
Semi-Implicit Graph Variational Auto-Encoders:
Supplementary Material

Arman Hasanzadeh†∗, Ehsan Hajiramezanali†∗, Nick Duffield†, Krishna Narayanan†,
Mingyuan Zhou‡, Xiaoning Qian†

† Department of Electrical and Computer Engineering, Texas A&M University
{armanihm, ehsanr, duffieldng, krn, xqian}@tamu.edu
‡McCombs School of Business, The University of Texas at Austin

mingyuan.zhou@mccombs.utexas.edu

In this supplement, we first provide the detailed review of the related literature as well as the
connection to our proposed work. Derivation of ELBO, dataset statistics, network setups, and
implementation details of performance evaluation experiments for different graph analytic tasks are
then presented with richer experimental results in addition to the ones discussed in the main text.

1 Related works

Variational graph auto-encoders (VGAE), proposed by Kipf and Welling [5], embed each node to a
random variable in the latent space. VGAE, by extending the use of VAEs to graph structured data, is
shown to be capable of learning interpretable latent representations for undirected graphs and getting
competitive results in the link prediction task. However, the Gaussian assumption imposed on the
variational distribution restricts the model flexibility when the true posterior distribution given a graph
clearly violates the assumption. It also suffers from underestimating the variance of the posterior,
which is a well-known issue of vanilla VAEs.

To better model graph data using variational distributions in VGAEs, Davidson et al. [2] proposes the
hyperspherical VGAE (S-VGAE), in which, instead of the Gaussian assumption for the posterior, the
von Mises-Fisher distribution has been deployed. This assumption is not well-suited for all classes
of graphs. For example, it has been proven that graphs with hierarchical tree-like structure have
hyperbolic latent structures [7] which clearly cannot be represented well in a hyperspherical space.
While S-VGAE outperforms vanilla VGAE in some graphs including Cora and Citeseer in terms of
link prediction accuracy, its performance will be degraded for more complex graphs such as Pubmed.
On the other hand, changing the prior is not going to change the flexibility and optimal solution of the
generative model, but will affect the tightness of the ELBO and hence how well the generative model
parameters can be inferred. This shows the necessity to develop a variational graph auto-encoders
that not only is capable of inferring more flexible posteriors to represent a broader range of graphs,
but also is able to have more flexible decoder especially for the real-world sparse graphs.

In this paper, we propose to develop a hierarchical variational model to increase the expressiveness of
the posterior distribution for each node in the latent space. While SIVI-VGAE and NF-VGAE can
be used as a variational node embedding to effectively expand the variational posterior distribution
family, SIG-VAE allows flexible implicit posteriors as well as exploitation of the neighbor dependency
while maintaining simple optimization. We have further adopted a Bernoulli-Poisson link decoder to
improve the flexibility of the generative model which has not been addressed in the previous studies.

∗Both authors contributed equally.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

2 Node embedding

Node embedding is to represent each node in a graph by a low-dimensional vector in a latent space.
The geometric relations of vectors in the latent space reflect the probability of two corresponding nodes
interacting with each other in the graph [4]. A good node embedding preserves node connectivity in
graph as well as local neighborhood structures. More formally, node embedding can be formulated as
follows.

Node embedding. Given a graph G = (V, E) where V is the set of nodes and E the set of edges,
with the adjacency matrix A, X ∈ RN×M denoting M -dimensional node attributes for N = |V|
nodes, and a function sG : V × V → R measuring node similarity, find an encoder function,
ENC : RN×N+ ×RN×M → Rl, a decoder function, DEC : Rl×Rl → R+, and a latent representation
of nodes Z ∈ RN×l such that

Z = ENC(A,X),

ŝi,j , DEC(zi, zj),

where zi corresponds to the embedding representation of node vi ∈ V . Optimal parameters of ENC
and DEC functions can be derived by finding the solutions to the following optimization problem

min
ENC,DEC

N∑
i=1

loss(ŝi,j , sG(vi, vj)),

where loss is a user-specified loss function based on the ultimate objective of network analysis.

