Appendix: High-Throughput Synchronous Deep RL

In this appendix we first provide the proofs for Claim 1 (Sec. A) and Claim 2 (Sec. B). We then
discuss delayed gradient updates (Sec. C), additional ablation studies (Sec. D), comparison with
additional baselines(Sec. E), implementation details (Sec. F), metrics (Sec. G) and provide all the
training curves (Sec. H).

A Proof of Claim 1

Claim 1. Consider collecting K states using n parallel environments. Let X i(j )

5™ environment to perform its i step. Suppose Xi(J )

denote the time for the
is independent and identically distributed (i.i.d.)
and Y 5, Xi(j ) follows a Gamma distribution with shape o and rate 3. Assume the computation
time of each actor consistently takes time c. Given these assumptions, the expected time E[tht{:l] to
generate K states approaches

K(%(1+ a—1

where F~1 is the inverse cumulative distribution function (inverse CDF) of a gamma distribution
with shape o and rate (3, i.e., Gamma(«, 8), and v is the Euler-Mascheroni constant.
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Proof. As the environments synchronize every « steps, we need % synchronizations to finish the K
K

steps. Let 7} denote the time required for the /™ synchronization. We have IE[TtZt;ﬂ = E[T3).

Note E[T}] = E[max; 3%, X)]+acV I. By assumption we know that Y; £ S~ x 9 follows

a gamma distribution with shape « and rate 5. By extreme value theory [5, 9], suppose X l(J )~

Gamma(a, ), then E[max; X\7)] ~ 2(1 + Mﬁi’l)) + F71(1- 1), where F~! = inf{z €

-8B a-z
R : F(x) > q}. F(x) is the CDF of Gamma(c, 3), and + is the Euler-Mascheroni constant. By
K
plugging the obtained approximation into )" E[T;], the result follows. O

In Claim 1, we assume the sum of steptimes (synchronization time) to follow a Gamma distribution.
We empirically verify this assumption. In Fig. A1, we show the histogram of synchronization time
(sum of every 100 step times) on ‘3 vs. 1 w/ keeper’ Furthermore, we perform a Kolmogorov-Smirnov
goodness-of-fit test, with a significance-level of 0.05 and D-statistics of 0.04. We find the empirical
data is consistent with the assumed Gamma distribution.

B Proof of Claim 2

Claim 2. Consider asynchronous parallel actor-learner systems, such as GA3C and IMPALA.
Suppose the system has n actors and each actor is sending data to the data queue following an i.i.d.
Poisson distribution with rate \g. The learners consume data following an exponential distribution
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Figure Al: Empirical synchronization time.
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with rate . Let L denote the latency between the behavior policy and the target policy. Then, we

have E[L] = =£2=, where utilization py = %

Proof. Observe that the latency L is equal to the length of the data queue. n actors send data to the
queue with rate n)\q in total. Let P; denote the probability that there are ¢ data points in the queue.
To be stable, the system must satisfy the balance equations

nXoby = ph (A1)
Ao+ )P, = nioPj_1+ pPjia, j>1. (A2)
Note Eq. (A1) and Eq. (A2) reduce to
(nXo)Pj = pPjy1,5 >0, (A3)
or Pjy1 = npoPj,j > 0 from which we recursively obtain
P; = (npo) Ro. (A4)

Using the fact that 1 = >-72 ( P; = Py )~ (npo)’, we observed that there is a solution if and only

if npy < 1, in which case 1 = Py(1 — npo) %, or

Po =1- npo. (AS)

Therefore, we have 4
Pj = (npo)’ (1 —npo), (A6)
which follows a geometric distribution with success probability (1 — npg). Therefore, we have
E[L] = 722 which concludes the proof. O

1—npo

C Delayed Gradient

A delayed stochastic gradient descent performs the following update: 6; = 0,1 — ; V(x4 ;0 _.).
The algorithm is identical to the standard stochastic gradient descent, except that gradients are delayed
by a time step of T.

