
A Marginal Distributions and Returns471

We expand the marginal transition distribution (⇢sim) definition to be more explicit below.472

⇢sim,t(s, a, s
0) : = ⇢sim,t(s)⇡(a|s)Psim(s0|s, a) (7)

⇢sim,t(s
0) : =

X

s2S

X

a2A

⇢sim,t�1(s, a, s
0) (8)

⇢sim(s, a, s0) : =(1� �)
1X

t=0

�t⇢sim,t(s, a, s
0) (9)

where ⇢sim,0(s) = ⇢0(s) is the starting state distribution. Written in a single equation:473

⇢sim(s, a, s0) = (1� �)
X

s02S

⇢0(s0)
1X

t=0

�t
X

at2A

X

st+12S

⇡(at|st)P (st+1|st, at)

The expected return can be written more explicitly to show the dependence on the transition function.474

It then makes the connection to 1 more explicit.475

E⇡,P [G0] = E⇡,P

" 1X

t=0

�tR(st, at, st+1)

#

=
X

s02S

⇢0(s0)
1X

t=0

�t
X

at2A

X

st+12S

⇡(at|st)P (st+1|st, at)R(st, at, st+1)

In the grounded simulator, the action transformer policy ⇡g transforms the transition function as476

specified in Section 2.2. Ideally, such a ⇡g 2 ⇧g exists. We denote the marginal transition477

distributions in sim and real by ⇢sim and ⇢real respectively, and ⇢g 2 Pg for the grounded simulator.478

The distribution ⇢g relies on ⇡g 2 ⇧g as follows:479

⇢g(s, a, s
0) = (1� �)⇡(a|s)

X

ã2A

Psim(s0|s, ã)⇡g(ã|s, a)
1X

t=0

�tp(st = s|⇡, Pg) (10)

The marginal transition distribution of the simulator after action transformation, ⇢g(s, a, s0), differs480

in Equation 7 as follows:481

⇢g,t(s, a, s
0) : = ⇢g,t(s)⇡(a|s)

X

ã2A

⇡g(ã|s, a)Pg(s
0|s, ã) (11)

B Proofs482

B.1 Proof of Proposition 4.1483

Proposition 4.1. For a given ⇢g generated by a fixed policy ⇡, Pg is the only transition function484

whose marginal transition distribution is ⇢g .485

Proof. We prove the above statement by contradiction. Consider two transition functions P1 and P2486

that have the same marginal distribution ⇢⇡ under the same policy ⇡, but differ in their likelihood for487

at least one transition (s, a, s0).488

P1(s
0|s, a) 6= P2(s

0|s, a) (12)

Let us denote the marginal distributions for P1 and P2 under policy ⇡ as ⇢⇡1 and ⇢⇡2 . Thus, ⇢⇡1 (s) =489

⇢⇡2 (s) 8s 2 S and ⇢⇡1 (s, a, s0) = ⇢⇡2 (s, a, s
0)8s, s0 2 S, a 2 A.490

13

The marginal likelihood of the above transition for both P1 and P2 is:491

⇢⇡1 (s, a, s
0) =

T�1X

t=0

⇢⇡1 (s)⇡(a|s)P1(s
0|s, a)

⇢⇡2 (s, a, s
0) =

T�1X

t=0

⇢⇡2 (s)⇡(a|s)P2(s
0|s, a)

Since the marginal distributions match, and the policy is the same, this leads to the equality:492

P1(s
0|s, a) = P2(s

0|s, a)8s, s0 2 S, a 2 A (13)

Equation 13 contradicts Equation 12, proving our claim.493

B.2 Proof of Proposition 4.2494

Proposition 4.2. If Preal = Pg , then argmax⇡2⇧ E⇡,Pg [G0] = argmax⇡2⇧ E⇡,Preal [G0].495

Proof. We overload the notation slightly and refer to ⇢⇡real as the marginal transition distribution496

in the real world while following agent policy ⇡. Proposition 4.1 still holds under this expanded497

notation.498

From Proposition 4.1, if Preal = Pg, we can say that ⇢⇡real = ⇢⇡g8⇡ 2 ⇧. From Equation 1,499

