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Abstract

To analyze a collection of interconnected documents, relational topic models
(RTMs) have been developed to describe both the link structure and document con-
tent, exploring their underlying relationships via a single-layer latent representation
with limited expressive capability. To better utilize the document network, we first
propose graph Poisson factor analysis (GPFA) that constructs a probabilistic model
for interconnected documents and also provides closed-form Gibbs sampling up-
date equations, moving beyond sophisticated approximate assumptions of existing
RTMs. Extending GPFA, we develop a novel hierarchical RTM named graph Pois-
son gamma belief network (GPGBN), and further introduce two different Weibull
distribution based variational graph auto-encoders for efficient model inference
and effective network information aggregation. Experimental results demonstrate
that our models extract high-quality hierarchical latent document representations,
leading to improved performance over baselines on various graph analytic tasks.

1 Introduction

A wide variety of network data, such as citation networks [1], chemical molecular structures [2],
and social networks [3], can be represented as a graph composed of a set of objects (nodes), each of
which is characterized by a set of node features (attributes), and their relationships (edges). The node
features and edges are usually characterized as count, binary, or positive variables. In many graph
analytic applications, such as link prediction, modeling uncertainty [4] in the latent space rather than
only providing deterministic node embeddings, is of crucial importance [5–7] and can be realized via
probabilistic generative models (PGMs).

Various network decomposition methods have been proposed to discover the underlying relationships
of the nodes from the link structure [8–11]. These methods, however, often ignore the information
provided by the node features. Inspired by the efficiency of latent Dirichlet allocation (LDA) [12]
in exploring the hidden structure of count-valued data, a series of relational topic models (RTMs)
[3, 13–17] were introduced to explore the relationships between the nodes and edges in a latent space.
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Though achieving appealing performance, these RTMs are limited by their shallow structures that
only employ a single-layer latent representation. Although there is a recent trend to develop deep
probabilistic topic models [18–20] replacing LDA to provide multi-layer semantic representations,
how to construct a hierarchical RTM to capture multi-layer semantic connections and use them
together with graph learning remains an open research problem.

From another perspective, variational autoencoder (VAE) [21, 22] was extended for modeling graph-
structured data, resulting in a variational graph autoencoder (VGAE) [23] parameterized by graph
convolutional networks (GCNs) [24]. Further, focused on task-specific applications, several VGAE-
based variations [2, 25–27] are introduced for various graph analytic tasks. To move beyond the
naive choice of a Gaussian prior in combination with the inner product decoder in VGAE, some
methods [4, 28] attempt to learn non-Gaussian latent representations and have achieved promising
performance. However, these VGAEs mentioned only capture single-layer semantic representations
and ignore the reconstruction information of node features, which may hurt the performance on node
clustering or classification.

Inspired by both the advantages of existing RTMs and VGAEs and to move beyond their constraints,
we first construct an interpretable hierarchical (deep) RTM, which is further developed as two different
non-Gaussian VGAEs with multiple stochastic layers. The main contributions of this paper are:

• A novel RTM named graph Poisson factor analysis (GPFA), equipped with analytic conditional
posteriors for efficient Gibbs sampling, is proposed to account for both node features and link
structure by sharing their latent representations (topic proportions).

• To explore hierarchical latent representations of the nodes and reveal their relationships at different
semantic levels, GPFA is extended to a deep generative model, referred to as graph Poisson gamma
belief network (GPGBN). To the best of our knowledge, GPGBN is the first unsupervised deep
RTM for analyzing network data.

• To move beyond Gaussian-based VGAEs, which often fail to well approximate sparse, nonnegative,
and skewed document latent representations, and generalize GPGBN to different tasks, we combine
GPGBN (decoder) with two Weibull distribution-based graph variational inference networks
(encoder), resulting in two different Weibull graph autoencoders.
• Besides achieving state-of-the-art or comparable performance on various graph analytic tasks, our

models provide a potential solution to explore multi-layer interpretable network relationships.

2 Related work

Probabilistic representation learning for network data has drawn considerable attentions. The related
work can be roughly divided into two categories: one constructs a probabilistic relational topic model
while the other leverages a graph autoencoder.

Relational topic models: Derived from the traditional topic models [12, 29], RTMs [14, 15]
are introduced to jointly consider the generations of document contents and their relationships.
Specifically, each document exhibits a latent mixture of topics, while the connections between
documents are modeled as binary variables dependent on the topic assignments of the word tokens.
Further, borrowing similar ideas from RTMs, more sophisticated probabilistic generative models
(PGMs) [30–32] are developed for jointly modeling networks and text with topic models. These
PGMs can also be easily applied to other fields, in particular, recommender systems [33, 34]. Due to
the non-conjugacy between the prior and the link likelihood, traditional RTMs employ the variational
inference (VI) with the mean-field assumption, which is often too restrictive in practice. To alleviate
this issue, more sophisticated RTMs [35, 36] are developed for efficient collapsed Gibbs sampling,
taking advantages of data augmentation techniques. However, these RTMs under-exploit hierarchical
semantics, because i) they only employ single-layer document representations and ii) the connections
are measured based on their shallow representations.