Consider a loss function of the form
T
L(0) 2> l(xy;0). (A7)
t=1

We are interested in analyzing the convergence rate of @ to the optimal parameters §* £

arg ming L£(x¢; 0). Following Langford et al. [17], we assume the following: (a) ¢ is convex, (b)
L-Lipschitz, i.e., ||[V({(x,0))|| < L, (c) z; is drawn i.i.d. following a uniform distribution from a
finite set X, (d) max, . cx 5|z — 2’ |2 < F2, where F is a constant, and (e) the learning rate of the

2

. . . 2
delayed stochastic gradient descent is ——2—, where 0~ = ;T’ then

V=t

T
> U@, 04) — £(24,0%) < AFLVTT. (A8)
t=1

Dividing both sides by 7, we have

T
% > U@y, 0;) — £z, 0%) < 4FL\/§. (A9)
t=1

Stated differently, the convergence rate is O(\/; ). For HTS-RL with on-policy RL algorithms, the

delay is guaranteed to be one, i.e., 7 = 1. Therefore, the convergence rate is O(\@ ). Note that in
practice the aforementioned assumptions are typically not met due to the use of deep nets.

D Ablation Study
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| Our Delayed Gradient Truncated 1.S. No Correction

BankHeist 987 881 877
Breakout 415 390 402
Seaquest 1831 1827 1784

Table Al: Average episode rewards of our delayed-gradient, truncated importance sampling, and no
correction on Atari games.

D.1 Delayed Gradient

In addition to the convergence rate bound of delayed gradient, we verify the effectiveness of delayed
gradient empirically. We run HTS-RL with (1) delayed gradient, (2) truncated importance sampling,
and (3) no correction on multiple Atari games. The results are summarized in Tab. A1, where the
average rewards of 100 evaluation episodes are reported. Compared with truncated importance
sampling and no correction, the one-step delayed gradient in HTS-RL achieves a higher reward,
which underlines the suitability of the delayed gradient strategy.
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Figure A2: HTS-RL and SeedRL on GFootball 11 vs. 11 easy task.

Method Kostrikov [14] Ba(s)eriier?eAsI[ﬂ rlpyt [29] Ours
BankHeist 1382 +6 991 +14 1737 £39 2111 £21
Beam Rider 1663 +14 1081 =18 2086 +32 2586 +14
Breakout 1225 +£12 829 +£31 1508 £60 1885 +15
Frostbite 1337 £8 962 +15 1803 =17 1973 +24
Jamesbond 1353 +5 1014 £1 1991 £24 2139 +31
Krull 1443 +6 1057 &£11 2001 29 2657 +16
KFMaster 1532 +£15 1056 £8 1979 +55 2483 £+15
MsPacman 1574 £9 1052 £3 1972 +13 2364 +5
Qbert 1232 £+13 953 +£7 1621 443 1860 +6
Seaquest 1593 +10 946 +£21 1918 £25 2633 +32
S. Invader 1514 £20 1010 &7 1899 £32 2318 +12
Star Gunner 1622 £19 1110 &£5 2066 £24 2616 +25

Table A2: SPS of different implementations of A2C.

E Baselines

E1 A2C

To ensure the A2C implementation [14] we use is a strong baseline, we compare the speed of different
versions of A2C, including our HTS-RL, Kostrikov [14], OpenAl baselines [6], and rlpyt [29], on
Atari games. For a fair comparison, all methods use 16 parallel environment processes for data
collection, and one GPU for model training/forwarding. For rlpyt, we use the most efficient ‘parallel-
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IMPALA IMPALA
Method 16 actors 48 actors
(Baseline) [16]

BankHeist 339 ~300

| IMPALA A2C/Ours Beam Rider 4000 ~4000

Unroll length 20 5 Breakout 201 ~130

Batch size 32 - Frostbite 73 ~70

Discount factor 0.99 0.99 Jamesbond 82 ~80

Value loss coefficient 0.5 0.5 Krull 2546 ~2500

Entropy loss coefficient 0.01 0.01 KFMaster 9516 ~8000

RMSProp momentum 0.00 0.00 MsPacman 807  ~1300

RMSProp € 0.01 0.00001 Qbert 4116 ~4000

Learning rate 0.006 0.0007 Seaquest 458 ~420

Number of actors 16 4 S. Invader 1142 ~2000

Table A3: Hyper-parameters of IMPALA and Star Gunner’ 8560 : ~6000
A2C/Ours(A2C) in Atari experiments. Table A4: Atari@20M environment steps.

