
Contents

1 Introduction 1

2 Preliminaries 3

3 The SwarmSGD Algorithm 5

4 The Convergence of SwarmSGD 7

5 Experimental Results 8

6 Conclusions and Future Work 10

A Detailed Analytical Comparison 15
A.1 Comparison with SGP . 15
A.2 Comparison with AD-PSGD . 15
A.3 Comparison with Moniqua . 16
A.4 Discussion . 16

B The Complete Analysis 16
B.1 Technical Lemmas on Load Balancing and Graph Properties 16
B.2 Properties of the Quantization Scheme . 17
B.3 Proof of Corollary 2.1 . 17
B.4 Notation and Auxiliary Potential Functions . 18
B.5 Properties of Local Steps . 19
B.6 Upper Bounding Potential Functions . 22
B.7 The Convergence of SwarmSGD . 28

C Additional Experimental Results 34

A Detailed Analytical Comparison
We compare our assumptions and the resulting bounds in more detail relative to Lian et al. [2018] ,
Assran et al. [2018] and Lu and De Sa [2020]. We focus on these works since they are the only other
papers which do not require explicit global synchronization in the form of rounds. (By contrast,
e.g. Wang and Joshi [2018], Koloskova et al. [2020] require that nodes synchronize in rounds, so
that at every point in time every node has taken the same number of steps.)

A.1 Comparison with SGP
In Assran et al. [2018], all nodes perform gradient steps at each iteration, in synchronous rounds,
but averaging steps can be delayed by τ iterations. Unfortunately, the mixing time of their algorithm
depends on the dimension d (more precisely, it contains a

√
d factor). Moreover, it depends on

the delay bound τ , and on ∆, defined as the number of iterations over which the interaction graph
is well connected. Additionally, their analysis will not extend to the random interaction patterns
required by the asynchronous gossip models. Practically, their analysis works for deterministic
global interactions, but where nodes may see inconsistent versions of eachothers’ models. As noted
in [Assran et al., 2018] and also in our Related Work section, enforcing the τ bound inherently
implies that the algorithm may have to block in case a slow node may cause this bound to be violated.

A.2 Comparison with AD-PSGD
Lian et al. [2018] consider random interaction matrices and do not require the agents to perform the
same number of gradient steps. Unlike our model, in their case more than two nodes can interact
during the averaging step. Due to asynchronous model, like ours, Lian et al. [2018] allow agents

15

to have outdated views during the averaging step. We would like to emphasize that in their case
outdated models are assumed to come from the same step.

More precisely, at every step t, there exists τ ≤ τmax such that for every agent i, X̂i
t = Xi

t−τ . As
also noted by Assran et al. [2018], enforcing this will require the usage of global barrier (or some
alternate method of blocking while waiting for the nodes whose models are outdated by more than
τmax steps) once in every τmax steps. Their implementation section suggests to explicitly implement
synchronous pairings at every step.
In our case, at each step t and agent i, the delay τ it is a random variable , such that t− τi is the last
step node i was chosen as initiator. This implies naturally that X̂i

t = Xi
t−τ , since t − τi is the last

step node i updated its own model.

A.3 Comparison with Moniqua

Lu and De Sa [2020] consider a virtually identical model to AD-PSGD, but they also add quantiza-
tion. The first difference between their work and ours is that we are using a random mixing matrix,
thus we have to take the probability of models diverging (models diverge if the distance between
them is larger then required by quantization algorithm) into account. Subsequently, this justifies
our usage of Davies et al. [2021], since in this quantization method allows us to tolerate the larger
distances between the models. This technical difference justifies the fact that our main bound has
a non-trivial dependency on the second-moment bound M . As we showed, this dependency can be
removed if we remove quantization. The second difference is that our interactions are one sided,
that is, if i and j interact and i is initiator, i does not have to block while j is in compute.

A.4 Discussion

In summary, our algorithm is the first to explicitly consider the classic asynchronous gossip
model [Xiao and Boyd, 2004], and show convergence bounds in its context. While AD-PSGD could
be re-stated in this model, the corresponding bounds would be weaker than the ones we provide.
At the practical level, to our knowledge we are the first to propose a fully non-blocking algorithm,
which does not rely on a deterministic upper bound of τmax steps on the maximum delay between
the nodes, and therefore remove the need for implementing global barrier-like communication to
enforce τmax. However, we note that our node activation model inherently implies a probabilistic
bound on the expected maximum delay. In addition, we also allow for communication quantization
and local steps, in the same asynchronous model.
The price we pay for this added generality is that the rate given in Theorem 4.1 has a dependency
on the second-moment bound. As we showed in Corollary 4.2, this requirement can be removed if
communication is not quantized.

B The Complete Analysis
B.1 Technical Lemmas on Load Balancing and Graph Properties

In this section provide the useful lemmas which will help as in the later sections.
We are given a simple undirected graph G, with n nodes (for convenience we number them from
1 to n) and edge set E(G). Let ρi be a degree of vertex i and let ρi be a set of neighbours of i
(|ρi| = ρi). Also, we assume that the largest degree among nodes is ρmax and the smallest degree
is ρmin.
Each node i of graph G keeps a local vector model Xi

t ∈ Rd (t is the number of interactions or
steps); let Xt = (X1

t , X
2
t , ..., X

n
t) be the vector of local models at step t.

Let µt =
∑n
i=1X

i
t/n be the average of models at step t and let Γt =

∑n
i=1 ‖Xi

t − µt‖2 be a
potential at time step t.
Let L be the Laplacian matrix ofG and let let λ2 be a second smallest eigenvalue of L. For example,
if G is a complete graph λ2 = n. In general we have that

λ2 ≤ 2ρmax. (5)

First we restate the following lemma from Ghosh and Muthukrishnan [1996]:

Lemma B.1.

λ2 = min
v=(v1,v2,...,vn)

{vTLv
vT v

|
n∑
i=1

vi = 0
}
.

16

Now, we show that Lemma B.1 can be used to lower bound
∑

(i,j)∈E(G) ‖Xi
t −X

j
t ‖2:

Lemma B.2. ∑
(i,j)∈E(G)

‖Xi
t −X

j
t ‖2 ≥ λ2

n∑
i=1

‖Xi
t − µt‖2 = λ2Γt.

Proof. Observe that∑
(i,j)∈E(G)

‖Xi
t −X

j
t ‖2 =

∑
(i,j)∈E(G)

‖(Xi
t − µt)− (Xj

t − µt)‖2. (6)

Also, notice that Lemma B.1 means that for every vector v = (v1, v2, ..., vn) such that
∑n
i=1 vi = 0,

we have: ∑
(i,j)∈E(G)

(vi − vj)2 ≥ λ2
n∑
i=1

v2i .

Since
∑n
i=1(Xi

t − µt) is a 0 vector, we can apply the above inequality to the each of d components
of the vectors X1

t − µt, X2
t − µt, ..., Xn

t − µt separately, and by elementary properties of 2-norm
we prove the lemma.
Let ρi be a degree of vertex i; we denote largest degree among nodes by ρmax and the smallest
degree by ρmin.

B.2 Properties of the Quantization Scheme
In this section, we discuss and prove the properties of the quantization scheme we consider, as well
as potential complications caused by using quantization in an asynchronous shared-register setting.
We also provide a fully-detailed version of Algorithm 3, with respect to quantization.
We first describe how the quantization method of Davies et al. [2021] is adapted to the local register
setting to give Corollary 2.1:

B.3 Proof of Corollary 2.1
From Interactive Communication to Non-blocking Communication Buffers. Lemma 23 of the
full version of Davies et al. [2021] provides similar guarantees to Corollary 2.1, but in a different
setting. Specifically, they assume interactive message-passing communication between an encoding
node u and a decoding node v. However, in their setting, the messages sent by u are non-adaptive: u
simply sends quantizations using an increasing number of bits, until v replies confirming that it has
decoded successfully. In our setting, we implement communication buffers, so node u can simply
append all of its potential messages together as QR,ε(xu).
Critically, notice that node u should append enough bits so that the decoding is possible. This can
be done in two ways. If u knows the distance between Xu and the vector v uses for decoding, which
we call the decoding key key(v), then u can simply write

O

(
d log(

R

ε
‖xu − key(v)‖

)
bits in the register.

In the second case, u does not know the distance. We can show, however, that with high probability
in the total number of steps T , all distances between encoded and decoding vectors will be at most
ε · poly(T), and therefore at most O(d log T) bits for quantization will suffice in the worst case.
Thus, the node writes O(d log T) bits in the register (Recall that T is the total number of steps taken
by our algorithm). But, when v tries to decodes, it does not need all those bits: it reads and uses
only the first O

(
log(Rε ‖xu − key(v)‖

)
bits. This follows by Lemma 23 of Davies et al. [2021].