Different node embedding methods vary in the choice of the loss function, sG, ENC, DEC and the
optimization algorithm. For example, in graph factorization (GF) method [1], sG is defined based on
the adjacency matrix, i.e., sG(vi, vj) = Ai,j ; loss is the mean squared error; and the inner-product
decoder is adopted, i.e., DEC(zi, zj) = zTi zj .

3 Variational inference with normalizing flows

To increase the expressive power of a probabilistic model, a simple but powerful idea is to transform
the corresponding random variables with complex deterministic and/or stochastic mappings. To
construct flexible, arbitrarily complex and scalable approximate posterior distributions, normalizing
flow (NF) transforms a simple random variable through a sequence of invertible differentiable
functions with tractable Jacobians. More specifically, NF uses an invertible, smooth mapping
f : Rd → Rd to transform a random variable z with distribution q(z) to the resulting random variable
z′ = f(z) with the distribution:

q(z′) = q(z)

∣∣∣∣det
∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣det
∂f

∂z

∣∣∣∣−1 . (1)

One may apply a chain of K transformations fk to obtain the density qK(z) from a random variable
z0 with distribution q0 as:

lnqK(zK) = lnq0(z0)−
∑
k

ln
∣∣∣∣det

∂fk
∂zk

∣∣∣∣ . (2)

While normalizing flow helps to improve the model flexibility of the corresponding variational
posterior, it requires the mapping to be deterministic and invertible, and the mixing distribution in the
hierarchy to have an explicit density function. Removing these restrictions, there have been several
recent attempts to define highly flexible variational posterior with implicit models. While an implicit
variational distribution can be made highly flexible, it becomes necessary in each iteration to address
the problem of density ratio estimation, which is often transformed into a problem related to learning
generative adversarial networks [3]. SIVI addresses this issue by using an analytic conditional
variational distribution which is not required to be reparameterizable.

2

4 SIG-VAE inference details

To derive the ELBO for model inference in SIG-VAE, we must take into account the fact that ψ has
to be drawn from a distribution. Hence, the ELBO moves beyond the simple VGAE as

L = −KL(Eψ∼qφ(ψ |X,A)[q(Z |ψ)] || p(Z)) + Eψ∼qφ(ψ |X,A)[EZ∼q(Z |ψ)[log p(A |Z)]]

= EZ∼hφ(Z |X,A)

[
log

p(A |Z)p(Z)
hφ(Z |X,A)

]
.

(3)

Direct optimization of the ELBO in SIVI is not tractable [9], so the Monte Carlo estimation of the
ELBO,L, is prohibited. To address this issue, SIVI derives a lower bound for the ELBO and optimizes
this lower bound instead of optimizing the ELBO itself, which is tractable and asymptotically equals to
the ELBO. SIG-VAE requires q(Z |ψ) to be explicit, and also requires it to either be reparameterizable
or the ELBO under q(Z |ψ) to be analytic, while qφ(ψ |X,A) is required to be reparameterizable but
not necessarily explicit. This captures the idea that combining an explicit q(Z |ψ) with an implicit
qφ(ψ |X,A) is as powerful as needed, but makes the computation tractable.

Following Yin and Zhou [9], we can derive a lower bound for the ELBO as follows

L = Eψ∼qφ(ψ |X,A)

[
EZ∼q(Z |ψ)

[
log

(
p(A|Z)p(Z)
q(Z |ψ)

)]]
= −Eψ∼qφ(ψ |X,A)[KL(q(Z |ψ) || p(Z))] + Eψ∼qφ(ψ |X,A)

[
EZ∼q(Z |ψ)[log p(A |Z)]

]
≤ L.

This can be proved based on the first theorem in Yin and Zhou [9], which shows

KL(Eψ∼qφ(ψ |X,A)[q(Z |ψ)] || p(Z)) ≤ Eψ∼qφ(ψ |X,A)[KL(q(Z |ψ) || p(Z))].