Since Kiittler et al. [16] don’t report exact
scores at 20M environment steps, we obtain
their numbers from their plots and indicate that
with a ~ symbol.

GPU’ mode. As shown in Tab. A2, Kostrikov’s A2C is a strong baseline, which achieves 1.4 x higher
SPS than OpenAl baselines. Also, HTS-RL consistently achieves higher SPS than rlpyt.

E.2 SeedRL

SeedRL [8] is a recent work that reports results on GFootball ‘11 vs. 11 easy’ task. We compare
HTS-RL with Seed RL (V-trace) [8] on Gfootball ‘11 vs. 11 easy.” For a fair comparison, both
HTS-RL and Seed RL use 16 parallel environment processes and one GPU. HTS-RL achieves 829
environment steps per second (SPS) while Seed RL achieves 609 SPS. After 20M steps of training,
HTS-RL and Seed RL achieve a 3.55+0.3 and 1.50 £ 0.7 score difference, respectively. The training
curve is shown in Fig. A2.

F Implementation Details

F.1 Atari Game Experiments

In Atari experiments, we use the same neural network architectures as Espeholt et al. [7], Kiittler
et al. [16] for all three methods (IMPALA, A2C, Ours). The network has four hidden layers. The
first layer is a convolutional layer with 32 filters of size 8 x 8 and stride 4. The second layer is a
convolutional layer with 64 filters of size 4 x 4 and stride 2. The third layer is a convolutional layer
with 64 filters of size 3 x 3 and stride 1. The fourth layer is a fully connected layer with 512 hidden
units. Following the hidden units are two sets of output. One provides a probability distribution
over all valid actions. The other one provides the estimated value function. For ours (A2C) and
A2C baseline, we use the same hyper-parameters as Kostrikov [14]. For IMPALA, we use the same
hyper-parameters as Espeholt et al. [7], Kiittler et al. [16]. We summarize the hyper-parameters
in Tab. A3. Note Kiittler et al. [16] deploy distributed IMLALA with 48 actors. However, in this
work we target single machine parallel computing, and restrict ourselves to 16 parallel environments.
For a fair comparison, we run all experiments with 16 parallel environments on a single machine.
Importantly, while being downscaled to one machine, the reported IMPALA results match the results
reported in the original paper [16]. Tab. A4 summarizes the results of our baseline and that reported
by Kiittler et al. [16].

F.2 GFootball Experiments
In GFootball experiments, we use the CNN architecture of Kurach et al. [15] for all three methods

(IMPALA, PPO, Ours). The network has four hidden layers. The first layer is a convolutional layer
with 32 filters of size 8 x 8 and stride 4. The second layer is a convolutional layer with 64 filters of
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IMPALA IMPALA
Method 16 actors 500 actors

(Baseline) [15]
Empty goal close 1.0 ~0.99
Empty goal 1.0 ~0.85
Run to score 0.80 ~ 0.80
RSK 0.05 ~0.22
PSK 0.20 ~0.18
RPSK 0.82 ~0.41
3 vs 1 w/ keeper 0.21 ~0.20
Corner 0.0 ~-0.1
Counterattack easy 0.0 ~0.0
Counterattack hard 0.50 ~0.0
11 vs 11 w/ lazy Opp. 0.71 ~0.38

Table A5: GFootball Academy@5M environment steps. Since Kurach et al. [15] don’t report exact
scores at SM environment steps, we obtain their numbers from their plots and indicate that with a ~
symbol.