Counting Communication Cost. We emphasize that, when we calculate the number of bits used
by quantization we actually aim to measure the number of bits exchanged between u and v. In the
setting we consider, which has local registers/communication buffers, this is the number of bits spent
to read from (or to write to) the non-local register. Since the second case above involves writing a
relatively large number of bits, we will use it only when u is writing a quantized value to its own reg-
ister/buffer, and so does not need to communicate the bits. Then, only theO

(
log(Rε ‖xu − key(v)‖

)
bits read by v need to be communicated.

17

To summarize, in our algorithm we will always ensure that whenever some node uwrites a quantized
value, it either knows key(v), or is writing to its local register. In the second case, we have to
guarantee that O(d log T) bits suffice in the worst case. That is, ‖xu − key(v)‖ = O

(
ε(poly(T))

R

)
.

In the first case, there are no restrictions.

B.4 Notation and Auxiliary Potential Functions

Recall that t− τ it is the last time i was chosen as initiator up to and including step t. We would like
to emphasize that τ it is a random variable and we do not make any additional assumptions about it.
Initially, τ i0 = 0 for every i. Then, if node i is chosen as initiator at step t+ 1 we have that

τ it+1 = 0 (7)
and for each

τ jt+1 = τ jt + 1. (8)
Next, we provide the formal definition of the local steps performed by our algorithms. Recall that
Xi
t is a local model of node i at step t. Let Hi

t be the number of local steps node i performs in the
case when it is chosen for interaction at step t + 1. A natural case is for Hi

t to be fixed throughout
the whole algorithm, that is: for each time step t and node i, Hi

t = H (or alternatively we might to
try that Hi

t can be a geometric r.v with mean H).

h̃0i (X
i
t) = 0.

and for 1 ≤ q ≤ Hi
t let:

h̃qi (X
i
t) = g̃i(X

i
t −

q−1∑
s=0

ηh̃si (X
i
t)),

Note that stochastic gradient is recomputed at each step, but we omit the superscript for lo-
cal step and global step for simplicity (Whenever we write g̃i, we mean that gradient is com-
puted freshly by choosing sample u.a.r from the data available to node i). that is: h̃q,ti (Xi

t) =

g̃q,ti (Xi
t −

∑q−1
s=0 ηh̃

s,t
i (Xi

t)). Further , for 1 ≤ q ≤ Hi
t , let

hqi (X
i
t) = E[g̃i(X

i
t −

q−1∑
s=0

ηh̃si (X
i
t))] = ∇f(Xi

t −
q−1∑
s=0

ηh̃si (X
i
t))

be the expected value of h̃qi (X
i
t) taken over the randomness of the stochastic gradient g̃i. Let h̃i(Xi

t)
be the sum of Hi

t local stochastic gradients we computed:

h̃i(X
i
t) =

Hi
t∑

q=1

h̃qi (X
i
t).

In summary, omitting local step number q means that we compute the sum of all generated gra-
dients (this is the entire update during compute). and omitting tilde sign, means that we compute
expectation over the randomness of the samples.
Similarly, for simplicity we avoid using index t in the left side of the above definition, since it is
clear that if the local steps are applied to model Xi

t we compute them in the case when node i is
chosen as initiator at step t+ 1.
In the case of outdated models this means that

h̃i(X̂i
t) = h̃

t−τti
i (Xt−τti)

Potential Functions. In order to deal with asynchrony we define the potential function: Γ̂t =∑n
i=1 ‖X̂i

t − µt‖2. This potential helps us to measure how far are the outdated models from the
current average. In order to bound Γ̂t in expectation, we will need additional auxiliary potential
functions:

At =

n∑
i=1

‖Xt−τti − µt−τti ‖
2

Bt =

n∑
i=1

‖µt − µt−τti‖
2

18

Notice that by definition of X̂i
t and Couchy-Schwarz inequality we get that

Γ̂t ≤ 2At + 2Bt. (9)

B.5 Properties of Local Steps
Lemma B.3. For any agent i and step t

E‖h̃i(Xi
t)‖2 ≤ 2H2M2.

Proof.

E‖h̃i(Xi
t)‖2 =

∞∑
K=1

Pr[Hi
t = K]E‖

K∑
q=1

h̃qi (X
i
t)‖2

Cauchy−Schwarz
≤

∞∑
K=1

Pr[Hi
t = K]K

K∑
q=1

E‖h̃qi (X
i
t)‖2

(??)
≤

∞∑
K=1

Pr[Hi
t = K]K2M2 ≤ 2H2M2.

Where in the last step we used
∞∑
K=1

Pr[Hi
t = K]K2 = E[(Hi

t)
2] = 2H2 −H ≤ 2H2.

Lemma B.4. For any agent 1 ≤ i ≤ n, number of local steps 1 ≤ K and step t, we have that

E‖
K∑
q=1

h̃qi (X̂
i
t)‖2 ≤ Kσ2 + 6L2KE‖X̂i

t − µt‖2 + η2L2K2(K + 1)(2K + 1)M2

+ 3K2E‖∇fi(µt)−∇f(µt)‖2 + 3K2E‖∇f(µt)‖2.

Proof.

E‖
K∑
q=1

h̃qi (X̂
i
t)‖2

(??)
≤ (Kσ2 + E‖

K∑
q=1

hqi (X̂
i
t)‖2) = Kσ2 + E

∥∥∥ K∑
q=1

∇fi(X̂i
t −

q−1∑
s=0

ηh̃si (X̂
i
t))
∥∥∥2

Cauchy−Schwarz
≤ Kσ2 +

K∑
q=1

KE

∥∥∥∥∥(∇fi(X̂i
t −

q−1∑
s=0

ηh̃si (X̂
i
t))−∇fi(µt)

)

+∇fi(µt)−∇f(µt) +∇f(µt)

∥∥∥∥∥
2

Cauchy−Schwarz
≤ Kσ2 + 3K

K∑
q=1

E

∥∥∥∥∥∇fi(X̂i
t −

q−1∑
s=0

ηh̃si (X̂
i
t))−∇fi(µt)

∥∥∥∥∥
2

+ 3K2E‖∇fi(µt)−∇f(µt)‖2 + 3K2E‖∇f(µt)‖2

Cauchy−Schwarz,(1)
≤ Kσ2 + 3L2K

K∑
q=1

E

∥∥∥∥∥X̂i
t −

q−1∑
s=0

ηh̃si (X̂
i
t)− µt

∥∥∥∥∥
2

+ 3K2E‖∇fi(µt)−∇f(µt)‖2 + 3K2E‖∇f(µt)‖2

Cauchy−Schwarz
≤ Kσ2 + 6L2KE‖X̂i

t − µt‖2 + 6η2L2K

K∑
q=1

E

∥∥∥∥∥
q−1∑
s=0

h̃si (X̂
i
t))

∥∥∥∥∥
2

+ 3K2E‖∇fi(µt)−∇f(µt)‖2 + 3K2E‖∇f(µt)‖2

19

To finish the proof, we need to upper bound
∑K
q=1 E

∥∥∥∥∥∑q−1
s=0 h̃

s
i (X̂

i
t))

∥∥∥∥∥
2

:

K∑
q=1

E

∥∥∥∥∥
q−1∑
s=0

h̃si (X̂
i
t))

∥∥∥∥∥
2
Cauchy−Schwarz

≤
K∑
q=1

q

(
q−1∑
s=0

E
∥∥∥h̃si (X̂i

t))
∥∥∥2)

(4)

≤
K∑
q=1

q2M2 = K(K + 1)(2K + 1)M2/6.

Next, we sum up the upper bound given by the above lemma and take the randomness of the number
local steps into the account:

Lemma B.5. For any step t, we have that
n∑
i=1

E‖h̃i(X̂i
t)‖2 ≤ nHσ2 + 6L2HE[Γ̂t] + 144nη2L2H4M2 + 6nH2ς2 + 6nH2E‖∇f(µt)‖2.

Proof. Using lemma B.4
n∑
i=1

E‖h̃i(X̂i
t)‖2 =

n∑
i=1

∞∑
K=1

Pr[Hi
t−τ i

t
= K]E‖

K∑
q=1

h̃qi (X̂
i
t)‖2

≤
n∑
i=1

∞∑
K=1

Pr[Hi
t−τ i

t
= K]

(
Kσ2 + 6L2KE‖X̂i

t − µt‖2

+ η2L2K2(K + 1)(2K + 1)M2

+ 3K2E‖∇fi(µt)−∇f(µt)‖2

+ 3K2E‖∇f(µt)‖2
)

Notice that
∑∞
K=1 Pr[H

i
t−τ i

t
= K]K = H , by the definition of expectation. Also,
∞∑
K=1

Pr[Hi
t−τ i

t
= K]K2 = E[(Hi

t)
2] ≤ 2H2

and
∞∑
K=1

Pr[Hi
t−τ i

t
= K]K2(K + 1)(2K + 1) ≤ 6

∞∑
K=1

Pr[Hi
t−τ i

t
= K]K4

= 6E[(Hi
t)

4] ≤ 144H4.