Unlike L, a Monte Carlo estimation of L only requires qφ(Z |ψ) to have an analytic density functions
and qφ(ψ |X,A) to be convenient to sample from.

Directly optimizing L without early stopping could lead to a point mass density as qφ(ψ |X,A).
This degenerates SIG-VAE to the vanilla VGAE. To avoid degeneracy, a regularization term can be
added to L. Assume that K samples are drawn from qφ(ψ |X,A) denoted by {ψ(i)}Ki=1. We define a
regularized lower bound as LK = L+BK where

BK = Eψ,ψ(1),...,ψ(K)∼qφ(ψ |X,A)[KL(q(A |ψ) || h̃K(Z))],

and

h̃K(Z)) =
qφ(ψ |X,A) +

∑K
k=1 qφ(ψ

(k) |X,A)

K + 1
.

It has been proved by Molchanov et al. [6] that LK is a monotonic lower bound of the ELBO,
satisfying LK ≤ LK+1 ≤ L. Therefore, setting K to zero means that L0 = L, and as K goes to
infinity L converges to the exact ELBO, i.e., limK→∞ LK = L.

5 Graph dataset details

Table 1 provides the detailed statistics of the graph datasets used in our experiments.

Table 1: Graph dataset statistics.

Dataset Type Nodes Edges

Cora Citation 2,708 5,429
Citeseer Citation 3,327 4,732
Pubmed Citation 19,717 44,338
USAir Transportation 332 2,126
NS Collaboration 1,589 2,742
Router Internet 5,022 6,258
Power Energy 4,941 6,594
Yeast Protein 2,375 11,693

3

6 Experimental setups and hyperparameter tuning

Interpretable latent representations experiments. In these experiments, the code provided by
Kipf and Welling [5] is used to derive the embedding for VGAE. The size of the first hidden layer of
VGAE is 256 and the size of the output layer is 3. For SIG-VAE, two stochastic layers with sizes
equal to [32, 32] and an additional GCN layer of size 16 are used to model the µ. The dimension of
injected standard Gaussian noises [ε1, ε2] are [32, 32]. Covariance matrix Σ is deterministic and is
inferred through two layers of GCNs with sizes equal to [32, 16]. To remove the effect of decoder,
we consider the inner-product decoder for this set of experiments.

Link prediction with node attributes For SIG-VAE, we use a stochastic layer with size equal to 32
and an additional GCN layer of size 16 is used to model µ. The dimension of injected Bernoulli noise
ε for the stochastic layer is 64. For SIVI-VGAE, we use two GCN layers with sizes equal to [32, 16]
followed by a fully connected layers with size 16 to infer µ. We inject 64-dimensional Bernoulli
noise to the fully connected layer. We implement NF-VGAE by extending VGAE (two GCN layers
with sizes equal to [32, 16]) with invertible linear-time transformations of length 4 to keep its number
of parameters close to the competing methods. We learn the model parameters for 3500 epochs with
the learning rate 0.0005 and the validation set used for early stopping.

Link prediction without node attributes. For SIG-VAE, we use a stochastic layer with size equal to
32 and an additional GCN layer of size 16 is used to model µ. The dimensions of injected Bernoulli
noise ε is 32. For SIVI-VGAE, we use two GCN layers with sizes equal to [32, 16] followed by a
fully connected layer with sizes 16 to infer µ. We inject 32-dimensional Bernoulli noise to the fully
connected layers. We learn the all model parameters for 2500 epochs with the learning rate 0.0005
and use the validation set for the early stopping. We use a two-stage learning process for SIG-VAE,
SIVI-VGAE, and NF-VGAE. First, the embedding of each node is learned in the 128-dimensional
latent space while injecting 5-dimensional Bernoulli noise to the system in the case of SIG-VAE and
Naive SIG-VGAE. Then we use the learned embedding as node features for the second stage to learn
16 dimensional embedding while injecting more noise to SIG-VAE. We follow the same procedure
for SIVI-VGAE too.

