =T1i2s, A = exp[3252, log(My)] = exp[S252, log(1 +7aj)] , (S18)

where forany k € {0,..., N}, aj, = 172/d2N_k)7, with dzN—k)v = 1+exp[—2(N —k)~](d" —1).
1 bounded such that for any & € {0, ..., N} we have

i i 2 iN2 | 3pi
log(1 +~yay) = vyap, — (v"/2)(ay)” + 7 bk -
In addition, using Proposition S10, there exists C,Zl’ k, = 0 such that fyC,Zl, hy S C with C > 0 not
dependent on ko, ko € {0,..., N}, > 0and

iy, log(1+ya) = [ i <)dt—<v/2>[f a'(t)’dt +a'(t3) — a' (t)] + 7,7’

with t; = kyv, t4 = (ky 4+ 1)y and for any t € [0,T], a; = 1 — 2/dr_, with d'_, = 1 +
exp[—2(T —t)](d" — 1). Hence, using this result and (S18), we get that there exists Dzl-,k'z > 0 such
that ngl’kQ < D with D > 0 not dependent on ks, ks € {0,..., N}, > 0and

Hence, there exist (bfm)ke{o

ts ty i t i ;
Iy, ky = expl [, 7 a’(t)dt] —exp[[,* a’(O)](v/2)[[,] a'(t)*dt +a'(t3) —a'(t1)] +°D] 4, -
(S19)
Using this result, we get that there exists E? > ( such that vEf < E with E > 0 not dependent on
~ such that

(I125" A0 = expl2 fy a'(t)dt] —vexp[2 f; o' (H)A[[) o' (£)*dt + a*(T) — a*(0)] + 7 E] .
(S20)
Similarly, using (S19), there exist £ > 0 and (E;’e)ge{oym’]\[} such that for any ¢ € {0,..., N},

Ej ;> 0and yEj, < E with E > 0 not dependent on + and ¢ such that
N-1 %
2y Ze:o (HJ N— é)‘_]) (27) Zz 0 eXp 2fT fv )dt]}

A2 S Hexp| 2fH7 )dt][ [ o a'(0)°dt+a'(T) — a'(T — £y)]}
+ ZN lE'y



Therefore, using Proposition S10, there exists Eg such that 7Eg < E with F > 0 not dependent on
~ and

29505 (TN - ) =2y expl2 fr_ o' %hwt+w1—@m2k (t)at)
—2v fo {exp| 2fT ca (s)ds]| fT ,a dt +a (T) .(T —t)]}dt
+4°E7 . (S21)
Hence, combining (S20) and (S21) we get that
Wiy = cr —yer +7°E7
with
cp = exp 2f0 t)dt] + 2f0 exp 2fT ,a'(s)ds]dt . (S22)
and
¢ = —expl2 [T a MW‘<fM+ﬂﬂ—d@Hrww2L (t)d]
72f0 exp2th s)ds]| th ds+a(T)fa(Tft)]dt.

In what follows, we compute céﬂ and eiT.

(1) Using Lemma S11 we have
exp[2 [y a'(t)dt] = d® exp[-2T]/(1 + exp[-2T](d — 1))* .
In addition, using Lemma S12 we have
fo exp 2fT ca'(s)ds] = (d/2)(1 — exp[—2T7)/(1 + exp[-2T](d — 1)) .
Combining these results and (S22), we get that

¢ = d+ d* exp[—2T](1 — (1 4 exp[—=2T](d — 1)) ") /(1 + exp[—2T](d — 1))
= d+ d*(d — 1) exp[—4T]/(1 + exp[-2T](d — 1))* .

(i) We conclude for eiT using Proposition S20 with A = d —1.

This concludes the proof of (S13). Next, we compute the evolution of the mean. Using (S23), we
have

E[Yy] = (1 +7)1d=29571 B[] + 29E[S7L My _p,] (523)

Note that for any k € {0,..., N — 1}, we have that A;, = P((1+ ) Id —27Z;£k7)PT is diagonal.

Forany k € {0,..., N}, define H,, = PE[Y;]P . Note that H, = 0. For any k € {0,..., N — 1}
we have that

Hyyy = AgHy +29D70, Vi g (S24)

where for any t € [O 7], D, = P%, P" and V, = PM,. Leti € {1,...,d}. Using (S24), we have
forany k € {0,. -1}

k1 = AkBk 4 2007 /7y - (S25)
In what follows, we define for any ¢ € [0, T], 7(t)" = v%_, /d’»_, and note that for any ¢ € [0, T
r()" = exp[—(T = 1)}/ (1 + exp[-2(T — t)](d" = 1))(Pp)" . (S26)
Using (S25) and that hf) = 0, we have that for any k£ € {0,..., N}

L =2y (k= = D)) TTZo M1y = 29 b (k= €= D) TTEZi X



Using (S19), we get that there exists D7 > 0 such that vD” < D not dependent on + and
=2y 305 (T — (k1)) exp(fr_y, ' (1)
7 Sy r(T = (k4 1)y) explfy_ ., @' (A f7_,., a'(£)°dt +a'(T) = a' (T — k)]
+ Zk o1 V4DZ,N
= 29305 1T = (k + D) expl ' (1))
— Yl (T = (k + 1)) explfr_ a' ([ f7_, o' ()%t +a'(T) — o' (T — k)]
+v :p7
Using Proposition S10, we get that there exists £ > 0 such that vE” < F not dependent on ~y and
hiy =2y SN (T — (k + 1) exp| qu k»y Z( )dt]
—’yfo r(T —t) expr L a'(s)ds][ fT La t)2dt + a'(T) — a' (T — t)]dt
+73E7 .
In addition, for any k € {0, ..., N}, there exists u;, > 0 with u;, < w and v > 0 not dependent on k
" (T = (k+1)y) = (T = ky) = (T = ky)y +uy” .
Using this result, we get that exists F7 > 0 such that ’yFW < F not dependent on vy and

Wiy =2y S0 H(T = k) explfi

—292 S (T — k) eXP[f ( )dt]
—fyfo r(T —t) exp fT L a'(s)ds][ fT L V2dt + a'(T) — o' (T — t)]dt
+~2F7 .

Using Proposition S10, we get that there exists G7 > 0 such that vG”7 < G not dependent on ~ and
N =2y Zk o r(T k) exp fT hy @

72’yf0 (T — t) exp fT .a )ds]dt
—’nyTr( —t)exp fT L a'(s)ds]| fT La'(t)*dt +a'(T) — o' (T — t))dt
+*a.

In addition, using Proposition S10, we get that there exists H” > 0 such that yH”" < H not
dependent on ~y and

N = 2f0T r(T —t)exp fT ,a'(s)ds]dt
—y{r(0)exp[fy a'(t)dt] — r(T)}—2y fo r'(T —t) exp[ f;_, a'(s)ds]dt
_foOTr( —t)exp fT ,a'(s)ds][ fT L )2dt + a'(T) — o' (T — t)]dt
+y*H" . (S27)
In addition, we have by integration by part
fOT (T —t) exp fT ,a )ds]dt

= —{r(0) exp fo t)ydt] —r(T)} — fo a' (T —t)exp fT ,a'(s)ds]dt .
Combining this result and (SZ7) we get that

Ry = 2f0T r(T —t) exp fT ,a'(s)ds]dt
+{r(0) expl [ a’(t)dt] —T(T)}
—y [T (T = t)explfy_, a'(s)ds][f;_, a' (t)*dt + o' (T) — 3a"(T — t)]dt
+~*H" . (S28)
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In what follows, we assume that d’ # 0. The case where d" = 0 is left to the reader. Finally using
(S26) and Lemma S11 we have that for any ¢ € [0, 7T

exp|[7_, a'(s)ds]r(T — #)" = exp[—2¢)/(1 +exp[*2t](di —1))*(Pp)'d’
— expl2 [, a'(s)ds](Pp)'/d .
Therefore, combining this result and (S28), we get that
By = (Pp)'/d' Qfo exp 2fT ,a'(s)ds]dt

+y{expl2 [y o } -1}
—y fo exp 2fT L a'(s)ds]| fT L dt +a (T) 3ai(T — t)]d]
+y°HY
which concludes the proof upon using Lemma S12 and Proposition S21. [

S5.3 Technical lemmas

We are going to make use of the following lemma which is a direct consequence of the Euler-
MacLaurin formula.

Proposition S10. Ler f € C™([0,T1), and (u})keqo,... N—13 With N € Nand v = T/N > 0 such
that for any k € {0,..., N — 1}, u] = f(k~). Then, there exists C > 0 such that

Jo F@dt =~ 35wl = (/24(T) = F(0)} = O
Proof. Apply the classical Euler-MacLaurin formula to ¢ — f(t). O

We will also use the following lemmas.
Lemma S11. Let A € (—1,4+00) and a : [0,T] — R such that for any t € [0,T],

a(t)=1—-2/(1+exp[-2(T — t)]) .
Then, we have that for any t € [0,T),
f;lt a(s)ds =t +1og((1+ X)/(exp[2t] + N)) .
In particular, we have that for any t € [0, T

exp 2fT , a(s)ds] = exp[—2t](1 + M)2/(1 + Nexp[—21])* .