E⇡,g[G0] = E⇡,real[G0]8⇡ 2 ⇧, and argmax⇡2⇧ E⇡,g[G0] = argmax⇡2⇧ E⇡,real[G0].500

B.3 Proof of Lemma 4.1501

Lemma 4.1. RL � ATIRL (Preal) outputs a marginal transition distribution ⇢g which is equal to ⇢̃g502

induced by RL � ATIRL (Preal).503

Proof. For every ⇢g 2 Pg, there exists at least one action transformer policy ⇡g 2 ⇧g, from our504

definition of Pg . Let RL � ATIRL (Preal) lead to a policy ⇡̃g , with a marginal transition distribution505

⇢̃g . The marginal transition distribution induced by RL � ATIRL (Preal) is ⇢g .506

We need to prove that ⇢̃g = ⇢g, and we do so by contradiction. We assume that ⇢̃g 6= ⇢g. For this507

inequality to be true, the marginal transition distribution of the result of RL(c̃) must be different than508

the result of RL(c), or the cost functions c̃ and c must be different.509

Let us compare the RL procedures first. Assume that c̃ = c.510

RL(c̃) = argmin
⇡

E⇢g [c̃(s, a, s0)]

= argmin
⇢g

E⇢g [c̃(s, a, s0)] ...(surjective mapping)

= RL(c)(~c = c)

which leads to a contradiction.511

Now let’s consider the cost functions presented by ATIRL (Preal) and ATIRL (Preal). Since RL(c̃)512

and RL(c) lead to the same marginal transition distributions, for the inequality we assumed at the513

beginning of this proof to be true, ATIRL (Preal) and ATIRL (Preal) must return different cost514

functions.515

14

ATIRL (Preal) = argmax
c2C

� (c) +
✓
min
⇡g

EPg [c(s, a, s
0)]

◆
� EPreal [c(s, a, s

0)]

= argmax
c2C

� (c) +

0

@min
⇡g

X

s,a,s0

⇢g(s, a, s
0)c(s, a, s0)

1

A�

X

s,a,s0

⇢real(s, a, s
0)c(s, a, s0)

= argmax
c2C

� (c) +

0

@min
⇢g

X

s,a,s0

⇢g(s, a, s
0)c(s, a, s0)

1

A�

X

s,a,s0

⇢real(s, a, s
0)c(s, a, s0)

= ATIRL (Preal)

which leads to another contradiction. Therefore, we can say that ⇢g = ⇢g̃ .516

B.4 Proof of Lemma 4.2517

We prove convexity under a particular agent policy ⇡ but across AT policies ⇡g 2 ⇧g518

Lemma B.1. Pg is compact and convex.519

Proof. We first prove convexity of ⇢⇧g,t for ⇡g 2 ⇧g and 0  t < 1, by means of induction.520

Base case: �⇢at1,0 + (1� �)⇢at2,0 2 ⇢⇧g,0, for 0  �  1.521

�⇢at1,0(s, a, s
0) + (1� �)⇢at2,0(s, a, s

0) = �⇢0(s)⇡(a|s)
X

ã2A

⇡at1(ã|s, a)Psim(s0|s, ã)

+ (1� �)⇢0(s)⇡(a|s)
X

ã2A

⇡at2(ã|s, a)Psim(s0|s, ã)

= ⇢0(s)⇡(a|s)
X

ã2A

(�⇡at1(ã|s, a) + (1� �⇡at2(ã|s, a)))Psim(s0|s, ã)

⇧g is convex and hence ⇢0(s)⇡(a|s)
P

ã2A (�⇡at1(ã|s, a) + (1� �⇡at2(ã|s, a)))Psim(s0|s, ã) is522

a valid distribution, meaning ⇢⇧g,0 is convex.523

Induction Step: If ⇢⇧g,t�1 is convex, ⇢⇧g,t is convex.524

If ⇢⇧g,t�1 is convex, �⇢at1,t(s) + (1 � �)⇢at2,t(s) is a valid distribution. This is true simply by525

summing the distribution at time t� 1 over states and actions.526

�⇢at1,t(s, a, s
0) + (1� �)⇢at2,t(s, a, s

0) = �⇢at1,t(s)⇡(a|s)
X

ã2A

⇡at1(ã|s, a)Psim(s0|s, ã)

+ (1� �)⇢at2,t(s)⇡(a|s)
X

ã2A

⇡at2(ã|s, a)Psim(s0|s, ã)

= (�⇢at1,t(s) + (1� �)⇢at2,t(s))⇡(a|s)X

ã2A

(�⇡at1(ã|s, a) + (1� �⇡at2(ã|s, a)))Psim(s0|s, ã)