Graph generation. We have not specifically tuned the model but directly adopt the implementation
setups for link prediction with and without node attributes.

Node classification and graph clustering. We use two GCN layers with sizes equal to [32, 16]
followed by a fully connected layer with sizes 16 to infer µ. We inject 64-dimensional Bernoulli
noise to the GCN layers. Learning rate is set to be 0.0005.

Analysis of the complexity. For the analysis of the real-world graph dataset Cora on a single GeForce
GTX 1080 GPU node, it took 24.5, 11.7 , and 9.5 seconds for SIG-VAE, NF-VGAE, and VGAE
methods with 100 epochs, respectively. For the analysis of the small real-world graph dataset NS on a
same GPU node, it took 7.23, 7.84, and 7.09 seconds for SIG-VAE, NF-VGAE, and VGAE methods
with 100 epochs, respectively.

7 Additional experimental results

7.1 Interpretable latent representations

In addition to the results of the Swiss roll graph in the paper, we also compare the latent representa-
tions of SIG-VAE and VGAE for a torus graph with 256 nodes connected by 512 edges as illustrated
in Figure 1. We consider the coordinates of each node in R3 as node attributes for both methods in
this experiment. We expect that the embedding of nodes to be symmetric since the graph itself is
symmetric. We know that the inner-product decoder tries to embed a ring graph to a circle in space.
Also, connected nodes should be in the same angle. Thus, the embedding of connected circles as in
torus in R3 should be some lines coming out of center while their altitude is changing periodically.
As we can see in Figure 1, SIG-VAE demonstrates a better latent representation than VGAE. To gain
more insights about the posterior distributions, we show the distributions inferred by SIG-VAE and
VGAE for three nodes in Figure 2. The inferred distributions are indeed skewed and multi-modal,
very different from Gaussian. Being able to capture complex non-Gaussian distributions helps the
model to represent the graph structure in a more meaningful way.

4

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
-0.5
-0.25
0.0
0.25
0.5

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

-2.0
-1.0
0.0
1.0
2.0

Figure 1: Torus graph (left) and its latent representation using SIG-VAE (middle) and VGAE (right).
The latent representations (middle and right) are heat maps in R3. We expect that the embedding of
the torus graph with the inner-product decoder to be multiple lines coming out of the center in R3,
which is clearly better captured by SIG-VAE.

3 2 1 0 1 2

3

2

1

0

1

2

3

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

1.0

0.5

0.0

0.5

1.0

1.5

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 2: Latent representation distributions of three nodes in the torus graph using SIG-VAE (blue)
and VGAE (red). SIG-VAE clearly infers more complex distributions that are multi-modal or skewed.
This helps SIG-VAE to better represent the nodes in the latent space.

7.2 Link prediction

Table 2: AUC of link prediction in networks without node attributes. * indicates that the numbers are
reported from Zhang and Chen [10].

Data MF∗ SBM∗ N2V∗ LINE∗ SC∗ VGAE∗ SEAL∗ G2G NF-VGAE SIVI-VGAE SIG-VAE(IP) SIG-VAE
USAir 94.08 94.85 91.44 81.47 74.22 89.28 97.09 92.17 95.74 94.22 97.56 94.52

±0.80 ±1.14 ±1.78 ±10.71 ±3.11 ±1.99 ±0.70 ±1.65 ± 1.74 ±0.43 ±0.23 ±0.28
NS 74.55 92.30 91.52 80.63 89.94 94.04 97.71 98.18 98.38 98.00 98.75 99.17

±4.34 ±2.26 ±1.28 ±1.90 ±2.39 ±1.64 ±0.93 ±0.51 ±0.46 ±0.34 ±0.12 ±0.45
Yeast 90.28 91.41 93.67 87.45 93.25 93.88 97.20 97.34 97.86 93.36 98.11 98.32