Proof. Let

t € [0,T]. We have that fT ca(s)ds = fo — s)ds. Define b such that for any
t€0,T],b(t) = (T

— t). In particular, we have that for any ¢ € [0, 7]
b(t) =1—2/(1+ Nexp[—2t]) .
Hence, we have
fot b(s)ds =t —2 fot(l + Xexp[—2s]) " ds
=t— fot 2 exp[2s]/(exp[2s] + \)ds
=t+log((1+ X\)/(exp[2t] + A)) ,
which concludes the proof. O
Lemma S12. Let A € (—1,400) and a : [0,T] — R such that for any t € [0,T],
a(t) =1—-2/(1+exp[—2(T — t)]A) .
Then, we have that for any t € [0,T),
[y expl2 [, a(u)dulds = (1/2)(1 + A)?[(1 + Aexp[-2t])) ™" — 1/(1 + A)]/A
=(1/2)(1 + X\)(1 — exp[—2t]) /(1 + Aexp[—2t]) .
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Proof. Lett € [0,T)]. Using Lemma S11 we have that for any s € [0, T

exp2 [r_, a(u)du] = (1 + X)? exp[2s]/(A + exp[2s])® = (1 + ) exp[—2s]/(1 + Aexp[—

Assume that A # 0. Then, we have that
Juexpl2 [, a(w)dulds = (1/2)(1+ A)*/X [y 2\ exp[—2¢]/(1 + Aexp[—2t])*ds

= (1/2)(1 + N)?[(1 + Xexp[—2t]) " — 1/(1+ N)]/A
=(1/2)(1 + X\)(1 — exp[—2¢]) /(1 + Aexp[—2t]) .

We conclude the proof upon remarking that his result still holds in the case where A = 0.

Lemma S13. Let A € (—1,400) and a : [0,T] — R such that for any t € [0, T,

a(t) =1-2/(1+exp[—2(T — t)]A) .
Then, if A # 0, we have that for any t € [0,T],
fg exp|[2 fTT a(u)du]/(1 + Aexp[—2s])ds
= (/A1 + N1+ Aexp[=26)) 2 = 1/(1 + X)?)/A
(1/4)(1 — exp[—2t])(2 + A(1 + exp[—21])) /(1 + X exp[—2t])* .

If A = 0 we have
f exp|2 fT w)du]/(1 + Nexp[—2s])ds = (1/2)(1 — exp[—2¢]) .
Proof. Lett € [0,T]. Using Lemma S11 we have that for any s € [0, T

exp fT , a(u)du] /(14 Nexp[—2s]) = (1 + M)? exp[—2s]/(1 + Aexp[—2s])* .
Assume that A # 0. Then, we have that

f exp fT La(u)du] /(1 + Xexp[—2s])ds = (1/2)(1 + A)*/A f(f 2\ exp[—2t] /(1 + N exp[—

= (1/4)(1 + N)[(1 + Xexp[—2¢])) 72 = 1/(1 + N)*]/A

= (1/4)(1 — exp[—2t])(2 + M1 + exp[—2t])) /(1 + A exp[—2t])* .
We conclude the proof upon remarking that his result still holds in the case where A = 0.
Lemma S14. Let A € (—1,4+00) and a : [0,T] — R such that for any t € [0,T],

a(t) = 1= 2/(1 + exp[~2(T — £)]A) .
Then, we have that for any t € [0,T)]
f exp|2 fT L a(u)dula(T — s)ds
—(1/2)(1 — exp[—2t])(1 — A% exp[—21]) /(1 + Aexp[—2t])* .

Proof. Lett € [0,T]. We have that
Jy expl2 7 a(u)dula ( — s)ds

= fo exp 2fT L a(u)du]ds — 2[0 exp|[2 fT ca(u)du]/(1 4 Xexp[—2s])ds .

Using Lemma S12, we have that

f exp 2fT (u)du)dt = (1/2)(1 + A\)(1 — exp[—2t]) /(1 + Aexp[—2t]) .

In addition, using Lemma S13, we have

fg exp|2 fz?—s a(u)du]/(1 + Nexp[—2s])ds
= (1/4)(1 — exp[—2t])(2 + M1 + exp[—2t])) /(1 + A exp[—2t])” .
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Combining (S30) and (S31) in (S29) we have that

f exp?fT w)dula(T — s)ds
= (1/2)(1 — exp[—2t])[(1 + A)(1 + Xexp[—2t])]/(1 + Aexp[—21])*
— (1/2)(1 — exp[—2t])(2 + A(1 + exp[—2t]))/(1 + Xexp[—2t])°

= —(1/2)(1 — exp[—2t])(1 — A% exp[—21]) /(1 + Xexp[—21])? ,
which concludes the proof. O
Lemma S15. Let A € (—1,400) we have that for any t € [0, T

J3(1 4+ Xexp[—2s])'ds = (1/2) log((A + exp[2t]) /(A + 1)) .
In addition, we have for any t € [0, T
J5 (1 + Nexp[—2s]) "2ds = (1/2) log((A+exp[2t])/(A+1))+(A/2)[(exp[2t] + ) T —(A+1) 7] .
Finally, we have that for any t € [0, T
Jo (1 + Xexp[—2s]) *ds = (1/2) log((A + exp[2t]) /(A + 1)) + A[(exp[26] + A) " — (A +1) 7]
— (\/D)[(expl2t] + )2 = (A +1)77.

Proof. Letk € {1,2,3}. Using the change of variable u — exp[2u] we have that
+ Aexp|—2s s = U+ U
P+ Nexp[—2s]) Fds = (1/2) [P0 b Ad
Therefore, we have that
JE 4 Nexp[=2s]) "hds = (1/2) [T (w4 2) T du = (1/2) log((A + exp[26]) /(A + 1)) -
In addition, using that for any u € [0,T], uw = (u + A) — A we have that

JE(1 4 Aexp[—2s]) "2ds = (1/2) [7PP u(u+ A) 2du
= (1/2) [P (4 A)Hdu — (A/2) L7 w4+ 0) " 2du
= (1/2)log((A + exp[2t]) /(A + 1)) + (A/2)[(exp[2t] + )™ = (A +1)7'].
Finally, using that for any u € [0, 7], u € [0,T], u® = (u+ A)*> — 2A(u + A) + A* we have that

JE(1 + Nexp[—2s)) Pds = (1/2) PR 2y A)*Qdu
_(1/2) exp[2t]( e 28], 2yt (2/2) exp[Qt]( L) P du
= (1/2)log((A + exp[2t])/()\ +1) + )\[(exp[Qt] N -+ 1)
/) (expl2e] + ) E— A+ 1)
which concludes the proof. O
Lemma S16. Let A\ € (—1,4+00) and a : [0,T] — R such that for any t € [0, T,
a(t) =1—-2/(1+exp[—2(T —t)]N) .

Then, we have that for any t € [0,T],

fT La(s)?ds =t — 2X(1 — exp[—2¢]) /[(1 + A)(1 + A exp[—2t])] .

Proof. Lett € [0,T). Similarly to the proof of Lemma S11, we have that fT ca(s)ds = fo

s)ds. Define b such that for any ¢ € [0,T], b(t) = a(T — t). In particular, we have that for any
tel0,T]
b(t) =1—2/(1+ Nexp[—2t]) .
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We have that
fgit dsffo dsffo 1—4/(1+ Nexp[—2s]) +4/(1 + Aexp[—2s]))ds .
Combining this result and Lemma S15, we have
fT ca(s)’ds =t +2X[(A +exp[2t]) ' — (A + 1) 7]
=1t —2X\(1 —exp[—2¢])/[(1 + A)(1 + Aexp[—2t])] .

Lemma S17. Let A € (—1,+00) and a : [0,T] — R such that for any t € [0,T],
aft) = 1= 2/(1+ exp[—2(T — )] .
Then, if A # 0, we have that
fo exp|[2 fT L a(s)ds]( fT La(s)?ds)dt = —(T/2)(1 + \)? exp[—2T7]/(1 + X exp[—2T1)
+(1+ )\) /(4X) log((l +A)/(1 + Aexp[—2T1]))
— (A/2)(1 — exp[—2T))%/(1 + Xexp[—2T]))* . (S32)
If A = 0, we have that

fo exp 2fT ,a(s)ds]( fT ,a $)2ds)dt = —(T/2) exp[—2T] 4 (1/4)(1 — exp[—2T]) . (S33)

Note that taking A — 01in (S32) we recover (S33), using that for any u > 0, limy_,o log(1+Au)/A =
u.