size 4 x 4 and stride 2. The third layer is a convolutional layer with 64 filters of size 3 x 3 and stride 1.
The fourth layer is a fully connected layer with 512 hidden units. Following the hidden units are two
sets of output. One provides a probability distribution over all valid actions. The other one provides
the estimated value function. To be consistent with the official torch beast implementation [16], we
use RMSProp for all methods. Regarding hyper-parameters, for ours (PPO) and PPO baseline, we
mostly use the same hyper-parameters as Kurach et al. [15]. The only difference is that, instead of 512
steps, we unroll for 128 steps, which we found to give better results. For IMPALA, Kurach et al. [15]
deploy distributed training with 500 actors. However, in this work we target single machine parallel
computing, and restrict ourselves to 16 parallel environments. Therefore, for a fair comparison, we
mostly follow the hyper-parameter settings of Kurach et al. [15], but decrease the number of actors
and batch size. With only 16 actors and a smaller batch size, our baseline results match the results
of IMPALA on GFootball environments reported by Kurach et al. [15]. Tab. A5 summarizes the
results of our baseline and that reported by Kurach et al. [15]. The hyper-parameters are summarized
in Tab. A6.

G Final Time and Required Time Metrics

The results of all Atari experiments in final time metric and required time metric are summarized
in Tab. A7 and Tab. AS8. For final time metric, the time limit for each experiment is set to the time
when IMPALA finishes training for 20M steps. For required time metric, we report the time to
achieve average episode rewards of 40% and 80% of the A2C baseline episode rewards reported
by Dhariwal et al. [6]. The results of all GFootball experiments in final time metric and required
time metric are summarized in Tab. A9 and Tab. A10. For final time metric, the time limit for each
experiment is set to the time when IMPALA finishes training for SM steps. For required time metric,
we report the time to achieve an average score of 0.4 and 0.8. As shown in Tab. A7 and Tab. A9,
given the same amount of time, HTS-RL consistently achieves higher average rewards/scores than
IMPALA and synchronous baselines. Moreover, as shown in Tab. A8 and Tab. A10, to achieve a
target reward/score, HTS-RL consistently needs less time.

H Training Curves

The training curves of all Atari and GFootball experiments in terms of time and number of environment
steps are shown in Fig. A3, Fig. A4, Fig. A5, and Fig. A6. As shown in Fig. A4 and Fig. A6, HTS-RL
does not trade data efficiency for higher throughput. While achieving much higher throughput,
HTS-RL still maintains a data efficiency similar to synchronous baselines. As a result, HTS-RL
consistently achieves higher rewards in shorter time than IMPALA and synchronous baselines across
different environments (Fig. A3, Fig. A5).
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[ IMPALA PPO / PPO(Ours)

Unroll length 32 128
Batch size 8 16
Discount factor 0.993 0.993
Value loss coefficient 0.5 0.5
Entropy loss coefficient | 0.00087453 0.003
RMSProp momentum 0.00 0.00
RMSProp ¢ 0.01 0.00001
Learning rate 0.00019896 0.000343
Number of actors 16 4

Table A6: Hyper-parameters of IMPALA and PPO/Ours(PPO) in GFootball experiments.

Method | IMPALA A2C Ours (A2C)
BankHeist 339 £ 10 775 £ 166 942 £ 100
Beam Rider | 4000 + 690 4392 £+ 134 6995 + 420
Breakout 201 £ 133 362 + 29 413 £ 37
Frostbite 73+£2 272 £ 14 315 +12
Jamesbond 82+ 10 438 £59 474 £ 88
Krull 2546 + 551 7560 £ 892 7737 £+ 609

KFMaster | 9516 £3311 30752 £ 6641 30020 + 3559
MsPacman 807 £ 170 1236 + 292 1675 + 459

Qbert 4116 £ 610 12479 £ 1965 13682 + 1873
Seaquest 458 +2 1833 + 6 1831+ 7
S. Invader 1142 + 207 596 + 69 731 £ 80

Star Gunner | 8560 918 41414 £ 3826 52666 + 5182

Table A7: Atari experiment in final time metrics: Average evaluation rewards achieved given limited
training time.