�⇢⇡at1,t(s) + (1� �)⇢⇡at1,t(s) is a valid distribution, and ⇧g is convex. This proves that the transition527

distribution at each time step is convex. The normalized discounted sum of convex sets (Equation 9)528

is also convex. Since the exponential discounting factor � 2 [0, 1), the sum is bounded as well.529

15

We now prove Lemma 4.2.530

Lemma 4.2. RL � ATIRL (Preal) = argmin⇢g2Pg
 ⇤(⇢g � ⇢real).531

Proof of Lemma 4.2. Let c = ATIRL(Preal), ⇢g = RL(c) = RL � ATIRL(Preal) and532

⇢̂g = argmin
⇢g

 ⇤(⇢g � ⇢real) = argmin
⇢g

max
c

� (c) +
X

s,a,s0

(⇢g(s, a, s
0)

� ⇢real(s, a, s
0))c(s, a, s0)

(14)

where ⇤ : C⇤ 7�! R̄ is the convex conjugate of , defined as ⇤(c⇤) : = supc2Chc⇤, ci � (c).533

Applying the above definition to the rightmost term in the above equation gives us the middle term.534

We now argue that ⇢g = ⇢̂g which are the two sides of the equation we want to prove. Let us consider535

loss function L : Pg ⇥ RS⇥A⇥S 7�! R to be536

L(⇢g, c) = � (c) +
X

s,a,s0

(⇢g(s, a, s
0)� ⇢real(s, a, s

0))c(s, a, s0) (15)

We can then pose the above formulations as:537

⇢̂g 2 argmin
⇢g2Pg

max
c

L(⇢g, c) (16)

c 2 argmax
c

min
⇢g2Pg

L(⇢g, c) (17)

⇢g 2 argmin
⇢g2Pg

L(⇢g, c) (18)

Pg is compact and convex (by Lemma B.1) and RS⇥A⇥S is convex. L(·, c) is convex over all c and538

L(⇢g, ·) is concave over all ⇢g . Therefore, based on minimax duality:539

min
⇢g2Pg

max
c

L(⇢g, c) = max
c

min
⇢g2Pg

L(⇢g, c) (19)

From Equations 16 and 17, (⇢̂g, c) is a saddle point of L, implying ⇢̂g = argmin⇢g2Pg
L(⇢g, c) and540

so ⇢g = ⇢̂g .541

542

B.5 Proof of Lemma 4.3543

Lemma 4.3. The marginal transition distribution of argmin⇡g
 ⇤(⇢g � ⇢real) is equal to544

argmin⇢g2Pg
 ⇤(⇢g � ⇢real).545

Proof. The proof of equivalence here is simply to prove that optimizing over ⇡g is the same as546

optimizing over ⇢g . From Equation 10 and from the fact that agent policy ⇡ and simulator transition547

function Psim are fixed, we can say that the only way to optimize ⇢g is to optimize ⇡g , which leads548

to the above equivalence.549

C Experimental Details550

To collect expert trajectories from the real world, we rollout the stochastic initial policy trained551

in sim for 1 million timesteps, on the real world. This dataset serves as the expert dataset during552

the imitation learning step of GARAT. At each GAN iteration, we sample a batch of data from the553

grounded simulator and expert dataset and update the discriminator. Similarly, we rollout the action554

transformer policy in its environment and update ⇡g. We perform 50 such GAN updates to ground555

16

Name Value
Hidden Layers 2

Hidden layer size 64
timesteps per batch 5000
max KL constraint 0.01

� 0.97
� 0.995

learning rate 0.0004
cg damping 0.1

cg iters 20
value function step size 0.001

value function iters 5

Table 1: Hyperparameters for the TRPO algorithm used to update the Agent Policy

Name Value
Hidden Layers 2

Hidden layer size 64
nminibatches 2
Num epochs 1

� 0.95
� 0.99

clipping ratio 0.1
time steps 5000

learning rate 0.0003

Table 2: Hyperparameters for the PPO algorithm used to update the Action Transformer Policy

the simulator using GARAT. The hyperparameters for the PPO algorithm used to update the action556

transformer policy is provided in Table 2. The hyperparameters used for the TRPO algorithm to557

update the agent policy can be found in Table 1.558

We implemented different IfO algorithms and noticed that there was no significant difference between559

these backend algorithms in sim-to-real performance. During the discriminator update step in GAIfO-560

reverseKL (AIRL), GAIfO and GAIfO-W (WAIL), we use two regularizers in its loss function - L2561

regularization of the discriminator’s weights and a gradient penalty (GP) term, with a coefficient of562