Proof We first start with the case A # 0. Similarly to the proof of Lemma S11, we have that
fT ,a(s)ds = fo — s)ds. Define b such that for any ¢ € [0, 7, b(t) = a(T — t). We have that

f exp QfT , a(s)ds]( fT L )2ds)dt = fo exp 2fT , a(s)ds]( fo s)2ds)dt .
Let A: [0,7] — R such that for any ¢ € [0, T,
fo exp 2fT a(u)dulds .

Note that A(0) = 0. Hence, by integration by parts, we have

f exp 2fT L a(s)ds]( fo )2ds)dt = fo )2dt — fo b(t)2dt .

In what follows, we compute fo A(t)b(t)?dt. First, we recall that for any ¢ € [0, 7]

b(t)? = (1 —2/(1 4 Aexp[—2t]))° =1 —4/(1 + Xexp|[—2t]) +4/(1 + Nexp[—2t])* . (S34)
In addition, using Lemma S12, we have that for any ¢t € [0, T']
A(t) = (1/2){(1 + N /(ML + Xexp[—2t])) — (L + \)/A} . (S35)
Using (S34) and (S35) we have that for any ¢ € [0, 7T
2AMD()* = —(1+ N /A+ 40 + N /A + (14 X /Nuy (2)
— 401+ A7 /A + 41+ A)/NJua () + [A(1+ N)?/Nus (1)
—(I4+ XN/ A+ +NG+N)/Auy ()
— AL+ A2+ )/ Aug (1) + [4(1+ A)*/Aus (1) (S36)
where for any k € {1,2,3} and t € [0,T] we have
wg,(t) = (1+ exp[—2t])F .
For any k € {0,1,2} denote vy, : [0,7] — R such that for any ¢ € [0, 7] and k € {1, 2}
vp(t) =log((A+exp[2e])/(A+ 1)), vg(t) = (exp[2t] + )" = (1+ 1) 7"
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Combining (S36) and Lemma S15, we get that for any ¢ € [0, T
2f0 )ds = —[(1+ \)/AJt
<1/2>{[<1 A5 A)/A] — [A(L+ A2+ A)/A] + [4(L+ N2/ b (1)
+ {240 + N2+ A)/A] + A4+ X)? /A Joy (1)
— (/A1 + 0/ A\va(1)
= [+ N/AE+ 1+ N2/ 2N () +2(1 + Moy (8) — M1+ N 2oy(2)
In addition, we have that
— [T+ N)/AE+ (1 4+ N/ (2N)vo(t) = —[(1+ A /At + [(1+ N2/l
+ (1+2)?/(2)\) log((1 + Aexp[—2t]) /(1 + \))
= (14+ Mt + (1+N)?/(20) log((1 + Aexp[—2t])/(1+ X)) .
Therefore, we get that
2 [7 A(s)b(s)?ds = (1 4+ A)t + (1+X)?/(20) log((1 + Aexp[—2t]) /(1 + \))
+ 201+ M)A () + A1+ N)2oy(t) - (S37)
In addition, we have that
(T4+ XN (t) = =A(1 — exp[—2T])/(1 + Aexp[—2T1) . (S38)
We also have that
A1+ M) v (t) = A(2A + 1 — 2X exp[2T] — exp[4T])/(exp[2T] 4+ \)*
= A(1 — exp[2T])(1 + 2X 4 exp[2T1)/(exp[2T] + A)?
= —A(1 — exp[—2T])(1 + (1 4 2X\) exp[—2T])/(1 + Aexp[—2T])*> . (S39)
Finally, using Lemma S12 and Lemma S16 we have
fo = (1/2)(1 + A\)(1 — exp[—2T]))/(1 4+ Nexp[—2T1])
X (T —2X(1 — exp[—2T))/[(1 + M) (1 + Aexp[—2T])])
= (T/2)(1 + AN)(1 — exp[—2T))/(1 + Nexp[—2T7])
— A(1 — exp[—2T1)?/(1 + Aexp[—2T1))° . (S40)
Combining (S37), (S38), (S39) and (S40) we get
fo exp 2fT L a(s)ds]( fT L $)2ds)dt = (T/2)(1 + \)(1 — exp[—2T1)/(1 + Xexp[—2T))
- A(1 — exp[— 2T]) /(1 + Xexp[—2T])*
—(1+M(T/2)+(1+ A2 /(4X) log((1 + A\)/(1 4+ Nexp[—2T1))
+ A1 — exp[—2T))/(1 + X exp[—2T]
— (A/2)(1 — exp[—2T))((1 + 2X) exp
In addition, we have that
— (\/2)(1 - exp|~2T1)*/(1 + Aexp|—2T7)?
= —A(1 — exp[—2T))%/(1 4+ Xexp[—2T))?
+ A1 —exp[—2T])/(1 4+ Nexp[—2T1])
— (A/2)(1 —exp[-2T])((1 +2N\) exp[-2T] + 1) /(1 + /\exp[—2T])2 .
Combining this result and (S41), we get
f exp 2fT , a(s)ds]( fT La(s)?ds)dt = (T/2)(1 + A)(1 — exp[—2T])/(1 + X exp[—2T])
-1+ A)(T/Z) (1 + )\) /(4X) log((1 + A)/(1 4+ Nexp[—2T1))
— (1/2)(1 — exp[—2T7)%/(1 + Aexp[—2T1)" . (S42)

(
)
[—2T] +1)/(1 + Aexp[—2T])* . (S41)
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Finally, we have
(T/2)(1 + A)(1 — exp[—2T1)/(1 + Aexp|—2T]) — (T/2)(1 + \)
—(T/2)(1 + A\)? exp[—2T]/(1 + Aexp|—2T]) ,

which concludes the proof in the case A # 0 upon combining this result and (S42). In the case A = 0,
we have that for any ¢ € [0, T, a(t) = —1 and therefore by integration by part we have

f exp 2fT L a(s)ds]( fT La(s)’ds)dt = —(T/2) exp[—2T] + (1/4)(1 — exp[—2T]) ,

which concludes the proof. O

We are now ready to prove the following results.
Proposition S18. Let A € (—1,+00) and a : [0,T] — R such that for any t € [0,T),

at) =1—2/(1+exp[—2(T —t)]N) .
Then, we have that for any t € [0,T),

exp2 [ a)dt]{ [, a(t)*dt + a(T) — a(0) + 1}
= (T + 1) exp[—2T](A + 1)?/(1 + Aexp[—2T])*

Proof. First, we have that
a(T)—a(0)=1-2/(1+X) —1+2/(1 + Xexp[—2T))

= 2X\(1 —exp[—2T))/[(1 + A)(1 + Aexp[—2T1])] . (S43)

In addition, using Lemma S16 we have
S a(s)?ds = T — 2X(1 — exp[=2T))/[(1 + A)(1 + Aexp[—2T])] . (S44)

Finally, using Lemma S11 we have that
expl2 [ a(s)ds] = exp[-2T](A +1)%/(1 + Aexp[—2T7)* . (S45)
We conclude the proof upon combining (S43), (S44) and (S45). ]

Finally, we have the following proposition.
Proposition S19. Let A € (—1,+00) and a : [0,T] — R such that for any t € [0,T),

a(t)=1-2/(1 +exp[—2(T —t)]\) .
Then, if X # 0, we have that for any t € [0, T],

fOTexp 2f77: L a(s) ][fT Lals ) ds +a(T) — a(T — t)]dt
= —(T/2)(1 + \)? exp[—2T]/(1 + Aexp[—2T))
+(1+ )\) /(4X) log((1+ \)/(1 + Nexp[—2T1]))
+ (A/2) exp[—2T1/(1 + Xexp[—2T])* .
If A\ = 0, we have that

fo exp ZfT L a(s)ds][ fT .a $)2ds + a(T) — a(T — t)]dt
f(T/Q) exp[fQT] + (1/4)(1 — exp[—2T7) .

Proof. We assume that A # 0. The case where A = 0 is left to the reader. First, using Lemma S17,
we have that

f exp[2 fT , a(s)ds]( fT La(s)’ds)dt = —(T/2)(1 + \) exp[—2T7/(1 + A exp[—2T7)
+ 1+ A) /(4A) log((l +A)/(1+ Xexp[—2T7))
+ (3M/2) exp[—2T](1 — exp[—2T])(1 + A)/(1 + Aexp[—2T])* . (S46)
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Second, using Lemma S14, we have that
f exp 2fT ,a(u)dula(T — t)dt
(1/2)(1 — exp[—2T1)(1 — A% exp[—2T7) /(1 + Aexp[—2T])* .
Third, using Lemma S12 and that a(T) = 1 — 2/(1 + \), we have that

fo eprfT L a(s)ds]dt = a(T)(1/2)(1 + A)(1 — exp[—2T]) /(1 + Xexp[—2T])

=(1/2)(1 4+ X\)(1 — exp[—2T])/(1 + Nexp[—2T])
— (1 —exp[—2T1)/(1 + Aexp[—2T1) .