Method (target reward 1 / target reward 2) [ IMPALA A2C Ours (A20)
BankHeist (480 / 960) -/-  28.9/62.1 18.9/116.8
Beam Rider (1600 / 3200) 36.4/60.4  32.1/54.5 10.3/30.9
Breakout (160 / 320) 77.8/- 21.7/43.5 17.7/38.9
Frostbite (104 /208) -/- 5.0/10.0 3.4/6.8
Jamesbond (200 / 400) -/~ 39.4/49.2 21.8/31.1
Krull (3600 / 7200) -/~ 13.9/37.0 7.5/37.6
KFMaster (15200 / 30420) -/- 39.5/192.6 18.8/118.1
MsPacman (880 / 1760) 75.8/- 49.3/160.3 22.9/94.3
Qbert (4000 / 8000) 94.2/-  53.3/83.8 52.2/67.7
Seaquest (640 / 1280) -/- 6.7/28.4 4.0/17.2
Space. (240 /480) 9.65/19.9 14.1/26.4 6.9/21.8
Star Gunner (8400 / 16800) 47.1/-  28.7/41.1 17.8/25.4

Table A8: Atari experiment in required time metrics: Required time (minutes) to achieve goal
episode rewards (time required to achieve 40% rewards reported by Dhariwal et al. [6] / time required
to achieve 80% rewards reported by Dhariwal et al. [6]). *-’ indicates that the method did not achieve
the desired reward after 20M environment step training. Space.: Space invaders, KFMaster: KungFu
Master.
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Method [ IMPALA PPO Ours (PPO)

Empty goal close 1.00 £ 0.00 1.00 £ 0.00 1.00 + 0.00
Empty goal 1.00 + 0.00 0.89 £0.05 0.94 +0.04
Run to score 0.65+£0.42  0.89+0.05 0.93+0.03
RSK 0.03+0.03  0.524+0.21  0.88+0.06
PSK 0.00+0.00  0.054+0.04  0.41+0.02
RPSK 0.67+0.06 0.494+0.06 0.80+0.03
3 vs 1 w/ keeper 0.23+£0.01  0.20£0.09  0.81+0.02
Corner -0.10+0.33  -0.06+0.08  0.03+-0.10
Counterattack easy 0.004+0.00 0.01£0.01  0.39+0.02
Counterattack hard 0.004+0.00 0.014+0.02  0.53+0.09
11vs 11 w/ lazy Opp. | 0.464+0.21 0.33+0.07 0.7240.09

Table A9: GFootball experiments in final time metrics: Average evaluation scores achieved given
limited training time. The time limit for each experiment is set to the time when IMPALA finishes
training for 5SM steps RSK: run to score w/ keeper, PSK: pass, shoot, w/ keeper, RPSK: run, pass,
shoot, w/ keeper.

Method | IMPALA PPO Ours (PPO)
Empty goal close 1.7/2.6 5.4/15.5 1.0/2.0
Empty goal 8.4/11.7 12.8/19.2 2.0/3.9
Run to score 27.0/34.6  16.2/32.5 6.3/11.4
RSK 52.3/-  51.2/68.2 11.5/18.8
PSK -/- 70.0/- 38.8/-
RPSK 22.3/25.4 45.2/90.8 13.5/27.1
3 vs 1 w/ keeper -/~ 67.4/144.2 15.9/25.6
Corner -/- -/- -/-
Counterattack easy -/- 223.2/- 91.3/-
Counterattack hard -/- 383.4/- 61.8/-
11 vs 11 w/ lazy Opp. 58.2/- 95.8/260.9 14.4/72.1

Table A10: GFootball experiments in required time metrics: required time (minutes) to achieve goal
scores (time required to achieve score 0.4 / time required to achieve score 0.8). ‘-’ indicates that the
method did not achieve the desired score after SM environment step training. RSK: run to score w/
keeper, PSK: pass, shoot, w/ keeper, RPSK: run, pass, shoot, w/ keeper.
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Figure A3: Atari: Time versus reward.
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Figure A4: Atari: Environment step versus reward.
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Figure AS5: GFootball: Time versus reward.
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Figure A6: GFootball: Environment step versus reward.
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