Thus we get that:
n∑
i=1

E‖h̃i(X̂i
t)‖2 ≤

n∑
i=1

(
Hσ2 + 6L2KE‖X̂i

t − µt‖2 + 36η2L2H3M2

+ 6H2E‖∇fi(µt)−∇f(µt)‖2

+ 6H2E‖∇f(µt)‖2
)

≤ nHσ2 + 6L2HE[Γ̂t] + 144nη2L2H4M2 + 6nH2ς2 + 6nH2E‖∇f(µt)‖2.

Where in the last step we used the definition of Γ̂t and (3).

Lemma B.6. For any local step 1 ≤ q, and agent 1 ≤ i ≤ n and step t:

E‖∇fi(µt)− hqi (X̂i
t)‖2 ≤ 2L2E‖X̂i

t − µt‖2 + 2L2η2q2M2.

20

Proof.

E‖∇fi(µt)− hqi (X̂i
t)‖2 = E‖∇fi(µt)−∇fi(X̂i

t −
q−1∑
s=0

ηh̃si (X̂
i
t))‖2

(1)

≤ L2E‖µt −Xi
t +

q−1∑
s=0

ηh̃si (X̂
i
t))‖2

Cauchy−Schwarz
≤ 2L2E‖X̂i

t − µt‖2 + 2L2η2E‖
q−1∑
s=0

h̃si (X̂
i
t)‖2.

Cauchy−Schwarz
≤ 2L2E‖X̂i

t − µt‖2 + 2L2η2q

q−1∑
s=0

E‖h̃si (X̂i
t)‖2

Cauchy−Schwarz
≤ 2L2E‖X̂i

t − µt‖2 + 2L2η2q2M2.

Lemma B.7. For any time step t.
n∑
i=1

E〈∇f(µt),−hi(X̂i
t)〉 ≤ 2HL2E[Γ̂t]−

3Hn

4
E‖∇f(µt)‖2 + 12H3nL2M2η2.

Proof.
n∑
i=1

E〈∇f(µt),−hi(X̂i
t)〉 =

n∑
i=1

∞∑
K=1

Pr[Hi
t−τ i

t
= K]E〈∇f(µt),−

K∑
q=1

hqi (X̂
i
t)〉

=

n∑
i=1

∞∑
K=1

Pr[Hi
t−τ i

t
= K]

K∑
q=1

(
E〈∇f(µt),∇fi(µt)− hqi (X̂

i
t)〉 − E〈∇f(µt),∇fi(µt)〉

Using Young’s inequality we can upper bound E〈∇f(µt),∇fi(µt)− hqi (X̂i
t)〉 by

E‖∇f(µt)‖2

4
+ E

∥∥∥∇fi(µt)− hqi (X̂i
t)
∥∥∥2.

Plugging this in the above inequality we get:

n∑
i=1

E〈∇f(µt),−hi(X̂i
t)〉

≤
n∑
i=1

∞∑
K=1

Pr[Hi
t−τ i

t
= K]

K∑
q=1

(
E‖∇f(µt)− hqi (X̂

i
t)‖2

+
E‖∇f(µt)‖2

4
− E〈∇f(µt),∇fi(µt)〉

)
Lemma B.6
≤

n∑
i=1

∞∑
K=1

Pr[Hi
t−τ i

t
= K]

K∑
q=1

(
2L2E‖X̂i

t − µt‖2 + 2L2η2q2M2

+
E‖∇f(µt)‖2

4
− E〈∇f(µt),∇fi(µt)〉

)
=

n∑
i=1

∞∑
K=1

Pr[Hi
t−τ i

t
= K]K

(
2L2E‖µt − X̂i

t‖2 +
E‖∇f(µt)‖2

4
− E〈∇f(µt),∇fi(µt)〉

)
+

n∑
i=1

∞∑
K=1

Pr[Hi
t−τ i

t
= K]K(K + 1)(2K + 1)L2M2η2/3

21

To finish the proof we upper bound the above two terms on the right hand side. Note that:
n∑
i=1

∞∑
K=1

Pr[Hi
t−τt = K]K

(
2L2E‖µt − X̂i

t‖2 +
E‖∇f(µt)‖2

4
− E〈∇f(µt),∇fi(µt)〉

)
=

n∑
i=1

H
(

2L2E‖µt − X̂i
t‖2 +

E‖∇f(µt)‖2

4
− E〈∇f(µt),∇fi(µt)〉

)
= H

(
2L2E[Γ̂t]−

3nE‖∇f(µt)‖2

4

)
Where in the last step we used that

∑n
i=1

fi(x)
n = f(x), for any vector x. Also:

n∑
i=1

∞∑
K=1

Pr[Hi
t−τ i

t
= K]K(K + 1)(2K + 1)L2M2η2/3

≤
n∑
i=1

∞∑
u=1

Pr[Hi
t−τt = K]2K3L2M2η2

≤ 12H3nL2M2η2.

Where in the last step we used (Recall that Hi
t−τi is a geometric random variable with mean H):

∞∑
K=1

Pr[Hi
t−τi = K]K3 = E[(Hi

t−τi)
3] ≤ 6H3.

B.6 Upper Bounding Potential Functions

We proceed by proving the following lemma which upper bounds the expected change in potential:

Lemma B.8. For any time step t we have:

E[Γt+1] ≤
(

1− λ2
2nρmax

)
E[Γt] +

20ρ2max
ρminλ2

(R2 + 7)2ε2 +
∑
i

24ρ2maxη
2

ρminλ2n
E‖h̃i(X̂i

t)‖2.

Proof. First we bound change in potential ∆t = Γt+1 − Γt for some fixed time step t > 0.

For this, let ∆i,j
t be the change in potential when agent i wakes up (is chosen as initiator) and

chooses neighbouring agent j for interaction. Let Sit = −ηh̃i(X̂i
t) +

Q(Xi
t)−X

i
t

2 +
Q(Xj

t)−X
j
t

2 and

Sjt =
Q(Xi

t)−X
i
t

2 +
Q(Xj

t)−X
j
t

2 . We have that:

Xi
t+1 =

Xi
t +Xj

t

2
+ Sit .

Xj
t+1 =

Xi
t +Xj

t

2
+ Sjt .

µt+1 = µt +
Sit + Sjt

n
.

This gives us that:

Xi
t+1 − µt+1 =

Xi
t +Xj

t

2
+
n− 1

n
Sit −

1

n
Sjt − µt.

Xi
t+1 − µt+1 =

Xi
t +Xj

t

2
+
n− 1

n
Sjt −

1

n
Sit − µt.

For k 6= i, j we get that

Xk
t+1 − µt+1 = Xk

t −
1

n
(Sit + Sjt)− µt.

22

Hence:

∆i,j
t =

∥∥∥Xi
t +Xj

t

2
+
n− 1

n
Sit −

1

n
Sjt − µt

∥∥∥2 − ∥∥∥Xi
t − µt

∥∥∥2
+
∥∥∥Xi

t +Xj
t

2
+
n− 1

n
Sjt −

1

n
Sit − µt

∥∥∥2 − ∥∥∥Xj
t − µt

∥∥∥2
+
∑
k 6=i,j

(∥∥∥Xk
t −

1

n
(Sit + Sjt)− µt‖2 −

∥∥∥Xk
t − µt

∥∥∥2)
= 2
∥∥∥Xi

t − µt
2

+
Xj
t − µt

2

∥∥∥2 − ∥∥∥Xi
t − µt

∥∥∥2 − ∥∥∥Xj
t − µt

∥∥∥2
+
〈
Xi
t − µt +Xj

t − µt,
n− 2

n
Sit +

n− 2

n
Sjt

〉
+
∥∥∥n− 1

n
Sit −

1

n
Sjt

∥∥∥2 +
∥∥∥n− 1

n
Sjt −

1

n
Sit

∥∥∥2
+
∑
k 6=i,j

2
〈
Xk
t − µt,−

1

n
(Sit + Sjt)

〉
+
∑
k 6=i,j

(
1

n
)2‖Sit + Sjt ‖2.

Observe that:

n∑
k=1

〈
Xk
t − µt,−

1

n
(Sit + Sjt)

〉
= 0.