Combining (546), (S47) and (S48) we get
f exp 2fT L a(s)ds]| fT L Vds + a(T) — a(T — t)]dt
(T/2)(1 +2)° exp[ 2T]/(1 + Aexp[—2T))
+ (14 X0)?/(40) log((1+ X)/(1 + Aexp[-2T))
+ (3M/2) exp[—2T](1 — exp[—2T])(1 + A)/(1 + A exp[—2T])*
1/2)(1 — exp[—2T])(1 — A? exp[—2T1)) /(1 4 Xexp[—2T])?

1/2)(1 + A)(1 — exp[—2T1])/(1 + Nexp[—2T))
1 —exp[—2T1)/(1 + Aexp[—2T))

+
+

o~~~ o~

In addition, we have
(A/2)(1 — exp[—2T))/(1 + X exp[—2T7])?
= (1/2)(1 — exp[—2T])(1 — A\* exp[—2T1)/(1 + Aexp[—2T]))?
+ (1/2)(1 + \)(1 — exp[—2T1)/(1 + Aexp[—2T7])
— (1 —exp[—2T7)/(1 + Aexp[-2T7) ,

Finally, we have
(A/2) exp[—2T]/(1 + A exp|[—2T])>
= —(A/2)(1 — exp[—2T])*/(1 + Aexp[—-2T))
+ (A\/2)(1 — exp[—2T7)/(1 + Xexp[—2T])* .

which concludes the proof.

Finally, we have the following result.
Proposition S20. Ler A € (—1,400) and a : [0,T] — R such that for any t € [0,T),

a(t)=1-2/(14+exp[-2(T — t)]\) .
Then, if X # 0, we have that for any t € [0,T],
—exp|2 fo t)dt] {fo )2dt + a(T) — a(0)} + 1 — exp| 2f0Ta(t)dt]
—2f0 exp2th s)ds]| th )V2ds + a(T) — a(T — t)]dt

=1 — exp[—2T](1 — AT exp[—2T])(A + 1)*/(1 + X exp[—2T])*

— (14 X2)?/(20) log((1 + A)/(1 + Aexp[—2TY))
— Xexp[—2T7]/(1 + Aexp[—2T))* .
In particular, we have that
—expl2 [ a(t)dt]{ [ a dt+a( ) — (0)}+1 —exp[2 Jy a(t)dt]
- 2f0 exp 2fT L a(s)ds]| fT La(s)’ds +a(T) — a(T — t)]dt
=1-(1/2) ( + )2 log(1 + )\)/)\—i— O(exp[—2T7) .
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If A = 0, we have that for any t € [0,T)

—expl2 [ a(t)ad]{ [ a(t)*dt + a(T) — ( )} +1—expl2 [y a(t)dt]
- 2f0 exp QfT L a(s)ds]| fT La(s)’ds +a(T) — a(T — t)]dt
(1/2)<1—exp[ 27]) .

Proof. The proof is a direct consequence of Proposition S18, Proposition S19 and the fact that
— exp[—2T](1 — AT exp[—2T])(A + 1)%/(1 + Xexp[—2T))?
= —(T + 1) exp[—-2T](1 + A*) /(1 + A exp[—2T])?
+T(1 4 X\)?exp[—2T]/(1 + Aexp[—2T7) .

Proposition S21. Let A € (—1,+00) and a : [0,T] — R such that for any t € [0,T],
a(t) =1—-2/(1+exp[—2(T — t)]N) .
Then, we have that
exp2f0 t)dt] — 1—f0 exp2fT .a ds{fT La(s)?ds + a(T) — 3a(T — t)}dt
—exp[ 2T)(1 4+ A)?/(1 + Xexp[—2T])* — 1
—(1/2)(1+ AN (1 —exp[—2T7) /(1 + Nexp[—2T])(1 — 2/(1 + X))
—(3/2)(1 — exp[—2T))(1 — X* exp[—2T1)) /(1 4+ Xexp[—2T))?
+(T/2)(1 + X\)? exp[—2T]/(1 + N exp|—2T])
— (14 X)?/(4\) log((1 + \) /(1 4 Aexp[—2T]))
+ (A\/2)(1 — exp[—2T])%/(1 + Aexp[—2T])* .
In particular, we have
exp2f0 dt—l—fo exp2th ds{th )2ds + a(T) — 3a(T — t)}dt
= —2— (14 X)?/(4)\) log(1 + A) + O(exp[—2T]) .

Proof. Using Lemma S11, we have that
expl2 [ a(t)dt] = exp[—2T](1 + A\)?/(1 + Aexp[—2T]) . (S49)
Using Lemma S12, we have
fo exp[2 fT ca(s)ds]dt = (1/2)(1 4 A)(1 — exp[—2t]) /(1 + Aexp[—2t]) . (S50)
Using Lemma S14, we have
fo exp|2 fT ,a(s)dsla(T —t)dt
= —(1/2)(1 — exp[—2T])(1 — \* exp[—2T1)/(1 + Aexp[—2T])* . (S51)
Finally, using Lemma S17, we have
fo exp|2 fT L a(s)ds]( fT La(s)?ds)dt = —(T/2)(1 + \)? exp[—2T7/(1 + X exp[—2T1)
+(1+ /\) /(42) 10g((1 +A)/(1+ Aexp[—2T1))
— (A/2)(1 — exp[—2T])* /(1 + Xexp|—2T])* . (S52)
We conclude upon combining (S49), (S50), (S51), (S52) and that a(T) = 1 —2/(1 + A). O
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S5.4 General setting

In this section, we prove Theorem 2. In order to compare our results with [5, Theorem 1], we redefine
a few processes. Letp € W(Rd) be the target distribution. Consider the Ornstein-Ulhenbeck forward
dynamics (xt)tE[O’T] such that dz; = —x,dt 4+ v/2dw, and x has distribution p,. We consider the
backward chain (X})ieqo,... v} such that forany k € {0,..., N — 1},

X = X1 + Vg1 {Xpy1 +2Viogpy,  (Xpp 1)} + V2% 412041 (S53)

with {Z}. }.en a family of i.i.d. Gaussian random variables with zero mean and identity covariance

matrix, t;, = ZIZ:I Yo Zévzl v = T and Xy has distribution p, = N(0,Id) (independent from
{Z}}Len)- Notice that here we do not consider a score approximation in the recursion in order to
clarify our approximation results. We recall the following result from [5, Theorem 1].

Theorem S22. Assume that p, admits a bounded density (w.r.t. the Lebesgue measure) p, €
CB(Rd, (0, +00)) and that there exist dy, Ay, Ay, A5 > 0, 81, Ba, B3 € Nandm; > 0 such that for
anyz € R and i € {1,2,3}

IV* log po(@) | < A;(1+ [[2]|™),  (Viogpo(z),x) < —m ]| + d |l],

with 3, = 1. Then there exist B,C, D > 0 such that for any N € N and {~; }n—, with~y;, > 0 for
any k € {1,..., N} we have

1£(X0o) = pollrv < Cexp[DT]V/~" + Bexp[-T]. (S54)
where v = supycqy Ny W and L(X,) is the distribution of X, given in (S53).

In the rest of this note we improve the theorem in the following way:

(a) We remove the exponential dependency w.r.t. the time in the first term of the RHS of (S54).
(b) We provide explicit bounds B, C, D > 0 depending on the parameters of py.

Lemma S23. Assume

sup,, | V* log py ()| < K and [0,V logp(z)]| < M ™ ||z].

Then there exists D > 0 such that for any x € R% and t € [0, 7],

Viogpy(x)|| < D(1 + [l[|) with

Proof. Letz € R and ¢ € [0, 7). Since (¢, z) — logp,(z) € C*([0,T] x R?, (0, +00)), we have
that

Vlog py(x) = Vlog po(x) + [y .V log p,(z)ds
= Vlogpy(0) + fol V2 log po(uz)(z)du + fg 9,V logp,(z)ds.
Therefore, we have that
190 ()] < IV log po(O)]| + Kzl + J£ 10,7 logp. () |ds
< 1710 po(0)| + K Jall + M SNty — ) expl—aty] ]
< [[V1ogpo(0)[| + Kllz|| + MT |||,

which concludes the proof. O

Note that in the previous proposition we can derive a tighter bound for D which does not depend
on the limiting time 7" > 0. However, we do not use the bound D > 0 in our quantitative result and
therefore our simple bound suffices.

We also have the following useful lemma.