Graph autoencoders: Recently, graph neural networks (GNNs) [37] have proven their efficacy
in exploring the relational structure among objects, inspiring research involving transforming the
document relational network as a graph and using GNNs to learn document representations. Notably,
the edges in a graph can be regarded a special attention mechanism, which has been applied for
many popular fields and achieved great success [38–41]. Further, VGAE [23] extends VAE [21] for
graph-structured data, which encodes both the node features and adjacency matrix using a Gaussian
inference model parameterized by GCNs [24], and then decode the latent representation to generate
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Figure 1: Illustration of (a) the generative (decoder) graphical model and (b) the inference (encoder) network,
where the upper one in (a) describes GPFA and the bottom one describes GPGBN.

the adjacency matrix. To enrich the flexibility of posterior distributions, the semi-implicit VI (SIVI)
[4, 42] and von Mises-Fisher distribution [28] are introduced to help better approximate complex
posteriors. Though achieving state-of-the-art performance, these methods under-interpret the latent
structure of network data, e.g., the hierarchical semantics of document contents and the hierarchical
relationships between nodes. Moreover, they ignore the generation of node features, resulting in
relative poor performance in node-level tasks.

3 Deep relational topic models

To investigate the latent structure of network data more intuitively, in the following discussion, we
focus on the widely used document relation networks (DRNs), due to their interpretable semantics.
Nevertheless, our models can be generalized to other networks with nodes and edges expressed by
count, binary, or positive values, as discussed in Appendix A. Below we first discuss how to represent
a DRN as a graph and then introduce GPFA, which will be further extended to GPGBN to explore
the hierarchical semantic topics and relationships of document networks.

3.1 Representing a DRN as a graph

Usually, a DRN containing N documents can be denoted as an undirected graph G = {V, E}, where
V denotes the set of document nodes and E denotes the set of edges. Next we describe how to model
the node features (document representations) and edges (relationships between documents).

Node features: Due to the efficiency of global semantics, such as word co-occurrence patterns,
most DRNs consider the bag-of-words (BoW) vectors as document representations. Formally, the
BoW representation of the i-th document is a high-dimensional sparse count vector xi ∈ ZK0 , where
Z = {0, 1, ...} and K0 is the vocabulary size. Naturally, the node features of G can be represented as
a matrix X = [x1, · · · ,xN ] ∈ ZK0×N .

Adjacency matrix: The weighted links in the DRN can be encapsulated as an N ×N adjacency
matrix A = {aij}N,Ni=1,j=1, where aij represents the relationship between document i and j, taking
binary, count, or real positive values [5, 14]. Considering most existing DRNs use a binary link to
model whether two documents are associated, we focus on this scenario in the following discussion.

3.2 Graph Poisson factor analysis

To construct a probabilistic model for graph G, we choose to model the node-feature likelihood p(X|·)
and edge likelihood p(A|·) jointly. Specifically, we present an overview of GPFA, as sketched in
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Fig. 1(a), to describe the generations of both node features and edges, expressed as

xi ∼ Pois(Φθi), φk ∼ Dir(η), θi ∼ Gam(γ, 1/cj),

aij = 1mij>0, mij ∼ Pois(
∑K1

k=1
ukθikθjk), uk ∼ Gam(αk, 1/βk), (1)

where xi is factorized as the product of the factor loading matrix (topics) Φ = [φ1, . . . ,φK1
] ∈

RK0×K1
+ and the gamma distributed factor scores (topic proportions) θi = [θi1; . . . ; θiK1

] ∈ RK1
+

under the Poisson likelihood; the Dirichlet prior is applied on {φk}K1

k=1, for scale identifiability and
ease of inference [20]; the binary edge aij is generated by first drawing a latent count mij from
the Poisson distribution with rate parameter

∑K1

k=1 ukθikθjk and then thresholding the count at 1
through the indicator function 1(·); uk indicates the importance of the k-th topic proportion pair in
explaining the relations. Note that for count or real positive edges, one may use the Poisson likelihood
or gamma-Poisson link [20] to model aij , which makes GPFA or GPGBN more flexible than GVAEs
that often only build binary A via Bernoulli likelihood, as further discussed in Appendix A.