After combining the above two equations, we get that:

∆i,j
t = −‖X

i
t −X

j
t ‖2

2
+
〈
Xi
t − µt +Xj

t − µt, Sit + Sjt

〉
+
n− 2

n2

∥∥∥Sit + Sjt

∥∥∥2 +
∥∥∥n− 1

n
Sit −

1

n
Sjt

∥∥∥2 +
∥∥∥n− 1

n
Sjt −

1

n
Sit

∥∥∥2
Cauchy-Schwarz
≤ −‖X

i
t −X

j
t ‖2

2
+
〈
Xi
t − µt +Xj

t − µt, Sit + Sjt

〉
+ 2
(n− 2

n2
+

1

n2
+

(n− 1)2

n2

)(
‖Sit‖2 + ‖Sjt ‖2

)
≤ −‖X

i
t −X

j
t ‖2

2
+
〈
Xi
t − µt +Xj

t − µt, Sit + Sjt

〉
+ 2
(
‖Sit‖2 + ‖Sjt ‖2

)
.

Let α be a parameter we will fix later:

〈
Xi
t − µt +Xj

t − µt, Sit + Sjt

〉 Young
≤ α

∥∥∥Xi
t − µt +Xj

t − µt‖2 +

∥∥∥Sit + Sjt

∥∥∥2
4α

Cauchy-Schwarz
≤ 2α

∥∥∥Xi
t − µt

∥∥∥2 + 2α
∥∥∥Xj

t − µt
∥∥∥2 +

∥∥∥Sit∥∥∥2 +
∥∥∥Sjt ∥∥∥2

2α

≤ 2α
∥∥∥Xi

t − µt
∥∥∥2 + 2α

∥∥∥Xj
t − µt

∥∥∥2 +
‖Sit‖2 + ‖Sjt ‖2

2α
.

Finally, by combining the above two inequalities we get that

∆i,j
t ≤ −

‖Xi
t −X

j
t ‖2

2
+
〈
Xi
t − µt +Xj

t − µt, Sit + Sjt

〉
+ 2
(n− 2

n2
+

1

n2
+

(n− 1)2

n2

)(
‖Sit‖2 + ‖Sjt ‖2

)
23

≤ −‖X
i
t −X

j
t ‖2

2
+ 2α

∥∥∥Xi
t − µt

∥∥∥2 + 2α
∥∥∥Xj

t − µt
∥∥∥2

+ (2 +
1

2α
)
(
‖Sit‖2 + ‖Sjt ‖2

)
.

Using definitions of Sit and Sjt , Cauchy-Schwarz inequality and properties of quantization we get
that

‖Sit‖2 ≤ 3η2‖h̃i(X̂i
t)‖2 +

3‖Q(Xi
t)−Xi

t‖2

4
+

3‖Q(Xj
t)−Xj

t ‖2

4

≤ 3η2‖h̃i(X̂i
t)‖2 +

3(R2 + 7)ε2

2
.

‖Sjt ‖2 ≤
‖Q(Xi

t)−Xi
t‖2

2
+
‖Q(Xj

t)−Xj
t ‖2

2
≤ (R2 + 7)ε2.

Next, we plug this in the previous inequality:

∆i,j
t ≤ −

‖Xi
t −X

j
t ‖2

2
+ 2α

∥∥∥Xi
t − µt

∥∥∥2 + 2α
∥∥∥Xj

t − µt
∥∥∥2

+ (2 +
1

2α
)
(5(R2 + 7)ε2

2
+ 3η2‖h̃i(X̂i

t)‖2
)
.

Next, we calculate probability of choosing edges from graph and upper bound ∆t in expectation,
for this we define Et as expectation conditioned on the entire history up to and including step t

Et[∆t] =
∑
i

∑
j∈ρi

1

nρi
Et[∆i,j

t]

≤
∑
i

∑
j∈ρi

1

nρi

(
− ‖X

i
t −X

j
t ‖2

2
+ 2α

∥∥∥Xi
t − µt

∥∥∥2 + 2α
∥∥∥Xj

t − µt
∥∥∥2

+ (2 +
1

2α
)
(5(R2 + 7)ε2

2
+ 3η2Et‖h̃i(X̂i

t)‖2
))

= −
∑
i

∑
j∈ρi

‖Xi
t −X

j
t ‖2

2nρi

+
∑
i

1

n
(1 +

∑
j∈ρi

1

ρj
)2α
∥∥∥Xi

t − µt
∥∥∥2 + (5 +

5

4α
)(R2 + 7)ε2

+
∑
i

∑
j∈ρi

1

nρi
(6 +

3

2α
)η2Et‖h̃i(X̂i

t)‖2

Now, we use the upper and lower bounds on the degree of vertices

Et[∆t] ≤ −
∑
i

∑
j∈ρi

‖Xi
t −X

j
t ‖2

2nρmax

+
∑
i

1

n
(1 +

∑
j∈ρi

1

ρmin
)2α
∥∥∥Xi

t − µt
∥∥∥2 + (5 +

5

4α
)(R2 + 7)ε2

+
∑
i

∑
j∈ρi

1

nρi
(6 +

3

2α
)η2Et‖h̃i(X̂i

t)‖2

≤ −
∑

(i,j)∈E(G)

‖Xi
t −X

j
t ‖2

nρmax

+
∑
j

ρmax
ρminn

4α
∥∥∥Xj

t − µt
∥∥∥2 + (5 +

5

4α
)(R2 + 7)ε2

24

+
∑
i

1

n
(6 +

3

2α
)η2Et‖h̃i(X̂i

t)‖2

Now, we use lemma B.2:

Et[∆t] ≤ −
∑

(i,j)∈E(G)

λ2Γt
nρmax

+
4αΓtρmax
ρminn

+ (5 +
5

4α
)(R2 + 7)ε2 +

∑
i

1

n
(6 +

3

2α
)η2Et‖h̃i(X̂i

t)‖2.

By setting α = λ2

8ρ2max
, we get that:

Et[∆t] ≤ −
λ2Γt

2nρmax

+ (5 + 10
ρ2max
ρminλ2

)Sit +

n∑
i=1

(6 + 12
ρ2max
ρminλ2

)η2Et‖h̃i(X̂i
t)‖2.

Next we remove the conditioning , and use the definitions of ∆i and Sit (for Sit we also use upper
bound which come from the properties of quantization).

E[Et[Γt+1]] = E[∆t + Γt]

≤
(

1− λ2
2nρmax

)
E[Γt] + (5 + 10

ρ2max
ρminλ2

)(R2 + 7)2ε2

+

n∑
i=1

(6 + 12
ρ2max
ρminλ2

)η2E‖h̃i(X̂i
t)‖2.

Finally, we get the proof of the lemma after using ρ2max

ρminλ2
≥ 1

2 (See (5)) and regrouping terms.

This allows us to upper bound the potential in expectation for any step t.
Lemma B.9.

E[Γt] ≤
40nρ3max
ρminλ22

(R2 + 7)2ε2 +
96nρ3max
ρminλ22

H2M2η2.

Proof. We prove by using induction. Base case t = 0 trivially holds. For an induction step step we
assume that E[Γt] ≤ 40nρ3max

ρminλ2
2

(R2 + 7)2ε2 +
96nρ3max

ρminλ2
2
H2M2η2. We get that :

E[Γt+1] ≤
(

1− λ2
2nρmax

)
E[Γt] +

20ρ2max
ρminλ2

(R2 + 7)2ε2 +
∑
i

24ρ2max
ρminλ2n

E‖h̃i(X̂i
t)‖2

Lemma B.3
≤

(
1− λ2

2nρmax

)
E[Γt] +

20ρ2max
ρminλ2

(R2 + 7)2ε2 +
48ρ2maxη

2

ρminλ2
H2M2

≤
(

1− λ2
2nρmax

)(40ρ3max
ρminλ22

(R2 + 7)2ε2 +
96ρ3max
ρminλ22

H2M2η2
)

+
20ρ2max
ρminλ2

(R2 + 7)2ε2 +
48ρ2maxη

2

ρminλ2
H2M2

=
40nρ3max
ρminλ22

(R2 + 7)2ε2 +
96nρ3max
ρminλ22

H2M2η2.

Lemma B.10. For any time step t:

E[At+1] ≤ (1− 1

n
)At +

1

n
E[Γt+1].

Proof. Recall that if node i is chosen as initiator at step t, then for each j 6= i,

X̂j

t+1−τj
t+1

− µt+1−τj
t+1

= X̂j

t−τj
t

− µj−τj
t
,

25

since τ jt+1 = τ jt + 1 and

X̂i
t+1−τ i

t+1
− µt+1−τ i

t+1
= Xi

t+1 − µt+1,

since τ it+1 = 0 (See equations (7) and (8)). Thus, if Et is expectation conditioned on the entire
history up to and including step t then

Et[At+1 −At] =

n∑
i=1

1

n

(
Et‖Xi

t+1 − µt+1‖2 − ‖X̂i
i−τ i

t
− µi−τ i

t
‖

)

=
1

n
Et[Γt+1]− 1

n
At.