Lemma S24. Let T > log(2E[|| X,|%]) + log(2)/2 and assume that there exists 1) > 0 such that
aaa Then, we have

Jge Poo(@7)’ o7 (wr)dar < exp[4] + Er
with Ep ~ Cexp|—T]| when T — +o00 and C > 0.
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If p., satisfies the following ®-entropy inequality for any f : R; — (0, 00) measurable

Jat IV @)1/ f (@) o (@)da < Cfpa(1/f(2))poc (@)dz — 1/ (foa f(@)poc(@)da)] ,  (S55)

with C' > 0. Then, we have as in [1, Proposition 7.6.1]

X (poollpe) = [pa P (@) /pr(z)dz — 1 < e™ "

which immediately concludes the proof of Lemma S24. However, to the best of our knowledge,
establishing (S55) remains an open problem. Note that controlling X2 (p¢]|pss) is much easier as the
exponential decay of this divergence is linked with the Poincaré inequality which is satisfied in our
Gaussian setting. In what follows, we consider another approach which relies on the structure of the

Ornstein-Ulhenbeck transition kernel and provide non-tight upper bounds.

Proof. LetT >0, > 0and xp € R¢

—2T 2
o™ -

leg — e agl* < (L e)|lapl® + (1 +1/e)e
Lete >0and zy € R?, we have

pr(er) ™ < exp[(1 +¢) /o |r|]

X (Jau plo) expl—e ™ (L + 1/2)/(207) o ||*)darg) ~*(2m07)" .

For any z € Rd, we have

Poo(@r)? /pr(27) < exp[{—1+ (1 +2)/(207)}or||) 2m/0F) /2
(Jpa plag) expl—e™* (1 + 1/e)/(207) o ||*]dzo) ™" -

In what follows, we set € = e 7. We have that

—1+(1+¢)/(207) = (209) (=205 +14¢) = —(1—-2¢" " +¢)/(209) = —(1—e 1) /(20%) .

Therefore, we get that
Jar expl{=1+ (1 + &)/ 207}z |’ 27/ 07)Pdag = (1—e™T) "2
In addition, we have that for any R > 0 using that o5 > 1/2 since T' > log(2)/2

S plag) expl—e ™ (1 4 1/¢) /o7 |l *]dz,
> P(X, € B(0,R)) exp[—e 2T (1 + 1/¢) /o7 R?|
> P(X, € B(0, R)) exp[—4e " R?]

Now let R? = . We obtain

Jao pxo) expl—e T (1 + 1/6) /o7 ||z|*)dzg > P(X, € B(0,e™/?)) exp[—4] .

In addition, using Markov inequality, we have
P(X, € B(0,e"/%)) = 1 = P(| X[ > ") > 1 —E[| X[*le " > 0.
Therefore, combining this result and (S57), we have
S p(o) expl—e ™" (L + 1/e) for o *)day > exp[~4](1 — E[| X,[|*le™") > 0.
We conclude upon combining (S56) and (S58).

We are now ready to state the following lemma.

(S56)

(S57)

(S58)

Lemma S25. There exists a unique strong solution to the SDE dy, = {y, + 2V log pr_.(y,) }dt +
V2dw, with initial condition L(yy) = puo. In addition, we have that Efsupseo,ry lyl|*] < +o0 for

any a > 0.
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Proof. Let b : [0,T] x R? given for any t € [0,7] and 2 € R? by b(t,z) = = + 2V log p, ().
We have that b € C'([0,7] x R?,R?) and in particular is locally Lipschitz. In addition, using
Lemma S23 we have that for any ¢ € [0,7] and z € R?, ||b(t, )| < (1 + D)||z||. Hence using
[14, Theorem 2.3, Theorem 3.1] and [35, Theorem 2.1] (with V (z) = (1/2)||z||*) there exists a

unique strong solution to the SDE dy; = {y; + 2V log pr_,(y,) }dt + v/2dw, with initial condition
L(Yy) = Poo- Let & > 1, then we have for any ¢ € [0, T

a/2

1 -1 t
suDgepo. 19l < 3% [lyoll™ + "7 (1 4+ D) [y sup,eo,q 19l du 4277 sup (o 4 1w, [|°]-

Using that E[sup¢ o 7y [|w,[|“] and Gronwall’s lemma, we get that E[sup,¢(o 7 [|¢(|*] < +oc for
any a > 1. The result is extended to any o > 0 since for any « € (0, 1] we have that

E[Supte[QT] ||ytHa] < E[SUPtE[O,T] HytIHa < +oo.

We are now ready to prove Theorem 2.

Proof. The beginning of the proof is similar to the one of [5, Theorem 1]. For any k € {1,..., N},
denote Ry, the Markov kernel such that for any = € R, A € B(RY) and k € {0,...,N — 1} we

have
Rk+1(957 A) = (47Wk+1 fA exp _||$ - 77¢+1( )“2/(4’}’k+1)]d3:"a
where for any 2 € R, Trr1(z) = = + Y {z + 2Viogp,, ,, (z)}. Define for any ko, k; €

{1,..., N} with ky > ko Qg s, = H?;ko Ry, 4%,—¢- Finally, for ease of notation, we also define
forany k € {1,..., N}, Q = Qgy1 n. Note that for any k € {1,..., N}, X, has distribution

Do Qp» where p, € 2(R?) with density w.r.t. the Lebesgue measure p._. Let P € 22(C) be the
probability measure associated with the diffusion

da, = —2,dt + V2dw,, o ~ po,
First, we have for any A € B(R%)
R R Ry (R R
PoPro(P)710(A) = Pr(P7)710(A) = (P7)o(P7)po(A) = (P) 2 (A) = po(A).

Hence py = pOIP’Tm(IP’R)T‘O. Using this result we have

lP0 — PooQollTv = ”pO]PTlO(IPR)T\O — PoQollTv
< ”pO]PTm(]PR)T\O - poo(PR)TIO”TV + [|Poc (PR)T\O — PooQollTv
< poPrio — PosllTv + ||Poo(PR)T\o — o Qo v
Note that £(X() = po Qo and therefore

R
1£(Xo) = pollry < ||pUIPT\O — PosllTv + [|Poo (P )T\O — PooQollTv-
‘We now bound each one of these terms.

(a) First, we bound ||pgPr|g — poo || Tv- Using the Pinsker inequality [1, Equation 5.2.2] we have
that

[PoPrio — Pocllry < V2KL(poPryollpoc) /. (859)
In addition, p., satisfies the log-Sobolev inequality with constant C' = 1, [8]. Namely, for any
fe ' RrY (o, +oo)) such that f € Ll(pC>o and fRd IV log f(x)]|? f(2)dps (x) < +00 we have

f]R logf dpoo fR dpoo ))(log f]Rd f(‘r)dpoo(‘r))
< 0/2 Jpa ||V10gf($)\|2f($)dpoo(x),

with C = 1. Therefore, using [1, Theorem 5.2.1] we have that for any f € L'(p..) with
Jpalf (@) log f(2)]dpes (x) < 400

Ent, (Prio[f]) < exp[—2T]Ent,_(f), (S60)
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where for any g € L' (p,.) with fRd|g(m)|\log 9(z)|dpe (z) < 400 we define
Entpoc (g) = fRd g($) logg( )dpoo f]Rdg dpoo(x))(log fRd g(x)dpoo(x))
Note that (dpr/dps) = Prio[dpy/dps] and that for any € 2 (R with KL(||po) < +00 we
have Ent,, (du/dps) = KL(u||ps)- Using these results, (S59) and (S60) we get that
[poPri0 = Pocllrv < VZexp[~T]KL(polpec)'*. (s61)
In addition, we have that
KL (po|[poc) = (d/2)10g(2) + [ ||z *dpo () — H(py),

where H(pg) = — [a log(po(2))po()dz. Combining this result and (S61) we get that

||pOIPT|0 — PoollTv < ﬁeXP[*T]((dﬂ) log(27) + fRd ||x|\2dp0(:c) - H(Po))l/Q,
which concludes the first part of the proof.

(b) First, let Q € & (C) such that Q = poo]P"%, where ]P’fg is the disintegration of P w.rt. ¢: C—

R? given for any w € C by ¢(w) = wy, see [25] for instance. Note that for any f € C(C) with f
bounded we have

fR fc IP)IO (wo, dw)dpeg (wo) fR fc Pl% (wo, dw) (dpeo /dpr ) (wo )dpr (wp)
= Jo F(w)(dpse/dpr)(wp)dP" (w).

Therefore, we get that for any w € C, (dQ/dP™)(w) = (dps. /dpr)(wp). Let R = PocP)o- Note that

for any ¢ € [0,7], R, = p, and that R is associated with the process da; = —x,dt + v/2dw, with
L(xg) = poo- In particular, R satisfies [2, Hypothesis 1.8]. Using [25, Theorem 2.4] we have that

KL(P|[R) = KL(po|lpos) + Jge KL(Pjo (o) [Plo(20))dpo(z0) = KL(po|[pec) < +o0.