3.3 Graph Poisson gamma belief network

To further explore the multilevel semantics of the documents, one straightforward extension of GPFA
is to fix the edge generation in (1) but apply a hierarchical prior on the topic proportion θi via the
gamma belief network (GBN) [20]. However, the shallow edge generation ignores the relationships
implied in multiple semantic levels. Therefore, as shown in Fig. 1(a), we construct a GPGBN with T
hidden layer, expressed as:

x
(1)
j ∼ Pois(Φ(1)θ

(1)
j ),

{
θ
(t)
j ∼ Gam(Φ(t+1)θ

(t+1)
j , 1/c

(t+1)
j )

}T−1
t=1

,θ
(T )
j ∼ Gam(γ, 1/c

(T+1)
j ),

aij = 1(δij > 1), δij =
∑T

t=1
m

(t)
ij ,

{
m

(t)
ij ∼ Pois(

∑Kt

k=1
u
(t)
k θ

(t)
ik θ

(t)
jk )

}T
t=1

, (2)

where, Kt denotes the number of topic at layer t. Similar with GPFA, we apply a Dirichlet prior on
each column of Φ(t), and a gamma prior on each u(t)k . Intuitively, the node features X and adjacency
matrix A are tightly coupled by sharing the multilayer topic proportions Θ = {θ(t)j }

N,T
j=1,t=1, making

it possible to learn the hierarchical node representations and their relationships at multiple semantic
levels. By integrating m(t)

ij out, the generative process of the adjacency matrix is equivalent to

aij ∼ Bernoulli

(
1− exp

(
−

T∑
t=1

Kt∑
k=1

u
(t)
k θ

(t)
ik θ

(t)
jk

))
. (3)

Further, using the law of total expectation, we have

E [xj |−]=

[
t∏

l=1

Φ(l)

]
θ
(t)
j∏t

l=2 c
(l)
j

, E [aij |−] = 1− exp
(
−
∑T

t=1

∑Kt

k=1
u
(t)
k θ

(t)
ik θ

(t)
jk

)
, (4)

which reveals some appealing model properties as described below.

3.4 Model properties

Hierarchical semantic topics: Eq. (4) implies that the conditional expectation of xj is a linear
combination of the columns in

∏t
l=1 Φ(l), with θ(t)j viewed as a document-dependent topic proportion.

Therefore,
∏t−1
l=1 Φ(l)φ

(t)
k can be naturally interpreted as the projection of topicφ(t)

k to the observation
space, providing us a principled way to visualize the topics at multiple semantic levels.

Multi-layer semantic relationships: Defining a
(t)
ij =

∑Kt

k=1 u
(t)
k θ

(t)
ik θ

(t)
jk and encapsulating

{a(t)ij }
N,N
i=1,j=1 as A(t), the matrix A(t) can be interpreted as an “adjacency matrix" at layer t, as

shown in Fig. 3. Further, by substituting A(t) into (4), we have E [A] = 1− exp
(
−
∑T
t=1 A(t)

)
,

indicating that the relationships in the observation space aggregates the adjacency matrices across all
semantic layers. Moreover, the positive scale parameter u(t)k changes with k and t, which implies that
the topic proportions (at different layers) make different contributions to each edge generation.
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Effectiveness of BerPo link: An appealing property of the BerPo link in (3) (as opposed to other
link functions for binary observations, such as logistic/probit) is that the inference cost only depends
on the number of nonzeros in the observations [11], making it an ideal choice for the problems
involving the large-scale graph with sparse edges. Moreover, this excellent property also makes the
graph autoencoder to be introduced below convenient to be inferred.

Analytic posteriors for efficient gibbs sampling: Compared with existing RTMs [14, 15] that
perform approximate inference due to the non-conjugacy of the model, GPGBN provides analytic
conditional posteriors for all parameters, which can be inferred efficiently via a Gibbs sampler.
Specifically, the sampling update equation for the topic proportion θ(t)j is formulated as

p(θ
(t)
jk |−) ∼ Gam

(
x
(t)
·jk + φ

(t+1)
k: θ

(t+1)
j +

∑
i 6=j

m
(t)
ijk, [− ln(1− p(t)j ) + c

(t+1)
j + u

(t)
k

∑
i 6=j

θ
(t)
ik ]−1

)
, (5)

where x(t)·jk andm(t)
ijk are latent count variables that are independently sampled from the corresponding

node feature and relative edges at layer t, respectively. See detailed derivations in Appendix B.

4 Weibull graph autoencoders

Although the analytic conditional posteriors of GPGBN result in an efficient Gibbs sampler that can
be further accelerated with GPU [43], GPGBN is limited by three disadvantages: i) characterized by
a top-down generative structure, it relies on time-consuming batch sampling when inferring the latent
representations; ii) as applied in different tasks and datasets, GPGBN has difficulties in balancing
the importance of modeling the node features X and adjacency matrix A; iii) restricted by Gibbs
sampling, it is not easy to plug in extra side information to extend GPGBN, such as the node labels.
To this end, we combine GPGBN (decoder) with two different Weibull distribution-based graph
inference networks (encoder), providing two deep Weibull graph autoencoders.