After removing conditioning and regrouping terms we get the proof of the lemma

Next, we upper bound At in expectation

Lemma B.11. For any time step t:

E[At] ≤
40nρ3max
ρminλ22

(R2 + 7)2ε2 +
96nρ3max
ρminλ22

H2M2η2.

Proof. By combining Lemmas B.9 and B.10 we get that:

E[At+1] ≤ (1− 1

n
)At +

40ρ3max
ρminλ22

(R2 + 7)2ε2 +
96ρ3max
ρminλ22

H2M2η2

and the proof follows by using the same type of induction as in the proof of Lemma B.9

Next we provide two different versions of upper bounding E‖µt+1 − µt‖2, the first one will be
useful for upper bounding E[Bt] and the second one will be used in the proof of convergence for
SwarmSGD.

Lemma B.12. For any time step t:

E‖µt+1 − µt‖2 ≤
6(R2 + 7)2ε2 + 6η2H2M2

n2
.

Proof. Let i be the agent which is chosen as initiator at step t + 1 and let j be the neighbour it
selected for interaction, also let Et be expectation which is condition on the entire history up to and
including step t We have that

Et‖µt+1 − µt‖2 =
1

n2
Et
∥∥∥Q(Xi

t)−Xi
t +Q(Xj

t −X
j
t − ηh̃i(X̂i

t)
∥∥∥2

Cauchy−Schwarz
≤ 3

n2
Et
∥∥∥Q(Xi

t)−Xi
t‖+

3

n2
Et

∥∥∥Q(Xj
t)−Xj

t

∥∥∥2 +
3η2

n2
Et
∥∥∥h̃i(X̂i

t)
∥∥∥2

≤ 6(R2 + 7)2ε2 + 6η2H2M2

n2
.

Where in the last step we used property of quantization and Lemma B.3. Since this upper bound
holds for any agents i and j, after removing the conditioning, we get the proof of the lemma.

Lemma B.13. For any step t

E‖µt+1 − µt‖2 ≤
6(R2 + 7)2ε2

n2
+

3η2Hσ2

n2
+

18η2L2HE[Γ̂t]

n3
+

432η4L2H4M2

n2

+
18η2H2ς2

n2
+

18η2H2E‖∇f(µt)‖2

n2
.

Proof. Following the same steps as the proof of Lemma B.12 and taking the randomness of agents
i (the initiator) and j interacting at step t+ 1 in to the account we get that

E‖µt+1 − µt‖2 ≤
n∑
i=1

∑
j∈ρi

1

n3ρi

(
3E
∥∥∥Q(Xi

t)−Xi
t

∥∥∥+ 3E
∥∥∥Q(Xj

t)−Xj
t

∥∥∥2

26

+ 3η2E
∥∥∥h̃i(X̂i

t)
∥∥∥2)

≤ 6(R2 + 7)2ε2

n2
+

3η2

n3

n∑
i=1

E‖h̃i(X̂i
t)‖2

Lemma B.5
≤ 6(R2 + 7)2ε2

n2
+

3η2

n3

(
nHσ2 + 6L2HE[Γ̂t] + 144nη2L2H4M2

+ 6nH2ς2 + 6nH2E‖∇f(µt)‖2
)

=
6(R2 + 7)2ε2

n2
+

3η2Hσ2

n2
+

18η2L2HE[Γ̂t]

n3
+

432η4L2H4M2

n2

+
18η2H2ς2

n2
+

18η2H2E‖∇f(µt)‖2

n2
.

Our next goal is to upper bound E[Bt], for which we will need the following lemma:
Lemma B.14. For any time step t and agent i:

E‖µt − µt−τ i
t
‖2 ≤

E[(τ it)
2]
(

6(R2 + 7)2ε2 + 6η2H2M2
)

n2
.

Proof. Let Eτ i
t

be an expectation which is conditioned on τ it

Eτi‖µt − µt−τ i
t
‖2 = Eτ i

t

∥∥∥ t−1∑
s=t−τ i

t

(
µs+1 − µs

)∥∥∥2 Cauchy−Schwarz≤ τ it

t−1∑
s=t−τ i

t

Eτ i
t
‖µs+1 − µs‖2.

Note that for any t − τ it ≤ s ≤ t − 1 we can use Lemma B.12 to upper bound Eτ i
t
‖µs+1 − µs‖2,

since it uses quantization property and Lemma B.3 (which in turn uses (??) and the randomness of
the number of local steps) which do not depend on τ it . In fact, as proof of LemmaB.12 suggests, for
any t− τ it ≤ s ≤ t−1, we could condition E‖µs+1−µs‖2 on the entire history up to and including
step s (this history includes τ it as well) and the upper bound would still hold. Thus, we get that

Eτ i
t
‖µt − µt−τ i

t
‖2 ≤

(τ it)
2
(

6(R2 + 7)2ε2 + 6η2H2M2
)

n2
.

Finally we remove the conditioning :

E‖µt − µt−τ i
t
‖2 = E[Eτ i

t
‖µt − µt−τ i

t
‖2] ≤

E[(τ it)
2]
(

6(R2 + 7)2ε2 + 6η2H2M2
)

n2
.

Next, we proceed to prove the following lemma:

Lemma B.15. for any step t
n∑
i=1

E[(τ it)
2] ≤ 5n3. (10)

Proof. For a fixed step s, let Es be an expectation conditioned on the entire history up to and
including step s. If agent i is chosen as initiator at step s + 1 then τ is+1 = 0 and otherwise τ is+1 =

τ is + 1. Since i is chosen with probability 1
n , we have that

n∑
i=1

Es[(τ is+1)2] =

n∑
i=1

(1− 1

n
)
(

(τ is)
2 + 2τ is + 1

)
≤ (1− 1

n
)

n∑
i=1

(τ is)
2 + 2

n∑
i=1

τ is +
n2

2
.

Where in the last step we used that n ≥ 2.
Also, by using Cauchy-Schwarz inequality we get that(n∑

i=1

τ is

)2
≤ n

(n∑
i=1

(τ is)
2
)
⇐⇒

n∑
i=1

τ is ≤

√√√√n

n∑
i=1

(τ is)
2.

27

Thus,
n∑
i=1

Es[(τ is+1)2] ≤ (1− 1

n
)

n∑
i=1

(τ is)
2 + 2

√√√√n

n∑
i=1

(τ is)
2 +

n2

2
.

Next, we remove the conditioning:

n∑
i=1

E[(τ is+1)2] =

n∑
i=1

E[Es[(τ is+1)2]] ≤ (1− 1

n
)

n∑
i=1

E[(τ is)
2] + 2E

√√√√n

n∑
i=1

(τ is)
2 +

n2

2

≤ (1− 1

n
)

n∑
i=1

E[(τ is)
2] + 2

√√√√n

n∑
i=1

E[(τ is)
2] +

n2

2
.

Where in the last step with use Jensen’s inequality and concavity of square root function. Finally,
we finish the proof of the lemma using induction. Base case holds trivially, for induction step we
assume that

∑n
i=1 E[(τ is+1)2] ≤ 5n3. We have that

n∑
i=1

E[(τ is+1)2] ≤ (1− 1

n
)

n∑
i=1

E[(τ is)
2] + 2

√√√√n
n∑
i=1

E[(τ is)
2] +

n2

2

≤ (1− 1

n
)(5n3) + 2

√
5n4 +

n2

2
= 5n3 + n2(−5 + 2

√
5 +

1

2
) ≤ 5n3.

This finishes the proof of the Lemma.

Finally, we are ready to upper bound Bt
Lemma B.16. For any step t:

E[Bt] ≤ 5n
(

6(R2 + 7)2ε2 + 6η2H2M2
)
.

Proof. Lemma B.14 gives us that

E[Bt] =

n∑
i=1

E‖µt − µt−τ i
t
‖2 ≤

n∑
i=1

E[(τ it)
2]
(

6(R2 + 7)2ε2 + 6η2H2M2
)

n2

After applying Lemma B.15 we get the proof of the Lemma.

The last lemma in this section upper bounds E[Γ̂t]:
Lemma B.17. For any step t, we have that

E[Γ̂t] ≤
200nρ3max
ρminλ22

(R2 + 7)2ε2 +
312nρ3max
ρminλ22

H2M2η2

Proof. From (9), and Lemmas B.11 and B.16 we get that

E[Γ̂t] ≤ 2E[At] + 2E[Bt] ≤
80nρ3max
ρminλ22

(R2 + 7)2ε2 +
192nρ3max
ρminλ22

H2M2η2

+ 5n
(

6(R2 + 7)2ε2 + 6η2H2M2
)

≤ 200nρ3max
ρminλ22

(R2 + 7)2ε2 +
312nρ3max
ρminλ22

H2M2η2

Where in the last step we used ρ2max

ρminλ2
≥ 1

2 (See (5)).