Therefore, we can apply [2, Theorem 4.9]. Let u € C2°(R?, R), we have that (MY (y))sejo,r) is a
local martingale, where we have for any ¢ € [0, T

M (y) = u(ys) — ulyo) — fo {{Vu(ys), ys + 2V log pr_(ys)) + Au(y,) Hds,

where £(y) = P". Since u is compactly supported we have that sup,, ¢ supefo, 7] MY (w)] < +00
and therefore (M (y));c(o,7] is @ martingale. We now show that (M (y))¢c[o,7] is a martingale,
with L(y) = Q. Since sup,ec Sup;e(o 7 IMy (w)] < 400, we have that for any ¢t € [0, 7],
E[M{|] < +oo. Lett,s € [0,7] with t > sand g : C — R” bounded. We have that
Ellg({zr}scpon)|*(dpoo/dpr)(27)?] < +00. Hence, we have that

E[(M; (zp_.) — M:(xT—))g({xT—s}se[o,t])(dpoc/dPT)(fUT)] =0.
Using this result and that for any w € C, (AQ/dP™)(w) = (dp../dpr)(wp) we get
E[(MF (y) — M (9))9({ys}sefo.n)] = 0-

Hence, for any u € CZ(R% R), (M} (y))tefo, 7] is @ martingale. In addition, (M} (Z)) (0,7 is a
martingale using Lemma S25 and It6’s lemma, where Z is the solution to the SDE in Lemma S25.
In addition, we have that £(Z;) = L(yg) = Poo- Using Lemma S23 and the remark following
[2, Hypothesis 1.8], we get that £(Z) = L(y) = Q. We have just shown that the time-reversed
process with initialisation p., can be obtained as a strong solution of an SDE. Using Lemma S23 and
Lemma S25, we have that for any ¢ € [0, T

E[fy 2. + 2V logpy(2.) s + [ [lws + 2V log p.(w,)[|*ds] < +oc.

Combining this result and [5, Lemma S13] we have that

||poo]P>T|0 — P QollTv < (1/2) fo 161 (t, (Ys)sefo,r)) — b2(t, (ys)SE[O,T])”Q]dtv (562)
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where for any ¢ € [0, 7] and w € C we have that
by (t,w) = wy + 2V log pr_4(wy), by(t,w) = w; +2Viegpr ¢ (wy ),

where ¢, = kN:_Ol ]l[Titk“’Titk) (t)(T — tg41). Noting that (1, ),c[o, 7 is distributed according to

Q and using that (dQ/dP™)(w) = (dp. /dpz)(wp), (S62) and the Cauchy-Schwarz inequality we
have

1PocP0 = PocQollv (S63)
< (1/2)B[(dpoc/dpr) (er)*]"? fy BV [|Ib1 (¢, (21— )seio ) = balt, (@1 )seio,m) 1t
< (1/2)E[(dpsc /dpr) (e7)?]
X fo 1/2 ‘bl —t, (xT—s)SG[O,T]) - bz(T —t, (xT—s)se[O,T])||4]dt
In addition, we have that for any ¢ € [0, 7] and w € C we have
[[b1(t,w) — by (t, W)
< lws —wy || +2[[VIogpr s (w;) — Viogpr s (wy)]
+2||Vlogpr s (wi) — Vlegpr ¢ (w; )|l
< (1 + 2supyeqo,7) SUP, e V2 1og p, (2)]) w; — Wy, |
+2 SUPse[r—t, 71, 10,V log py (wy) It — t)
< (1 + 26wy, — [+ 250y, 1 19,V log, ()t~ 1,).
Note that
T— (T, =T =300 ey, o) (T = DT —tsn) = 3050 1

Forany t € [0,T],denote t” =T — (T —t)., = g;ol 1

forany t € (3, tgp 1]
[01(T" — t,w) — by(T' — ¢, w)|
(1 + 2K>||wT t w(T t) || + 2bup5€[t t ] ||asv10gps(wT7t)||(t’y - t)
< (A +2K)|wr—y —wir—p | + QSUPSG[

](t)tk+1~

(tk:tk+1

(tirtrss] (t)txy1. Therefore, we get that

thtis] 105V 1og ps(wr—4)[[h+1
< (14 2K)|lwr—¢ — wir—o), I + 28, (Wr—) Ve g1
Combining this result and that for any a, b > 0, (a+b)* < 8a"+8b" we get that for any ¢ € (t;,, trril
E[[|by(T — t, (vr_g)scjo,r)) — bo(T ('T’Tfs)SE[O,T])HZl] (S64)
< 8(1+ 2K)"E[||lz, — Ty, 1] + 16E[Stk(xt)4]’713+1-

In addition, we have that for any ¢t € [0,7], z; = exp[—t]zg + w, 1/2. Hence, for any

s,t € [0, T] with t > s we have

1—exp[—2t])

[ = || < exp[—s](explt — 5] = 1)[[zoll + [[w—exp—26) = Wa—exp[-2s) I
Therefore, we have that for any s,¢ € [0, 7] with t > s
t + s))'E[[lzol|"] + SE[[|w(1—exp[—2¢]) — W(1—exp[—2s]) 1]
< 8exp[—ds](1 — exp[~t + s]) 'El o | "] + 24(exp[~t] — exp[—s])*
< 8exp|—4s](1 — exp[—t + s]) E[||zo || '] + 24 exp[—2s](1 — exp[—t + 5])°
< 8E[||zo||*] exp[—4s] (t — 5)4 + 24 exp[—2s](t — 5)°. (S65)

E[llz; — z,]"] < 8 exp[—4s](1 - exp

[
-
-
=

In addition, using that that for any k& € {0, —1}and z € RY, Sy, (x) < M exp[—at,]||z| we
get that

E[Sy, (x,)"] < 24M* exp[—daty] {1+ E[|zo]]}.
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Combining this result, (S64) and (S65) we get that for any ¢ € (¢, t5,1]
E[llo1(T = t, (x7—s)sejo,r) — b2(T — ¢, (xT—s)sE[O,T])”ﬂ
< 64(1 + 2K) B[ [l | "] exp[—4t] i1
+192(1 + 2K)" exp[—2t, i1 + 384M " exp[—daty {1 + Efl|zo]| T} i1

Using this result and that for any a,b > 0, (a + b)l/2 < a'? +b'/2, we have for any t € (tg, tpi1]

EY2[|1by(T — t, (21— 3)sco.r) — ba(T — b, (27— scpo.r)|*]
< 8(1 + 2K)°E"?[||zo "] exp[—2t )77 11

+14(1 + 2K)? exp|—ty] i1 + 20M? exp|—2at,]{1 + ]El/zwg:o”ﬂhzs%lé
(S66)

We have that for any 5 > 0,
Sy exp[—Btr] < Xpen expl—Ark] < (1 —exp[—B7.]) " < 1+ B/
Then using this result, (S66) and (S63) we get that
[1DooPA0 — Poo Qoll v < El(dpos /dpr) (w) ]2 [4(1 + 2K)*EM?[||z ] (1 + /(27.))(7*)°
+7(1+2K)*(1+ 1/7)(7")” + 10M>{1 + EY?[|lzo[ "1} (1 + 1/(20,)) (v1)).
Therefore, we get that
1o PFi0 — Poo Qollry < El(dpa /dpr) (22) ] *[2(1 + 2K)EY [l )|*1(1 + /(27,) ") (v)*/?
+3(1 4+ 2K)(1+ 1/%/ )" + 4M {1+ EV o)1} (1 + 1/(2a,) %) (v)*/?]
< E[(dpao /dpr) (z7) ] [6(1 + 2K) (1 + EY*[||zo"])
+AM{L + EY Y|l |[THA + 1/(20)YD)((7)? /)M
< 6(1 + EY ||z *E(dpoe /dpr) (7)1 + K + M(1+1/(20) " )((v*)? /3) 2,

which concludes the proof upon using Lemma S24.

We now check that the assumption of Theorem 2 are satisfied in a Gaussian setting.

Proposition $26. Assume that py = N(0, %) and that T > 1+ (1/2)[log™ (||Z]|) + log(d + 1)] then
we have that for any t € [0,T] and x € R?

IV log py(a)]| < max(L,[£71), 118,V logpy(x)]] < 2exp[—26] max(L, |5 [)?[£—1d |[z]]

In addition, we have that [ Poo(2)? /pr(z)da < V2.