Given the global parameters {Φ(t),u(t)}Tt=1 (with u(t) = [u
(t)
1 , · · · , u(t)Kt

]) in (14), the task is to infer

the local parameters θ(t)j and m(t)
ij . Inspired by β-VAE [44], we introduce a hyper-parameter β into

the evidence lowerbound (ELBO) of data log-likelihood log p(X,A), which can be expressed as

L =

N∑
j=1

E
[
ln p(xj |Φ(1),θ

(1)
j )
]
+ βE

[
ln p(A|{Θ(t)}Tt=1)

]
−

N∑
j=1

T∑
t=1

E

[
ln

q(θ
(t)
j |−)

p(θ
(t)
j |Φ(t+1),θ

(t+1)
j )

]
,

(6)

where, the expectations are taken with respect to a fully factorized variational distribution as∏N
i,j=1

∏T
t=1 q(θ

(t)
j )q(m

(t)
ij ), β is a trade-off parameter between the two likelihoods, indicating

different levels of attentions on nodes and edges. Note that the posterior of m(t)
ij follows a Poisson

distribution (see details in Appendix B), which is a discrete distribution and hard to optimize. Fortu-
nately, m(t)

ij can be integrated out as (3), resulting in that we only need to approximate q(θ(t)j ). This
is another reason why we use the BerPo link in GPGBN.

4.1 Weibull upward-downward variational encoder

Most existing VGAEs rely on Gaussian latent variables, which often fail to well approximate the
posteriors of document latent representations, which are often sparse, nonnegative, and skewed. To
circumvent the challenging optimization of the gamma distributed conditional posterior of θ(t)j shown
in (19), and move beyond deterministic encoder, we adopt a Weibull upward-downward variational
encoder (WUDVE) [45] to approximate the gamma distributed conditional posterior as

q(θ
(t)
j |−) = Weibull(k(t)j + Φ(t+1)θ

(t+1)
j ,λ

(t)
j ), (7)

where, the parameters k(t)j ,λ
(t)
j ∈ RKt are deterministically transformed from the observed node

features X and adjacency matrix A. Below we present two different inference networks to realize
those transformations, one based on fully-connected neural networks (FNNs) and the other on GCNs.

Weibull-based FNN encoder: To aggregate the information in both node features and edges, a
concatenated feature vector dj = [xj ;aj ] ∈ ZK0+N is constructed for the j-th document, where
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40th Document: Organization: AI Programs, University of Georgia...The two historic facts 
that I think the most important are these:  (1) If Jesus didn't rise from the dead, then he 
must have done something else equally impressive, in order to create the observed 
amount of impact.  (2) Nobody ever displayed the dead body of Jesus, even though both 
the Jewish and the Roman authorities would have gained a lot by doing so (it would have 
discredited the Christians)…ai.uga.edu Artificial Intelligence Programs...

48th Topic of layer 2
['god', 'jesus', 'christ', 'man', 'lord', 'time', 'life', 

'hell', 'subject', 'death', 'organization']

14th Topic of layer 2
['ai', 'georgia', 'michael', 'university', 'programs', 
'edu', 'intelligence', 'radio', 'phone',  'research']

29th Topic of layer 1
['edu', 'subject', 'organization', 'university', 

'time', 'mail', 'post',  'state', 'info',  'newsgroup']

91th Topic of layer 1
['ai', 'georgia', 'michael', 'university', 'programs', 'edu', 

'intelligence', 'national', 'organization', 'country']

47th Topic of layer 1
['jesus',  'record', 'christians', 'order', 'noted', 

'roman', 'jewish', 'claim', 'soldiers', 'scott']

74th Document: Subject: Environmentalism and paganism Organization: 
AI Programs, University of Georgia...I would like to see Christians 
devote a bit less effort to _bashing_ paganism and more to figuring out 
how to present the Gospel to pagans.  Christ is the answer;...ai.uga.edu...

107th Document: Organization: clemson university... nobody ever 
displayed the dead body of jesus , even though both the jewish 
and the roman authorities would have gained a lot by doing 
so...Good enough excuse for the Jewish and Roman objectives...

41th Document: Organization: AI Programs, University of Georgia... 
And we should never mistake prudery for spirituality.  It can be the 
direct opposite -- a symptom of the lack of a healthy perspective on 
God's creation… ai.uga.edu Artificial Intelligence Programs...

491th Document: Organization: AI Programs, University of 
Georgia... Apparently many early Christians refused to fight in 
the Roman army, or stated that one should refuse if given a 
choice.  But it's not clear whether they were objecting to war... 
Artificial Intelligence Programs  mcovingt@ai.uga.edu; The 
University of Georgia phone 706 542-0358...

39th Document: Subject: Re: Hell Organization: AI Programs, 
University of Georgia...So, does God maintain just enough 
connection with >those who are rejected to keep them in 
existence so he can punish >them?  In a short poem ("God in His 
mercy made / the fixed pains of Hell")...because God limits the 
amount of separation from Him...ai.uga.edu Artificial Intelligence 
Programs...