±0.69 ±0.60 ±0.46 ±3.33 ±0.40 ±0.21 ±0.64 ±0.32 ±0.44 ±0.63 ±0.18 ±0.26
Power 50.63 66.57 76.22 55.63 91.78 71.20 84.18 91.35 94.61 93.67 95.045 96.23

±1.10 ±2.05 ±0.92 ±1.47 ±0.61 ±1.65 ±1.82 ±0.41 ±0.65 ±0.78 ±0.15 ±0.12
Router 78.03 85.65 65.46 67.15 68.79 61.51 95.68 85.98 93.56 92.66 95.94 96.13

±1.63 ±1.93 ±0.86 ±2.10 ±2.42 ±1.22 ±1.22 ±1.25 ±0.79 ±0.25 ±0.23 ±0.26

Table 3: AP of link prediction in networks without node attributes. * indicates that the numbers are
reported from Zhang and Chen [10].

Data MF∗ SBM∗ N2V∗ LINE∗ SC∗ VGAE∗ SEAL∗ G2G NF-VGAE SIVI-VGAE SIG-VAE(IP) SIG-VAE
USAir 94.36 95.08 89.71 79.70 78.07 89.27 95.70 90.22 96.27 94.48 97.50 94.95

±0.79 ±1.10 ±2.97 ±11.76 ±2.92 ±1.29 ±0.21 ±2.61 ± 1.51 ±0.80 ±0.14 ±0.28
NS 78.41 92.13 94.28 85.17 90.83 95.83 98.12 97.43 98.52 97.83 98.53 99.24

±3.85 ±2.36 ±0.91 ±1.65 ±2.16 ±1.04 ±0.77 ±2.34 ±0.29 ±0.40 ±0.09 ±0.40
Yeast 92.01 92.73 94.90 90.55 94.63 95.19 97.95 97.83 98.18 94.24 97.97 98.41

±0.47 ±0.44 ±0.38 ±2.39 ±0.56 ±0.36 ±0.35 ±0.28 ±0.22 ±0.46 ±0.14 ±0.13
Power 53.50 65.48 81.49 56.66 91.00 75.91 86.69 92.29 95.76 93.80 96.50 97.28

±1.22 ±1.85 ±0.86 ±1.43 ±0.58 ±1.56 ±1.50 ±0.37 ±0.55 ±0.83 ±0.17 ±0.30
Router 82.59 84.67 68.66 71.92 73.53 70.36 95.66 86.28 95.88 92.80 94.94 96.86

±1.38 ±1.89 ±1.49 ±1.53 ±1.47 ±0.85 ±1.23 ±1.32 ±0.34 ±0.18 ±0.13 ±0.27

More complete link prediction results with the standard deviation values from different runs are
presented here. As we can see in Tables 2 and 3, SIG-VAE shows the consistent superior performance

5

Table 4: Graph clustering performance in citation networks with label.

Method Cora Citeseer
NMI ACC NMI ACC

VGAE 0.43 59.2 0.20 51.5
SIG-VAE 0.58 68.8 0.34 57.4

Table 5: Graph generation performance. The closest results to the original graph is highlighted in
boldface.

Detasets Orignial Graph VGAE SIG-VAE (IP) SIG-VAE
Dens. Clus. Dens. Clus. Dens. Clus. Dens. Clus.

Cora 0.00143 0.24 0.1178 0.49 0.1178 0.49 0.00147 0.25
Citeseer 0.0008 0.14 0.09 0.45 0.26 0.42 0.0008 0.16
USAir 0.038 0.62 0.18 0.40 0.21 0.56 0.043 0.45
NS 0.002 0.63 0.36 0.47 0.26 0.42 0.02 0.49
Router 0.0004 0.01 0.16 0.49 0.16 0.49 0.0010 0.09