10. Adding the GP term has been shown to be helpful in stabilizing GAN training [22].563

In our implementation of the AIRL [10] algorithm, we do not use the special form of the discriminator,564

described in the paper, because our goal is to simply imitate the expert and does not require recovering565

the reward function as was the objective of that work. We instead use the approach Ghasemipour566

et al. [12] use with state-only version of AIRL.567

GAT uses a smoothing parameter ↵, which we set to 0.95 as suggested by Hanna and Stone [14].568

RARL has a hyperparameter on the maximum action ratio allowed to the adversary, which measures569

how much the adversary can disrupt the agent’s actions. This hyperparameter is chosen by a coarse570

grid-search. For each domain, we choose the best result and report the average return over five571

policies trained with those hyperparameters. We used the official implementation of RARL provided572

by the authors for the MuJoCo environments. However, since their official code does not readily573

support PyBullet environments, for the Ant and Minitaur domain, we use our own implementation of574

RARL, which we reimplemented to the best of our ability. When training a robust policy using Action575

space Noise Envelope (ANE), we do not know the right amount of noise to inject into the agent’s576

actions. Hence, in our analysis, we perform a sweep across zero mean gaussian noise with multiple577

standard deviation values and report the highest return achieved in the target domain with the best578

hyperparameter, averaged across 5 different random seeds.579

17

Environment Name Property Modified Default Value Modified Value
InvertedPendulumHeavy Pendulum mass 4.89 100.0

HopperHeavy Torso Mass 3.53 6.0
HopperHighFriction Foot Friction 2.0 2.2
HalfCheetahHeavy Total Mass 14 20

WalkerHeavy Torso Mass 3.534 10.0
Ant Gravity -4.91 -9.81

Minitaur [38] Torque vs. Current linear non-linear

Table 3: Details of the Modified Sim-to-“Real” environments for benchmarking GARAT against other
black-box Sim-to-Real algorithms.

C.1 Modified environments580

We evaluate GARAT against several algorithms in the domains shown in Figure 3. Table 3 shows the581

source domain along with the specific properties of the environment/agent modified. We modified582

the values such that a policy trained in the sim environment is unable to achieve similar returns in583

the modified environment. By modifying an environment, we incur the risk that the environment584

may become too hard for the agent to solve. We ensure this is not the case by training a policy ⇡real585

directly in the “real” environment and verifying that it solves the task.586

C.2 Simulator Grounding Experimental Details587

In Section 6.1, we show results which validate our hypothesis that GARAT learns an action trans-588

formation policy which grounds the simulator better than GAT. Here we detail our experiments for589

Figure 1.590

In Figure 1a, we plot the average error in transitions in simulators grounded with GARAT and GAT591

with different amounts of “real” data, collected by deploying ⇡ in the “real” environment. The592

per step transition error is calculated by resetting the simulator state to states seen in the “real”593

environment, taking the same action, and then measuring the error in the L2-norm with respect594

to “real” environment transitions. Figure 1a shows that with a single trajectory from the “real”595

environment, GARAT learns an action transformation that has similar average error in transitions596

compared to GAT with 100 trajectories of “real” environment data to learn from.597

In Figure 1b, we compare GARAT and GAT more qualitatively. We deploy the agent policy ⇡ from598

the same start state in the “real” environment, the simulator, GAT-grounded simulator, and GARAT-599

grounded simulator. Their resultant trajectories in one of the domain features (angular position of the600

pendulum) is plotted in Figure 1b. The trajectories in GARAT-grounded simulator keeps close to the601

Figure 4: Policies trained in “real” environment, GAT-grounded simulator, and GARAT-grounded
simulator deployed in the “real” environment from the same starting state

18

“real” environment, which neither the ungrounded simulator nor the GAT-grounded simulator manage.602

The trajectory in the GAT-grounded simulator can be seen close to the one in the “real” environment603

initially, but since it disregards the sequential nature of the problem, the compounding errors cause604

the episode to terminate prematurely.605

An additional experiment we conducted was to compare the policies trained in the “real” environment,606

GAT-grounded simulator and GARAT-grounded simulator. This comparison is done by deploying607

them in the “real” environment from the same initial state. As we can see in Figure 4, the policies608

trained in the “real” environment and the GARAT-grounded simulator behave similarly, while the one609

trained in the GAT-grounded simulator acts differently. This comparison is another qualitative one.610

How well these policies perform in w.r.t. the task at hand is explored in detail in Section 6.2.611

19