15th Topic of layer 3
['edu', 'ai', 'georgia', 'michael', 'university', 'god', 

'programs', 'organization', 'jesus', 'subject',]

158th Document: Subject: Re: Nature of God (Re: Environmentalism and paganism) 
Organization: AI Programs, University of Georgia...When Christians call God 'Father',  
we are using a metaphor.  The Bible in one place refers to God as being like a mother.  
God is neither a father nor a mother in the literal sense; God has some of the attributes 
of both;...Artificial Intelligence Programs ai.uga.edu...

Figure 2: Visualization of a document subnetwork learned by a 3-layer GPGBN on 20news dataset. Taking the
40th document as the source node, other documents, whose connections at layer t (denoted as u(t)

k θ
(t)
ik θ

(t)
jk ) are

larger than a threshold τ , are displayed in the black boxes, and the key words of connected topics, from shallow
to deep, are displayed in the blue, green, and red text boxes, respectively. The common content between the
documents and their associated topics are highlighted with the corresponding topic color.

aj ∈ ZN is the j-th column of A, indicating the relationships between the j-th document and the
other documents. Then, dj is fed into a FNN to obtain {k(t)j ,λ

(t)
j }

N,T
j=1,t=1 in (7) as

h
(0)
j = ln(1 + dj), h

(t)
j = ln[1 + exp(W

(t)
1 h

(t−1)
j + b

(t)
1 )], t = 1, · · · , T,

k
(t)
j = ln[1 + exp(W

(t)
2 h

(t)
j + b

(t)
2 )], λ

(t)
j = ln[1 + exp(W

(t)
3 h

(t)
j + b

(t)
3 )], t = 0, · · · , T, (8)

where {b(t)i }
3,T
i=1,t=1 ∈ RKt , {W(t)

i }
3,T
i=1,t=1 ∈ RKt×Kt−1 , and {h(t)

j }
N,T
j=1,t=1 ∈ RKt .

Weibull-based GCN encoder: Attracted by the excellent ability of GCN [24] in aggregating and
propagating graph structure information, we construct a deterministic transformation from {X,A}
to {k(t)j ,λ

(t)
j }

N,T
j=1,t=1 in (7) with GCNs as

H(0) = ln(XT ), H(t) = ln[1 + exp(ÃH(t−1)W
(t)
1 )], t = 1, · · · , T,

K(t) = ln[1 + exp(ÃH(t)W
(t)
2 )], Λ(t) = ln[1 + exp(ÃH(t)W

(t)
3 )], t = 0, · · · , T, (9)

where, K(t) = [k
(t)
1 ; · · · ;k(t)N ] ∈ RN×Kt , Λ(t) = [λ

(t)
1 ; · · · ;λ(t)

N ] ∈ RN×Kt , {W(t)
i }

3,T
i=1,t=1 ∈

RKt−1×Kt denotes the GCN filters, H(t) ∈ RN×Kt the node embedding at layer t, Ã = Q−
1
2AQ−

1
2

the normalized symmetric adjacent matrix which is shared across all layers with degree matrixQ.

4.2 End-to-end training

Combining the probabilistic decoder GPGBN with the Weibull-based FNN or GCN encoder, we
develop two deep probabilistic graph autoencodings based on RTM, as shown in Fig. 1, named as
Weibull Graph Autoencoder (WGAE) and Weibull Graph Convolutional Autoencoder (WGCAE),
respectively. In what follows, a hybrid Bayesian inference is employed to learn all parameters
Ω = {{Φ(t)}Tt=1, {u

(t)
k }

Kt,T
k=1,t=1,We} in our models, where We encapsulates all parameters in

the encoder. More specifically, we adopt a SGMCMC-based method [46] to update Φ(t) and a
SGD-based method to update {{u(t)k }

Kt,T
k=1,t=1,We}, resulting in an end-to-end training. The detailed

training algorithm is provided in Appendix C, and the released code3 is implemented with TensorFlow
[47], combined with pyCUDA [48] for parallel Gibbs sampling.

5 Experiments

5.1 Hierarchical semantic topics and relationships

Distinct from all existing RTMs and GVAEs, GPGBN is able to provide an explicit solution to
explore multi-layer interpretable network relationships. To investigate the hierarchical semantic
topics and relationships learned by GPGBN, we train a 3-layer GPGBN on 20news dataset with

3https://github.com/BoChenGroup/GPGBN
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Table 1: Comparison of node clustering performance.