B.7 The Convergence of SwarmSGD

Theorem B.18. For learning rate η = n/
√
T , Algorithm 1 converges at rate:

1

T

T−1∑
t=0

E‖∇f(µt)‖2 ≤
2(f(µ0)− f(x∗))

H
√
T

+
6(σ2 + 6Hς2)√

T

28

+
1600ρ3max(R2 + 7)2ε2L2

ρminλ22
+

2496n2ρ3maxH
2L2M2

Tρminλ22

+
78H2L2M2n2

T
+

12(R2 + 7)2ε2
√
T

Hn2
.

Proof. Let Et denote expectation conditioned on the entire history up to and including step t. By
L-smoothness we have that

Et[f(µt+1)] ≤ f(µt) + Et〈∇f(µt), µt+1 − µt〉+
L

2
Et‖µt+1 − µt‖2. (11)

First we look at Et〈∇f(µt), µt+1−µt〉 = 〈∇f(µt),Et[µt+1−µt]〉. If agent i is chosen as initiator
at step t+ 1 and it picks its neighbour j to interact, We have that

µt+1 − µt = − η
n
h̃i(X̂

i
t)− (Xi

t −Q(Xi
t))− (Xj

t −Q(Xj
t).

Thus, in this case:

Et[µt+1 − µt] = − η
n
hi(X̂

i
t).

Where we used unbiasedness of quantization and stochastic gradients. We would like to note that
even though we do condition on the entire history up to and including step t and this includes
conditioning on X̂i

t , the algorithm has not yet used h̃i(X̂i
t) (it does not count towards computation

of µt), thus we can safely use all properties of stochastic gradients. Hence, we can proceed by taking
into the account that each agent i is chosen as initiator with probability 1

n :

Et[µt+1 − µt] = −
n∑
i=1

η

n2
hi(X̂

i
t).

and subsequently

Et〈∇f(µt), µt+1 − µt〉 =

n∑
i=1

η

n2
Et〈∇f(µt),−hi(X̂i

t)〉.

Hence, we can rewrite (11) as:

Et[f(µt+1)] ≤ f(µt) +

n∑
i=1

η

n2
Et〈∇f(µt),−hi(X̂i

t)〉+
L

2
Et‖µt+1 − µt‖2.

Next, we remove the conditioning

E[(µt+1)] = E[Et[f(µt+1)]] ≤ E[f(µt)] +

n∑
i=1

η

n2
E〈∇f(µt),−hi(X̂i

t)〉+
L

2
E‖µt+1 − µt‖2.

This allows us to use Lemmas B.13 and B.7:

E[f(µt+1)]− E[f(µt)] ≤
2ηHL2E[Γ̂t]

n2
− 3Hη

4n
E‖∇f(µt)‖2 +

12H3L2M2η3

n

+
6(R2 + 7)2ε2

n2
+

3η2Hσ2

n2

+
18η2L2HE[Γ̂t]

n3
+

432η4L2H4M2

n2

+
18η2H2ς2

n2
+

18η2H2E‖∇f(µt)‖2

n2
.

To simplify the above inequality we assume that η ≤ 1
8H and also use the fact that n ≥ 2. We get:

E[f(µt+1)]− E[f(µt)] ≤
4ηHL2E[Γ̂t]

n2
− Hη

2n
E‖∇f(µt)‖2 +

39H3L2M2η3

n

+
6(R2 + 7)2ε2

n2
+

3η2H(σ2 + 6Hς2)

n2
.

Here, important thing is that we used 18η2H2E‖∇f(µt)‖2
n2 − HηE‖∇f(µt)‖2

4n ≤ 0.

29

Further, we use Lemma B.17:

E[f(µt+1)]− E[f(µt)] ≤
4ηHL2

(
200nρ3max

ρminλ2
2

(R2 + 7)2ε2 +
312nρ3max

ρminλ2
2
H2M2η2

)
n2

− Hη

2n
E‖∇f(µt)‖2 +

39H3L2M2η3

n

+
6(R2 + 7)2ε2HL2

n2
+

3η2H(σ2 + 6Hς2)

n2

=
800ηρ3max(R2 + 7)2ε2HL2

nρminλ22
+

1248η3ρ3maxH
3L2M2

nρminλ22

− Hη

2n
E‖∇f(µt)‖2 +

39H3L2M2η3

n

+
6(R2 + 7)2ε2

n2
+

3η2H(σ2 + 6Hς2)

n2
.

by summing the above inequality for t = 0 to t = T − 1, we get that

E[f(µT)]− f(µ0) ≤ −
T−1∑
t=0

ηH

2n
E‖∇f(µt)‖2 +

3η2H(σ2 + 6Hς2)T

n2

+
800ηρ3max(R2 + 7)2ε2HL2T

nρminλ22
+

1248η3ρ3maxH
3L2M2T

nρminλ22

+
39H3L2M2η3T

n
+

6(R2 + 7)2ε2T

n2

Next, we regroup terms, multiply both sides by 2n
ηHT and use the fact that f(µT) ≥ f(x∗):

1

T

T−1∑
t=0

E‖∇f(µt)‖2 ≤
2n(f(µ0)− f(x∗))

HηT
+

6η(σ2 + 6Hς2)

n

+
1600ρ3max(R2 + 7)2ε2L2

ρminλ22
+

2496η2ρ3maxH
2L2M2

ρminλ22

+ 78H2L2M2η2 +
12(R2 + 7)2ε2

nηH

Finally, we set η = n√
T

:

1

T

T−1∑
t=0

E‖∇f(µt)‖2 ≤
2(f(µ0)− f(x∗))

H
√
T

+
6(σ2 + 6Hς2)√

T

+
1600ρ3max(R2 + 7)2ε2L2

ρminλ22
+

2496n2ρ3maxH
2L2M2

Tρminλ22

+
78H2L2M2n2

T
+

12(R2 + 7)2ε2
√
T

Hn2
. (12)

Proof of Corollary 4.2. We get the proof by simply omitting quantization parameters R and ε from
the convergence bound given by the above theorem.
Our next goal is to show how quantization affects the convergence.
First we prove that the probability of quantization failing during the entire run of the algorithm is
negligible.

30

Lemma B.19. Let T ≥ 3n, then for quantization parameters R = 2 +T
3
d and ε = ηHM

(R2+7) we have
that the probability of quantization never failing during the entire run of the Algorithm 1 is at least
1−O

(
1
T

)
.

Proof. Let Lt be the event that quantization does not fail during step t. Our goal is to show that
Pr[∪Tt=1Lt] ≥ 1 − O

(
1
T

)
. In order to do this, we first prove that Pr[¬Lt+1|L1,L2, ...,Lt] ≤

O
(

1
T 2

)
(O is with respect to T here).

Recall that up to this point we always assumed that quantization never fails, and we omitted condi-
tioning on this event. Next, we rewrite our potential bounds but with the conditioning: Lemma B.9
gives us that for any step t

E[Γt|L1,L2, ...,Lt] ≤
136nρ3max
ρminλ22

(R2 + 7)2ε2. (13)

and Lemma B.17 gives us that

E[Γ̂t|L1,L2, ...,Lt] ≤
512nρ3max
ρminλ22

(R2 + 7)2ε2 (14)

Where we also used that (R2 + 7)ε2 = H2η2M2. We use this to upper bound the probability of
failure due to the models being far away (in this case we will not be able to apply Corollary 2.1), for
any fixed agent i and its neighbour j. That is, we need need to lower bound probability that :

‖Q(X̂i
t)−Xi

t‖2 ≤ (RR
d
ε)2 (15)

‖X̂i
t − X̂

j
t ‖2 ≤ (RR

d
ε)2 (16)

‖X̂i
t − X̂

j
t ‖2 = O

(
ε2(poly(T))2

R2

)
(17)

‖Q(X̂j
t)−Xj

t ‖2 ≤ (RR
d
ε)2. (18)

We would like to point out that these conditions are necessary for decoding to succeed, we ignore
encoding since it will be counted when someone will try to decode it.
Notice that by using Cauchy-Schwarz we get that

‖Q(X̂i
t)−Xi

t‖2 + ‖X̂i
t − X̂

j
t ‖2 + ‖Q(X̂j

t)− X̂j
t ‖2

≤ 3‖Q(X̂i
t)− X̂i

t‖2 + 3‖X̂i
t − µt‖2 + 3‖µt −Xi

t‖2

+ 2‖X̂i
t − µt‖2 + 2‖µt − X̂j

t ‖2

+ 3‖Q(X̂j
t)− X̂j

t ‖2 + 3‖X̂j
t − µt‖2 + 3‖µt −Xj

t ‖2

≤ 10Γ̂t + 6Γt + 6(R2 + 7)2ε2.