Proof. Recall that for any ¢ € [0, T, x, = exp[—t]zg + wW1_exp[—2¢- Therefore, we have that for
any t € [0,T], p, = N(0,%,) with ¥; = exp[—2t]X + (1 — exp[—2t]) Id. Hence, we get that for
any ¢ € [0,T] and z € R%, V?log p,(z) = (exp[—2]% + (1 — exp[—2¢]1d) "' Using this result,

we have that for any ¢ € [0, 7] and z € R%, |[V?log p,(2)|| < max(1, | "|). Similarly, for any
t €[0,T] and 2 € R? we have

0,V logpi(z) = 9,57 'w = =% (9,50)%; w

Hence, for any ¢ € [0, 7] and 2 € R* we have |0,V log p, (z)| < 2 exp[—2t] max(1, ||~ ])?||Z —
Id ||||]|. Finally, we have that for any ¢ € [0, 7] and 2 € R*

(w, [21d — (exp[~2t] S+ (1—exp[~2]) Id) ' Jz) > (2—(exp[—2(][|=7 | 7" +(1—exp[-2¢))) )|z *.
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Lete € (0,1/2]. Forany ¢ € [0, ], we have that 2— (exp[—2t][| S|~ +(1—exp[—2t])) " > 1—¢
if and only if exp[—2¢] (1—||2 " 7!) < 1—(1+¢) ", Using that — log(1—(14¢) ") = log(14¢~ ")
we have that for any ¢ > (1/2)log(1 + ¢ ') and z € R?

Poo(@)? /py(x) < expl—||a* /4)(2m) =% det(Z,).

Combining this result and the fact that [ exp[—|z)|?/2(1 — &)]dz = (2(1 — &)m)
forany t > (1/2)log(14¢")

d/ 2 we get that
it Poo ()2 /pe()da < [a exp[—[z]/2(1 — €)](2r0) " det(S,)/*dz < (1 — &) det ()",

Lete = 1/(2d) < 1/2. Note that T > (1/2){—1log(|||=~"||”" = 1]) 4 log(1 + 2d)}. Hence, we
have that

St Poc (@)* [pr(2)dz < exp[—log(1 — 1/(2d))(d/2)] det(Sr)" /™.
Since for any ¢t € [0,1/2), —log(1 — t) < log(2)t we get that

Jpe Doo () /pp(2)da < o1/4 det(ET)l/Q. (S67)
Finally, using that ¥ = exp[—2T]X + (1 — exp[—2T]) Id we have that
det(3p)"/? < (exp[-2T][|Z + 1 — exp[-2T))** < (1 + exp[-27]|| ).
Hence, using that result and that for any ¢ > 0, log(1 + ¢) < ¢t we have
det(S7)"? < explexp[-2T]|5]|(d/2)] .

Since, T > (1/2){log(||Z||) + log(d) + log(2) — log(log(2'/*))}, we get that det(2,)"/? < 2,
which concludes the proof upon combining this result and (S67). O

Therefore, we get the following simplified result in the Gaussian setting.

Corollary S27. Assume that p = N(0,%), with |[£7'| > 1, 4" =~, =~y > 0and T >
14 (1/2)[log™ (|1%]]) + log(d + 1)], then we have

1£(Xo) = pollzy < exp[~T/2)(log™ (|=7)) + |2 —1d |)'/?
+HA8(1+ )V =72 + |2 - 1d ]y
Proof. Using (S14) and Proposition S26 we have
1£(X0) = pollry < exp[~T/2](— log(det (X)) + Tr(3) — d)'/*
H12(1+ (Jpe [l2]*dpo(2)) D[ + K +2C1/ () /7.
< exp[~T/2)(~ log(det (X)) + Tr(S) — d)'/?
1201+ (feo [l *dpo(@) Y[+ [Z7H + 2= HPS = 111y (65 /%
< exp[—T/2](~ log(det(%)) + Tr() — d)*/?
+12(1+ 374 2aY )+ 7 + 2= HPIE - 1A 1y () v
< exp[=T/2](~ log(det(%)) + Tr() — d)*/?
+H48(1+ |22 2= TP+ 12 - 1A ]/ () /%
< exp[~T/2)(log " (|I=7]) + || — 1d [))!/?
+H48(1+ [|IZ] 2= TP+ 12 - 1d 1y (v /e
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S6 Proof of Theorem 3

Proof. For any x and j, denote p; ((-|x) the distribution of Z;  given 2; = x and p; , the distribution
of z, . For any j we have

KL(p;llpj0) = KL(pj11llpjs1,0) + EKL(Pj1 (|20 12541,0(1241))]-
By recursion, we have that
J _ _
KL(pllpo) = KL(psllpj0) + 2251 E[KL(D;(-|z;)[pj0(-x;))]-
Combining Proposition S9 and Lemma S4, we get that
KL(p|lpo) < (8 + exp[—4T1)(27"L)" + 3°7_, (6 + exp[-4T]) (277 L)" (2" — 1) + Ex.
Therefore, KL(p||py) < (6 + exp[—4T])L" + Er 5, which concludes the proof. O

S7 Experimental Details on Gaussian Experiments

We now give some details on the experiments in Section 3.2 (Figure 2). We use the exact formulas for
the Stein score of p, in this case: if 2y ~ N (M, %), then 2, ~ N(M,, %) with M, = e "M and

Y,=e 'Y+ (1—e)Id.

Under an ideal situation where there is no score error, the discretization of the (backward) generative
process is given by equation (S23):

a1 = (14 6) T =20571 . 5)wy, + 2657115 My + V202111
where § is the uniform step size and z;, are iid white Gaussian random variables. For the SGM case,
M = 0. The starting step of this discretization is itself z, ~ N(0,1d). From this formula, the
covariance matrix X, of z;, satisfies the recursion (S16):

Siit = (14 6)1d—26571 )8, (1 + 0)1d =265 ) 4+ 261d

from which we can exactly compute N i for very k, and especially for k = N = T'/0, as a function of
3, the final time 7', and the step size d. In all our experiments, we choose stationary processes: their

covariance X is diagonal in a Fourier basis, with eigenvalues (power spectrum) noted Pk,. All the z;,

remain stationary so N & 1s still diagonal in a Fourier basis, with power spectrum noted Pk. The error
displayed in the left panel of figure 2 is:

1Py — P|| = max|Py(w) — P(w)|/ max|P(w)],
normalized by the operator norm of X..

The illustration in the middle panel of Figure 2, for WSGM, is done for simplicity only at one scale
(ie, at j = 1 in Algorithm 1): instead of stacking the full cascade of conditional distributions for all
j=4J,...,1, we use the true low-frequencies Tjo = T1. Here, we use Daubechies-4 wavelets. We
sample :cj o using the Euler-Maruyama recursion (S23)-(S16) for the conditional distribution. We
recall that in the Gaussian case, Z; and z; are jointly Gaussian. The conditional distribution of Z;
given z; is known to be N(Axl, T'), where:

A= —Cov(Zy,x,)Var(z,) "', T = Var(z,) — Cov(z,z;)Var(z;) 'Cov(zy, 1)

We solve the recursion (S16) with a step size § and N = T'/4 steps; the sampled conditional wavelet

coefficients Z; , have conditional distribution noted (Anz,T ). The full covariance of (T5,0,Tj,0)
written in the basis given by the high/low frequencies, is now given by

i) _ 1c‘]\/’ COV(ml,fl)A;

N [AnCov(@y, )" Cov(ay,ay) |

Figure 2, middle panel compares the eigenvalues (power spectrum) of these covariances, as a function
of §, with the ones of X.

The right panel of 2 gives the smallest N needed to reach || Py — P|| = 0.1 in both cases (SGM and
WSGM), based on a power law extrapolation of the curves N — Py.
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Figure S1: Example of a realization of a cp4 critical field (L = 256) with its wavelet decomposition
on the left (lower-frequencies are on bottom right panel).

S8 Experimental Details on the g04 Model

In this section, we develop and and make more precise the results in Section 4.1.

S8.1 The Critical 904 Process and its Stein Score Regularity

The macroscopic energy of non-Gaussian distributions can be specified as shown in (20), where K is

a coupling matrix and V' is non-quadratic potential. The @4—model over the L x L periodic grid is
the special case defined by C' = —A (the negative two-dimensional discrete Laplacian) and V is a
quartic potential:

2 2 2
B(@) = § Yoot (#(w) = 2(0))” + 2, (a(w)* = 1)°.
Here, [ is a parameter proportional to an inverse temperature.

In physics, the ap4 model is a typical example of second-order phase transitions: the quadratic part
reduces spatial fluctuations, and V' favors configurations whose entries remain close to =1 (in physics,
this is often called a double-well potential). In the thermodynamic limit L — oo, both term compete
according to the value of (.

* For # < 1, the quadratic term becomes negligible and the marginals of the field become
independent; this is the disordered state.

e For 8 > 1, the quadratic term favors configuration which are spatially smooth and the
potential term drives the values towards £1, resulting in an ordered state, where all values
of the field are simultaneously close to either 41 or to —1.