Method Coil TREC R8
ACC NMI ACC NMI ACC NMI

NMF [51] 60.4±0.6 72.6±0.5 62.6±0.6 45.5±0.7 54.6±0.6 37.4±0.5
LDA [12] 59.4±0.5 71.4±0.5 60.9±0.7 43.2±0.7 53.8±0.6 36.9±0.6

PGBN [20] 61.2±0.3 73.4±0.4 61.9±0.5 44.1±0.4 54.7±0.5 37.6±0.4

GAE [23] 65.8±0.4 77.0±0.4 68.9±0.4 52.8±0.3 67.2±0.4 44.5±0.4
VGAE [23] 66.3±0.2 77.2±0.2 69.0±0.3 53.0±0.3 67.4±0.3 44.6±0.3

SIG-VAE [4] 66.5±0.2 77.3±0.2 69.2±0.4 53.3±0.3 67.5±0.3 44.8±0.3

RTM [13] 70.7±0.6 82.8±0.5 71.5±0.7 55.6±0.6 70.4±0.7 45.9±0.6
GPFA 73.2±0.5 84.6±0.4 72.0±0.6 56.1±0.6 72.4±0.7 46.8±0.5

GPGBN 73.6±0.5 85.0±0.5 72.3±0.5 56.5±0.4 73.3±0.5 47.5±0.4
GNMF [5] 78.7±2.5 88.2±0.7 72.5±1.8 56.8±0.9 73.8±1.4 47.8±1.1

WGAE-layer1 77.5±0.4 87.7±0.4 74.2±0.4 58.3±0.3 76.4±0.4 50.3±0.4
WGAE-layer2 79.1±0.2 88.1±0.3 74.6±0.3 58.7±0.2 77.3±0.3 51.0±0.5
WGAE-layer3 81.6±0.2 88.3±0.2 74.8±0.4 59.0±0.2 77.6±0.3 51.4±0.3

WGCAE-layer1 80.5±0.5 87.9±0.4 74.5±0.4 58.6±0.3 77.5±0.5 51.1±0.4
WGCAE-layer2 82.3±0.4 89.0±0.4 75.0±0.3 59.3±0.2 78.0±0.4 52.0±0.3
WGCAE-layer3 83.3±0.2 89.5±0.2 75.3±0.3 59.5±0.3 78.2±0.3 52.3±0.3

efficient Gibbs sampling. As shown in Fig. 2, we select the 40th document as the source node
and exhibit other related documents, whose connections to the ith (i = 40) document satisfy the
constraint u(t)k θ

(t)
ik θ

(t)
jk > τ , where, u(t)k θ

(t)
ik θ

(t)
jk indicates the connection weight between the ith and

jth documents at kth topic of layer t, τ is a hyperparameter to adjust the complexity of the subnetwork.
Then we display the document contents in the black text boxes and key words of hierarchical topics
at multiple semantic levels, from shallow to deep, highlighted in the blue, green, and red text boxes,
respectively. It’s interesting to notice that the 40th document is related with 41th, 107th, and 74th
documents at specific topics of the first hidden layer, like 29th topic on “edu, organization, university”
and 47th topic on “jesus, christians, jewish”, and has connections with other documents at higher
semantic levels. Moreover, there is a clear trend that the topics become more and more general, with
the increasing of the network depth, and we will exhibit hierarchical semantic topic trees and more
visualized sub-networks learned by GPGBN in Appendix D.

5.2 Quantitative graph analysis tasks

The effectiveness and efficiency of WGAE and WGCAE are evaluated on several well-known graph
analytic tasks, including link prediction, node clustering, and node classification (in Appendix F).

Datasets & Model settings: We consider six widely used benchmarks, including Coil [5], TREC
[43], and R8 [49] for node clustering, and Cora, Citeseer and Pubmed [50] for link prediction
and node classification. We perform three WGAEs/WGCAEs with different stochastic layers, i.e.,
T ∈ {1, 2, 3}, and set the network structure as K1 = K2 = K3 = C, where C is set as the total
number of classes for node clustering/classification, and 16 for link prediction following VGAE [23]
to make a fair comparision. The summary statistics of these datasets and other implementation details
(such as dataset preprocess and hyperparameter settings etc.) are described in Appendix E.

Node clustering: We concatenate the multilayer topic proportions {θ(t)j }Tt=1 for each document
and employ K-means to realize the clustering. Our models are compared with other related node
clustering models, mainly concerning three classes: i) without edge generation, factorization based
methods are considered to model the node features, including NMF [51], LDA [12], and PGBN
[20]; ii) existing graph autoencoders, GAE, VGAE [23], and SIG-VAE [4], which have no node
generation; iii) methods that model both node and edge generations, like RTM [13] and GNMF [5].