Since, R = 2 + T
3
d this means that (RR

d
)2 ≥ 22T

3 ≥ T 30, for large enough T . Hence, to
lower bound probability that (15), (16), (17), (18) are be satisfied it is suffices to upper bound the
probability that 10Γ̂t + 6Γt + 6(R2 + 7)2ε2 ≥ T 30ε2:
For this, we use Markov’s inequality:

Pr
[
(10Γ̂t + 6Γt + 6(R2 + 7)2ε2) ≥ T 30ε2|L1,L2, ...,Lt

]
≤ E[10Γ̂t + 6Γt + 6(R2 + 7)2ε2|L1,L2, ...,Lt]

T 30ε2

(13),(14)

≤
5936nρ3max

ρminλ2
2

(R2 + 7)2ε2 + 6(R2 + 7)2

T 30ε2

≤ O
(

1

T 2

)
.

In the last step we used that T ≥ 3n and λ2 ≥ 1
n2 for a connected graph. Thus, the failure prob-

ability due to the models not being close enough for quantization to be applied is at most O
(

1
T 2

)
.

Conditioned on the event that ‖Q(X̂i
t)−Xi

t‖, ‖X̂i
t − X̂

j
t ‖ and ‖Q(X̂j

t)−Xj
t ‖ are upper bounded

by T 15ε (This is what we actually lower bounded the probability for using Markov), we get that the

31

probability of quantization algorithm failing is at most

log log(
1

ε
‖Q(X̂i

t)−Xi
t‖) ·O(R−d)

+ log log(
1

ε
‖X̂i

t − X̂
j
t ‖) ·O(R−d)

+ log log(
1

ε
‖Q(X̂j

t)−Xj
t ‖) ·O(R−d) ≤ O

(
log log T

T 3

)
≤ O

(
1

T 2

)
.

Note that we do not need to union bound over all choices of i and j, since we have just one inter-
action and the above upper bound holds for any i and j. By the law of total probability (to remove
conditioning) and the union bound we get that the total probability of failure, either due to not being
able to apply quantization or by failure of quantization algorithm itself is at most O

(
1
T 2

)
. Finally

we use chain rule to get that

Pr[∪Tt=1Lt] =

T∏
t=1

Pr[Lt| ∪t−1s=0 Ls] =

T∏
t=1

(
1− Pr[¬Lt| ∪t−1s=0 Ls]

)
≥ 1−

T∑
t=1

Pr[¬Lt| ∪t−1s=0 Ls] ≥ 1−O
(

1

T

)
.

In the end we would like to emphasize that we could get even better lower bound by scaling param-
eter R by constant factor.

Lemma B.20. Let T ≥ 3n, then for quantization parameters R = 2 +T
3
d and ε = ηHM

(R2+7) we have

that the expected number of bits used by Algorithm 1 per step is O
(
d log

(
ρ2max

ρminλ2

))
+O (log T).

Proof. If the initiator agent i and its neighbour j interact at step t + 1, Corollary 2.1 (Please see
(??)) gives us that the total number of bits used is at most

O
(
d log(

R

ε
‖X̂i

t − X̂
j
t ‖)
)

+O
(
d log(

R

ε
‖Q(X̂j

t)−Xj
t ‖)
)

+O
(
d log(

R

ε
‖Q(X̂j

t)−Xj
t+1‖)

)
.

By taking the randomness of agent interaction at step t+1 into the account, we get that the expected
number of bits used is at most:

n∑
i=1

∑
j∈ρi

1

nρi

(
O
(
d log(

R

ε
‖X̂i

t − X̂
j
t ‖)
)

+O
(
d log(

R

ε
‖Q(X̂j

t)−Xj
t ‖)
)

+O
(
d log(

R

ε
‖Q(X̂j

t)−Xj
t+1‖)

))
. (19)

We proceed by upper bounding the first term:
n∑
i=1

∑
j∈ρi

1

nρi

(
O
(
d log(

R

ε
‖X̂i

t − X̂
j
t ‖)
))
≤

n∑
i=1

∑
j∈ρi

1

nρi

(
O
(
d log(

R2

ε2
‖X̂i

t − X̂
j
t ‖2)

))
Cauchy−Schwarz

≤
n∑
i=1

∑
j∈ρi

1

nρi

(
O

(
d log

(R2

ε2
(‖X̂i

t − µt‖2 + ‖X̂j
t − µt‖2)

)))

Jensen
≤ O

d log
(R2

ε2

n∑
i=1

∑
j∈ρi

1

nρi
(‖X̂i

t − µt‖2 + ‖X̂j
t − µt‖2)

) .

We have that
n∑
i=1

∑
j∈ρi

1

nρi
(‖X̂i

t − µt‖2 + ‖X̂j
t − µt‖2) =

n∑
i=1

1

n
‖X̂i

t − µt‖2 +

n∑
i=1

1

n
(
∑
j∈ρi

1

ρj
)‖X̂j

t − µt‖2

≤
n∑
i=1

1

n
‖X̂i

t − µt‖2 +

n∑
j=1

ρmax
ρminn

‖X̂j
t − µt‖2

32

≤ 2Γ̂tρmax
ρminn

.

By combining this with the previous inequality we get that
n∑
i=1

∑
j∈ρi

1

nρi

(
O
(
d log(

R

ε
‖X̂i

t − X̂
j
t ‖)
))
≤ O

(
d log

(R2ρmax
ε2ρmin

(
Γ̂t
n

)
))

Next, notice that

O
(
d log(

R

ε
‖Q(X̂j

t)−Xj
t+1‖)

)
≤ O

(
d log(

R2

ε2
‖Q(X̂j

t)−Xj
t+1‖2)

)
Cauchy−Schwarz

≤ O

(
d log

(R2

ε2
(‖Q(X̂j

t)− X̂j
t ‖2 + ‖X̂j

t − µt‖2

+ ‖µt − µt+1‖2 + ‖Xj
t+1 − µt+1‖2)

))

≤ O

(
d log

(R2

ε2
((R2 + 7)2ε2 + ‖X̂j

t − µt‖2

+ ‖µt − µt+1‖2 + ‖Xj
t+1 − µt+1‖2)

))
Where in the last step we used Corollary 2.1. By following similar argument as above we can upper
bound the third term in (19):

n∑
i=1

∑
j∈ρi

1

nρi

(
O
(
d log(

R

ε
‖Q(X̂j

t)−Xj
t+1‖)

))

≤ O

(
d log

(R2ρmax
ε2ρmin

((R2 + 7)2ε2 + ‖µt − µt+1‖2 +
Γt+1

n
+

Γ̂t
n

)
))

Analogously, by using Q(X̂j
t) − Xj

t = (Q(X̂j
t) − X̂j

t) + (X̂j
t − µt) + (µt − Xj

t) we can upper
bound the second term in (19):

n∑
i=1

∑
j∈ρi

1

nρi

(
O
(
d log(

R

ε
‖Q(X̂j

t)−Xj
t ‖)
))

≤ O

(
d log

(R2ρmax
ε2ρmin

((R2 + 7)2ε2 +
Γt
n

+
Γ̂t
n

)
))

Hence, the expected number of bits used is at most

O

(
d log

(R2ρmax
ε2ρmin

((R2 + 7)2ε2 + ‖µt − µt+1‖2 +
Γt+1

n
+

Γt
n

+
Γ̂t
n

)
))

,

since the above term is an upper bound for all the three terms in (19).

Next, we take the expectations of Γt, Γt+1, Γ̂t and ‖µt − µt+1‖2 into the account. We get that the
expected number of bits used is at most,

O

(
dE
[

log
(R2ρmax
ε2ρmin

((R2 + 7)2ε2 + ‖µt − µt+1‖2 +
Γt+1

n
+

Γt
n

+
Γ̂t
n

)
)])

Jensen
≤ O

(
d log

(R2ρmax
ε2ρmin

((R2 + 7)2ε2 + E‖µt − µt+1‖2 +
E[Γt+1]

n
+

E[Γt]

n
+

E[Γ̂t]

n
)
))

.

Notice that since (R2 + 7)2ε2 = η2H2M2, Lemma B.9 gives us that both E[Γt] and E[Γt+1] are
O(

ρ3max

ρminλ2
2
(R2 + 7)2ε2), Lemma B.17 gives us that E[Γ̂t] = O(

ρ3max

ρminλ2
2
(R2 + 7)2ε2) as well and

finally Lemma B.12 gives us that E‖µt − µt+1‖2 = O((R2+7)ε2

n2). Thus, by plugging these upper

33

bounds in the above inequality we get that the expected number of bits used is at most

O

(
d log

(R2ρmax
ε2ρmin

((1 +
1

n2
)(R2 + 7)2ε2 +

3ρ3max(R2 + 7)2ε2

ρminλ22
)
))

= O

(
d log

(ρ4max(R2 + 7)2R2

ρ2minλ
2
2

))
= O

(
d log

(ρ2max
ρminλ2

))
+O (d logR)

= O

(
d log

(ρ2max
ρminλ2

))
+O

(
d log(T 3/d)

)
= O

(
d log

(ρ2max
ρminλ2

))
+O (log T) .