A phase transition occurs between these two regimes at a critical temperature 5, ~ 0.68 [36, 20].
At this point, the cp4 field display very long-range correlations and an ill-conditioned Hessian
v? log p. The sampling of <p4 at this critical point becomes very difficult. This “critical slowing

down” phenomenon is why, from a machine learning point of view, the critical @4 field is an excellent
example of hard-to-learn and hard-to-sample distribution, yet still accessible for mathematical
analysis.

Our wavelet diffusion considers the sampling of the conditional probability p(Z; |x;) instead of p(zy),
by inverting the noise diffusion projected on the wavelet coefficients. Theorem 2 indicates that the
loss obtained with any SGM-type method depends on the regularity parameters of V log p; in (10).

Strictly speaking, to get a bound on K we should control the norm of v? log p; over all x and ¢.
However, a look at the proof of the theorem indicates that this control does not have to be uniform in
x; for instance, there is no need to control this Hessian in domains which have an extremely small
probability under p,. Moreover, since p; is a convolution between p, and a Gaussian, we expect that

a control over V log py(z) will actually be sufficient to control V7 log p,(x) for all t > 0; these
facts are non-rigorous for the moment. The distribution of some spectral statistics of v? log pg over
samples drawn from the <p4-m0del are shown in Figure S2 (blue).

Considering conditional probabilities p instead of p acts on the Hessian of the <p4-energy as a
projection over the wavelet field: in the general context of (20),
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Figure S2: Histograms of 10° realizations of Amins Amax a0d £ = Ao /Amin Of the Hessian matrices

in (S68) for the critical <p4 model in dimension L = 32. The mean values of x are respectively
= 18.32 and & = 210.53; standard deviations are 0 = 1.78 and & = 9451.37.

—V2logp(zg) = K 4+ V2V (x0), ~V2 logp(Fy|z1) = v’ G(K + V>V ()G . (S68)

The proof is in Appendix S8. The distribution of the conditioning number of V2 log p and V2 log p
over samples drawn from the <p4 model is shown at Figure S2: the Hessian of the wavelet log-
probability is orders-of-magnitude better conditioned than its single-scale counterpart, with a very
concentrated distribution. The same phenomenon occurs at each scale j, and the same is true for
Amins Amax- 1t turns out that considering wavelet coefficient not only concentrates these eigenvalues,
but also drives A,;,, away from 0. In the context of multiscale Gaussian processes, Theorem S4 gives

a rigorous proof of this phenomenon. In the general case, v? log p; is not reduced to the inverse of a
covariance matrix, but we expect the same phenomenon to be true.

S8.2 Score Models and Details on our Numerical Experiments of <p4

In this section, we give some details on our numerical experiments from Section 4.1.

Training Data and Wavelets

We used samples from the <p4 model generated using a classical MCMC algorithm — the sampling
script will be publicly available in our repository.

The wavelet decompositions of our fields were performed using Python’s pywavelets package and
Pytorch Wavelets package. For synthetic experiments, we used the Daubechies wavelets with
p = 4 vanishing moments (see [31, Section 7.2.3]).

Score Model

At the first scale 7 = 0, the distribution of the cp4 model falls into the general form given in (20), and
it is assumed that at each scale j, the distribution of the field at scale j still assumes this shape —
with modified constants and coupling parameters. The score model we use at each scale is given by:

T
sico(@) =32 Ko+ 30, (010 (2(w) + - + Op vy, (2(u))),

where the parameters are K,6;,...,6,, and v; are a family of smooth functions. One can also

represent this score as si g = K - zz' + 0" U(z) where U (z) = Doy Vilx(u)).

Learning

We trained our various algorithms using SGM or WSGM up to a time T' = 5 with n,;, = 2000
steps of forward diffusion. At each step t, the parameters were learned by minimizing the score loss:

UK, 0) = E[|Vsg g(@)|” + 28,51 ()]

using the Adam optimiser with learning rate 1r = 0.01 and default parameters «, 8. At the start of
the diffusion (¢ = 0) we use 10000 steps of gradient descent. For ¢ > 1, we use only 100 steps of
gradient descent, but initialized at (K;_1,6;_1).
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Sampling
For the sampling, we used uniform steps of discretization.

For the error metric, we first measure the L*-norm between the power spectra P, P of the true 904
samples and our synthesized examples; more precisely, we set:

Dy =P - P

This error on second-order statistics is perfectly suitable for Gaussian processes, but must be refined
for non-Gaussian processes. We also consider the total variation distance between the histograms of
the marginal distributions (in the case of two-dimensions, pixel-wise histograms). We note this error
D,; our final error measure is D + D,. This is the error used in Figure S2.

S8.3 Proofs of (S68)

In the sequel, V f is the gradient of a function f, and V2 is the Hessian matrix of f- The Laplacian
of f is the trace of the Hessian.

Lemma S28. Let U : R" — R be smooth and M be a n x m matrix. We set F(x) = U(Mz) where
x € R™. Then, V?F(x) = M VU (2)M

Proof. LetU : R™ — R be smooth and M be a n x m matrix. Then,

oF ZMzk ,U)(Mz).
=1
Similarly,
o F(z Z Z M, ,8;(0;U)(Mz). (S69)
=1 j5=1
This is equal to (M ' V2UM),, ;. O

Lemma S29. Under the setting of the preceding lemma, if U(z) = Y., f(x;), then (i) VU (x) =
diag(u” (x1),...,u" (x,)) and (ii) the Laplacian of F(x) = U(Mz) is given by

n

AF(z) = Z(MTM)i,z‘U”(fEi)-

i=1

Proof. The proof of (i) comes from the fact that ;U (z) = u'(z;), hence 0;0;U(z) = u”(z;) if
i = j, zero otherwise. The proof of (ii) consists in summing the £ = ¢ terms in (S69) and using
@@). O

For simplicity, let us note p(z) = e H@® /Z where Z, is a normalization constant and H (z) =
2" Kz/2+ V(z). Then,

and the formula in the left of (S68) comes from the fact that the Hessian of 2 Kz is 2K.

For the second term, let us first recall that if Z, and z; are the wavelet coefficients and low-frequencies
of z, they are linked by (18). Consequently, the joint density of (%, z;) is:

B _H(G 247G
(7, 2,) = O MGz,
where Z; is another normalization constant. The conditional distribution of z; given z; is:
_ Q(‘fla xl)
q(Z]wy) = ———
Zy (1)
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where Z,(z) = [ ¢(z,u)du. Consequently,

Vil log ¢(Z1]71) = Vi'l(_ (’YGT% +7 G 7y) —log Zy) — Vazlzl(%)
= -V, HHG 'z, +1G 7))

and additionally:
V2 q(@|z) = =V H(yG 2y ++G ' 1),
The RHS of (S68) then follows from the lemmas in the preceding section.

S9 Experimental Details on CelebA-HQ

Data We use Haar wavelets. The 128 x 128 original images are thus successively brought to the
64 X 64 and 32 X 32 resolutions, separately for each color channel. Each of the 3 channels of x; and
9 channels of Z; are normalized to have zero mean and unit variance.

Architecture Following [38], both the conditional and unconditional scores are parameterized by a
neural network with a U-Net architecture. It has 3 residual blocks at each scale, with a base number of
channels of C' = 128. The number of channels at the k-th scale is a;,C, where the multipliers (ay,);,
depend on the resolution of the generated images. These multipliers are (1, 2,2, 4, 4) for models at
the 128 x 128 resolution, (2, 2,4, 4) for models at the 64 x 64 resolution, (4, 4) for the conditional
model at the 32 x 32 resolution, and (1, 2, 2, 2) for the unconditional model at the 32 x 32 resolution.
All models include multi-head attention layers in blocks operating on images at resolutions 16 x 16
and 8 x 8. The conditioning on the low frequencies x; is done with a simple input concatenation along
channels, while conditioning on time is done through affine rescalings with learned time embeddings
at each GroupNorm layer [38, 40].

Training The networks are trained with the (conditional) denoising score matching losses:

— — z
007) =By, ¢ [H&{,(@e 107z - m”ﬂ

f(é): z; mtz[|50 te .13 +\/ ‘Jf \/—%|‘|

where z ~ N(0,1d) and the time ¢ is distributed as Tu” with u ~ ([0, 1]). We fix the maximum

time 7' = 5 for all scales. Networks are trained for 5 x 10° gradient steps with a batch size of 128 at
the 32 x 32 resolution and 64 otherwise. We use the Adam [21] optimizer with a learning rate of

10~* and no weight decay.

Sampling For sampling, we use model parameters from an exponential moving average with a rate
of 0.9999. For each number of discretization steps [V, we use the Euler-Maruyama discretization
with a uniform step size §;,, = T'/N starting from T' = 5. This discretization scheme is used at all
scales. For FID computations, we generate 30, 000 samples in each setting.
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