As shown in Table 1, the accuracy (AC) and normalized mutual information metric (NMI) are used
to measure the clustering performance following Cai et al. [5]. Compared with the methods in
the first group that only model the node features, the graph autoencoder approaches in the second
group aggregate the information in both nodes and edges via the encoder, exhibiting higher scores.
However, those graph autoencoders focus obsessively on the generation of the edges but ignore
the node generation, leading to worse performance relative to the models in group three, indicating
the importance of node generation in clustering tasks. Among these graph-based models in group
three, the proposed GPFA outperforms traditional RTM, attributed to the more accurate posterior
estimations. With a controllable weight that balances the node and edge generations, WGAEs
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Table 2: Comparison of link prediction performance.
Method Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

SC [52] 84.6±0.01 88.5±0.00 80.5±0.01 85.0±0.01 84.2±0.02 87.8±0.01
DW [6] 83.1±0.01 85.0±0.00 80.5±0.02 83.6±0.01 84.4±0.00 84.1±0.00

GAE [23] 91.0±0.02 92.0±0.03 89.5±0.04 89.9±0.05 96.4±0.00 96.5±0.00
VGAE [23] 91.4±0.01 92.6±0.01 90.8±0.02 92.0±0.02 94.4±0.02 94.7±0.02
SEAL [7] 90.1±0.1 83.0±0.3 83.6±0.2 77.6±0.2 96.7±0.1 90.1±0.1
G2G [53] 92.1±0.9 92.6±0.8 95.3±0.7 95.6±0.7 94.3±0.3 93.4±0.5

S-VGAE [28] 94.1±0.1 94.1±0.3 94.7±0.2 95.2±0.2 96.0±0.1 96.0±0.1
NF-VGAE [4] 92.4 ±0.6 93.0±0.5 91.8±0.3 93.0±0.8 96.6±0.3 96.7±0.4

Naive SIG-VAE [4] 94.0±0.5 93.3±0.4 94.3±0.8 93.6±0.9 96.5±0.7 96.0±0.5
SIG-VAE (IP) [4] 94.4±0.1 94.4±0.1 95.9±0.1 95.4±0.1 96.7±0.1 96.7±0.1

SIG-VAE (K=1, J=1) [4] 91.8±0.06 93.0±0.08 91.3±0.04 92.4±0.04 94.8±0.08 95.2±0.06
SIG-VAE (K=15, J=20) [4] 92.1±0.04 93.2±0.06 91.6±0.02 92.7±0.03 95.0±0.08 95.4±0.04

SIG-VAE (K=150, J=2000) [4] 96.0±0.04 95.8±0.06 96.4±0.02 96.3±0.02 97.0±0.07 97.2±0.04

WGAE-layer1 92.6±0.02 93.5±0.03 93.6±0.05 92.5±0.08 94.6±0.04 94.8±0.04
WGAE-layer2 93.4±0.02 94.0±0.02 94.1±0.04 93.4±0.06 95.1±0.02 95.3±0.03
WGAE-layer3 93.8±0.01 94.2±0.02 94.3±0.04 93.9±0.04 95.5±0.03 95.8±0.02

WGCAE-layer1 93.4±0.04 94.1±0.04 94.5±0.06 94.4±0.07 94.9±0.04 95.5±0.05
WGCAE-layer2 94.5±0.02 94.8±0.03 95.6±0.03 95.8±0.04 96.0±0.04 96.1±0.04
WGCAE-layer3 95.0±0.02 95.1±0.02 96.5±0.02 96.6±0.02 96.5±0.02 96.7±0.02

and WGCAEs further improve the clustering performance, where WGCAEs, benefiting from the
effectiveness of GCN in graph representation, achieve higher scores than WGAEs under the same
network structure settings. Moreover, the performance improvement of PGBN over LDA, GPGBN
over GPFA, and multilayer WGAE/WGCAE over single-layer WGAE/WGCAE demonstrate that the
richer semantics provided by a deeper probabilistic model can boost the clustering performance.

Link prediction: Following VGAE [23], we train the model on an incomplete version of the
network data, with 5% and 10% of the citation links used for validation and test, respectively. We
realize the link prediction task via link generation and compare our models with some related ones,
including spectral clustering (SC) [52], DeepWalk (DW) [6], GAE and VGAE [23], S-VGAE [28],
SIG-VAE (K and J represents the sampling numbers of SIVI in every iteration), NF-VGAE [4],
SEAL [7], and G2G [53].

The comparison results are summarized in Table 2. The binary link prediction task is often regarded
as a binary classification task, whose performance is evaluated by the average precision (AP) and
area under the ROC curve (AUC), based on 10 random training/testing splits. Compared with
traditional graph autoencoder methods (GAE and VGAE), models in the second group provide more
flexible posterior distributions than a Gaussian one, achieving better performance. Distinct from these
sophisticated methods, such as the SEAL that constructs deterministic representations and the G2G
that assumes a Gaussian latent space, the proposed WGAEs and WGCAEs provide more sparse latent
document representations and introduce node feature likelihood into the loss function, both of which
effectively alleviate overfitting and oversmoothing. Moreover, our models are proficient in exploring
hierarchical uncertainties and capturing the relationships at multiple semantic layers, achieving
state-of-the-art or comparable performance. Compared to SIG-VAE, which requires setting large K
and J that consumes a large memory footprint to achieve the state-of-the-art performance, our models
that require much less memory to run are more convenient to be implemented on personal platforms.
More detailed comparisons between our models and SIG-VAE are provided in Appendix G.