With this we can prove the main theorem:

Theorem 4.1. For learning rate η = n/
√
T , where T ≥ 3n and quantization parameters R =

2 +T
3
d and ε = ηHM

(R2+7) , with probability at least 1−O(1
T) we have that the Algorithm 1 converges

at rate

1

T

T−1∑
t=0

E‖∇f(µt)‖2 ≤
2(f(µ0)− f(x∗))

H
√
T

+
6(σ2 + 6Hς2)√

T

+
1600ρ3maxn

2H2M2

Tρminλ22
+

2496n2ρ3maxH
2L2M2

Tρminλ22

+
78H2L2M2n2

T
+

12HM2

√
T

.

and uses O
(
d log

(
ρ2max

ρminλ2

))
+O (log T) communication bits per step in expectation.

Proof. The proof simply follows from using Lemmas B.19 and B.20, and plugging the value of
(R2 + 7)ε = ηHM in Theorem B.18.

C Additional Experimental Results

(a) Convergence of ResNet50/ImageNet versus
number of gradient steps. SwarmSGD is able to
recover the baseline top accuracy.

(b) Convergence versus number of local steps for
ResNet18 on ImageNet. All variants recover the target
accuracy, but we note the lower convergence of variants
with more local steps.

Figure 3: Additional convergence results for ImageNet dataset.

Target System and Implementation. We run SwarmSGD on the CSCS Piz Daint supercomputer,
which is composed of Cray XC50 nodes, each with a Xeon E5-2690v3 CPU and an NVIDIA Tesla

34

(a) Convergence versus number epochs (per
model) for CIFAR-10/ResNet20, at node counts
between 8 and 256. We note that the algorithm
converges and recovers SGD accuracy (91.35%
Top-1) for all node counts, although there are
oscillations at high node counts.

(b) Accuracy versus local epochs and local steps for
CIFAR-10/ResNet20. The original schedule for this
model has 300 epochs, and this experiment is executed
on 8 nodes. If the convergence scaling were perfect,
300/8 = 37.5 epochs would have been sufficient to
converge. However, in this case we need an epoch mul-
tiplier of 2, leading to 75 epochs.

Figure 4: Additional convergence results for CIFAR-10 dataset, versus number of nodes (left), and
local steps (right).

P100 GPU, using a state-of-the-art Aries interconnect. Please see Piz [2019] for hardware details.
We implemented SwarmSGD in Pytorch and TensorFlow using NCCL/MPI respectively. Basically,
each node implements a computation thread, and a communication thread, each of which stores
a copy of the model. The “live” copy, which is being updated with gradients, is stored by the
computation thread. A simplified version of the Pytorch implementation is provided as additional
material. When interacting, the two nodes exchange model information via their communication
threads. Our implementation closely follows the non-blocking algorithm description.
We used SwarmSGD to train ResNets on the classic CIFAR-10/ImageNet datasets, and a Trans-
former Vaswani et al. [2017] on the WMT17 dataset (English-German).
Hyperparameters. The only additional hyperparameter is the total number of epochs we execute
for. Once we have fixed the number of epochs, we do not alter the other training hyperparameters:
in particular, the learning rate schedule, momentum and weight decay terms are identical to sequen-
tial SGD, for each individual model. Practically, if sequential SGD trains ResNet18 in 90 epochs,
decreasing the learning rate at 30 and 60 epochs, then SwarmSGD with 32 nodes and multiplier
2 would 90 ∗ 2/32 ' 5.6 epochs per node, decreasing the learning rate at 2 and 4 epochs. As
mentioned, we have also tried to use SlowMo [Wang et al., 2019], but did not observe significant
improvements in terms of accuracy on ImageNet.
Specifically, for the ImageNet experiments, we used the following hyper-parameters. For ResNet18
and ResNet50, we ran for 240 total parallel epochs using 32 parallel nodes. The first communicated
every 3 local steps, whereas the second communicated every 2 local steps. We used the same hyper-
parameters (initial learning rate 0.1, annealed at 1/3 and 2/3 through training, and standard weight-
decay and momentum parameters).
For the WMT17 experiments, we ran a standard Transformer-large model, and executed for 10
global epochs at 16, 32, and 64 nodes. We ran a version with multiplier 1 (i.e. 10/NUM NODES
epochs per model) and one with multiplier 1.5 (i.e. 15/NUM NODES epochs per model) and regis-
tered the BLEU score for each.
Baselines. We consider the following baselines:

• Data-parallel SGD: Here, we consider both the small-batch (strong scaling) version, which
executes a global batch size of 256 on ImageNet/CIFAR experiments, and the large-batch (weak-
scaling) baseline, which maximizes the batch per GPU. For the latter version, the learning rate
is tuned following Goyal et al. [2017].
• Local SGD [Stich, 2018, Lin et al., 2018]: We follow the implementation of Lin et al. [2018],

communicating globally every 5 SGD steps (which was the highest setting which provided good
accuracy on the WMT task).
• Previous decentralized proposals: We experimented also with D-PSGD Lian et al. [2017], AD-

PSGD Lian et al. [2018], and SGP Assran et al. [2018]. Due to computational constraints, we did

35

not always measure their end-to-end accuracy. Our method matches the sequential / large-batch
accuracy for the models we consider within 1%. We note that the best performing alternative
(AD-PSGD) is known to drop accuracy relative to the baselines, e.g. Assran et al. [2018].

Our Pytorch implementation builds upon that of Assran et al. [2018].
Results. The accuracy results for ImageNet experiments are given in Table 1 and Figures 3(a)
and 3(b). As is standard, we follow Top-1 validation accuracy versus number of steps.

Figure 5: Average time per batch for previous methods, compared to SwarmSGD, on
ResNet18/ImageNet, across 1000 repetitions with warm-up. Notice that 1) the time per batch of
SwarmSGD stays constant relative to the number of nodes; 2) it is lower than any other method.
This is due to the reduced communication frequency. Importantly, the base value on the y axis of
this graph (0.4) is the average computation time per batch. Thus, everything above 0.4 represents the
average communication time for this model. We note that this comparison is performed in the
framework of [Assran et al., 2018], and that we have considered the best-performing variant
of D-PSGD, AD-PSGD and SGP, according to their implementation.

(a) Convergence versus time for
ResNet18/Imagenet for the SGD baseline
vs Swarm, executing at 32 nodes.

2.5

5.0

7.5

10.0

0 500 1000 1500
Training time (minutes)

L
o

ss local SGD (16 nodes)
SwarmSGD (16 nodes)
AD−PSGD (16 nodes)

(b) Objective loss versus time for the Transformer-
XL/WMT experiment, for various methods, execut-
ing at 16 nodes.

Figure 6: Convergence vs. time (ResNet18) and objective loss vs. time (Transformer).

Communication cost. We now look deeper into SwarmSGD’s performance. For this, we examine
in Figure 5 the average time per batch of different methods when executed on our testbed. The base
value on the y axis (0.4s) is exactly the average time per batch, which is the same across all methods.
Thus, the extra values on the y axis equate roughly to the communication cost of each algorithm.
The results suggest that the communication cost can be up to half the cost of the full batch (for SGP
and D-PSGD at large node counts). Moreover, this cost is increasing when considered relative to
the number of workers (X axis), for all methods except SwarmSGD.
This reduced cost is justified simply because our method reduces communication frequency: it com-
municates less often, and therefore the average cost of communication at a step is lower. Figure 3(b)
shows the convergence versus time for ResNet18 on the ImageNet dataset, at 32 nodes, with 3 local
steps per node, and ∼ 7 epochs per model.

36

(a) Convergence versus number of steps for the quan-
tized variant.

(b) Convergence versus time .

Figure 7: Convergence results for quantized 2xResNet28 trained on the CIFAR-10 dataset, versus
iterations (left), and time (right).

Convergence versus Steps and Epochs. Figure 4 shows and discusses the results of additional
ablation studies with respect to the number of nodes/processes and number of local steps / total
epochs on the CIFAR-10 dataset / ResNet20 model. In brief, the results show that the method still
preserves convergence even at very high node counts (256), and suggest a strong correlation between
accuracy and the number of epochs executed per model. The number of local steps executed also
impacts accuracy, but to a much lesser degree.
Quantization. Finally, we show convergence and speedup for a WideResNet-28 model with width
factor 2, trained on the CIFAR-10 dataset. We note that the epoch multiplier factor in this setup is
1, i.e. Swarm (and its quantized variant) execute exactly the same number of epochs as the baseline.
Notice that the quantized variant provides approximately 10% speedup in this case, for a < 0.3%
drop in Top-1 accuracy.

37