Visualization: As discussed in Section 3.4, the proposed models are able to discover multiple
semantic relationships at different hidden layers. Specifically, after training, the observed adjacency
matrix A can be “divided” into multiple adjacency matrices at different semantic layers {A(t)}Tt=1.
After training a 3-layer WGCAE on Cora and Citeseer, respectively, we randomly select 25 nodes to
exhibit their adjacency matrix A (see the first column of Fig. 3), and the corresponding {A(t)}Tt=1
(see columns 2-4 in Fig. 3). For better demonstration, we highlight a part of the link structures with
a red bounding box. Clearly, the observed relationships are decomposed across different semantic
layers. For example, the red box in Fig. 3(a) highlights four node-node connections, where the first
one (from top to bottom) is mainly captured by the third semantic layer, but almost ignored by the
second semantic layer. Interestingly, the connection at the bottom right corner of red box in Fig. 3(e)
disappears at the first hidden layer but reoccurs at the second and third layers, which illustrates the
effectiveness of exploring the relationships in multiple semantic layers rather than a single one.
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(a) A (b) A(1) (c) A(2) (d) A(3)

(e) A (f) A(1) (g) A(2) (h) A(3)

Figure 3: Visualization of part (randomly selected 25 nodes) of the hierarchical relationships learned by 3-layer
WGCAEs on Cora (the first row) and Citeseer (the second row). The first column represents the observed
adjacency matrix A and the second to fourth columns represent the learned adjacency matrices A(t) from
the layer 1 to 3, respectively. After normalization, a brighter point of each A(t) indicates a stronger node
relationship, and the red zone is highlighted for better demonstrations.

5.3 Balance between the node and edge generations
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Figure 4: The effect of β on (a) node clustering task and (b)
link prediction task.

As discussed in Section 4, despite the ana-
lytic conditional posteriors of GPGBN lead-
ing to efficient Gibbs sampling, it is still
difficult to control the trade-off between
the node and edge likelihoods for different
tasks, which limits the modeling capabili-
ties of the proposed GPGBN. On the con-
trary, moving beyond treating node features
X and adjacency matrix A equally, WGAE
and WGCAE are more flexible via introduc-
ing Weibull inference networks, resulting in
a controllable weight to balance the focuses
on nodes and edges. Notably, we emphasize that the Weibull inference network of either WGAE or
WGCAE only approximates the posteriors of latent document representations and can’t directly im-
prove the model performance. To evaluate the effectiveness of the weight β, we perform experiments
with different values of β, and observe the model performance on node clustering and link prediction
tasks using the Coil dataset. In Fig. 4, we can see that the best performance of node clustering and
link prediction are achieved around β = 0.1 and β = 100, respectively. Recapping (6), a larger β
contributes to more attentions on edge reconstructions rather than node representations. This phe-
nomenon verifies the different contributions of node and edge generations in different tasks. Besides,
it also potentially explains the reason why VGAE and SIG-VAE achieve good performance on link
prediction but don’t work well on node clustering, since they only consider the edge generation.

6 Conclusion

We propose graph Poisson gamma factor analysis (GPFA) as a new relational topic model, which mod-
els both node features (attributes) and link structure (edges) jointly by sharing the topic proportions
(latent representations). Then we extend the GPFA to a deep graph Poisson gamma belief network
(GPGBN), which is able to explore hierarchical relationships of interconnected documents. Besides
performing model inference using analytic conditional posteriors, we further interpret GPGBN as a
decoder, and construct two different Weibull distribution based graph encoders, leading to two deep
graph autoencoders. Through both qualitative and quantitative experiments, our models are shown to
achieve promising results on various graph analytic tasks.
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Broader Impact

The proposed GPGBN can be used to analyze network data, such as citation networks and social
networks. Distinct from traditional network analysis, our model can provide intuitive visualization for
hierarchical semantic topics and relationships, which potentially explain the underlying reasons for
connections between the nodes (representing documents, persons, or other entities) of the network.

The developed WGAE and WGCAE are more flexible for downstream network analysis tasks, like
link prediction (predict if there is a connection between the suspects), node classification (determine
which community the person belongs to) and so on. Meanwhile, benefiting from incorporating the
GPGBN as a decoder, both WGAE and WGCAE can provide interpretable visualization and help
the user to explain the basis for the network decision. Of course, these characteristics can also be
exploited by ill-intentioned users, so the risk of the proposed models being used in malicious ways
cannot be ignored.

We advocate that researchers in this field pay more attention to the study of interpretable graph
models, rather than only focusing on the numerical performance. The interpretable model enables
the users to understand what the model really learns, which helps to evaluate the trust of the model
decision and further explore additional applications.
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