compared to the competing methods, especially over the baseline VGAE, in terms of both AUC
and AP. It is interesting to note that, while the proposed sparse decoder works well for the sparser
graphs, especially NS and Router sparse datasets, SIG-VAE with the inner-product decoder shows
superior performance for the USAir graph which is much denser. Compared to the baseline VGAE,
both SIVI-VGAE and NF-VGAE improve the results with a large margin in terms of both AUC and
AP, showing the benefits of more flexible variational posterior. Comparing SIG-VAE with two other
flexible inference methods shows that not only SIG-VAE is not restricted to the Gaussian assumption,
which is not a good fit for link prediction with the inner-product decoder [2], but also it is able to
model flexible posterior considering graph topology. The results for the link prediction of the Power
graph clearly magnifies this fact as SIG-VAE improves the accuracy by 34% compared to VGAE.

7.3 Graph generation

In addition to the results of Cora dataset in the paper, we also used the inferred embedding rep-
resentations of different graph dataset with and without node attributes to generate new graphs.
Results are summarized in Table 5. The SIG-VAE results are much closer to the real-world graph in
terms of both graph density and average clustering for very sparse graphs. For the USAir dataset,
which is much dense compare to othe graphs, the average clustering coefficient of SIG-VAE with
inner-product decoder is closer to the read-world graph. This can be describe the better link prediction
results of SIG-VAE for USAir dataset. On the other hand, the generated graph by SIG-VAE with the
Bernoulli-Poisson link decoder is much sparser as its density is very closer to the read-world graph.
This shows the benefit of the proposed decoder to improve the flexibility of the generative model.

7.4 Graph clustering

SIG-VAE can be applied in the other application including graph clustering. We first tried SIG-VAE
for getting low-dimential feature space and then apply Gaussian mixture clustering (GMM) on citation
graphs with labels including Cora and Citeseer and compare its results with VGAE. We consider
same number of parameters and GCN layer for both model. Results are summarized in Table 4. We
report the normalized mutual information (NMI) and unsupervised clustering accuracy (ACC) of 10
runs. The decoders for both methods are inner-product decoder.

7.5 Drug-drug interaction network

Here, we also include the results on a drug-drug interaction network [8] capturing drug effect change
due to the action of another drug. When several drugs are administered together, there might be
adverse drug reactions due to drug-drug interactions. It is thus crucial to identify them during drug
development. With a similar setup as in the paper, SIG-VAE achieves AUC and AP at 92.51 and
92.81, respectively. For comparison, VGAE gets 90.22 (AUC) and 90.29 (AP), respectively, and

6

GAE gets 90.73 (AUC) and 91.15 (AP). Hyperparameters are inherited from the original paper of
each method.

References
[1] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexan-

der J Smola. Distributed large-scale natural graph factorization. In Proceedings of the 22nd
international conference on World Wide Web, pages 37–48. ACM, 2013.

[2] Tim R Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M Tomczak. Hyper-
spherical variational auto-encoders. arXiv preprint arXiv:1804.00891, 2018.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[4] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. arXiv preprint arXiv:1709.05584, 2017.

[5] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[6] Dmitry Molchanov, Valery Kharitonov, Artem Sobolev, and Dmitry Vetrov. Doubly semi-
implicit variational inference. arXiv preprint arXiv:1810.02789, 2018.

[7] Maximillian Nickel and Douwe Kiela. Poincare embeddings for learning hierarchical represen-
tations. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 6338–6347.
Curran Associates, Inc., 2017.

[8] David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir
Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, et al. Drugbank 5.0: a major update to the
drugbank database for 2018. Nucleic acids research, 46(D1):D1074–D1082, 2017.

[9] Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. In International
Conference on Machine Learning, pages 5660–5669, 2018.

[10] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. arXiv preprint
arXiv:1802.09691, 2018.

7

	Related works
	Node embedding
	Variational inference with normalizing flows
	SIG-VAE inference details
	Graph dataset details
	Experimental setups and hyperparameter tuning
	Additional experimental results
	Interpretable latent representations
	Link prediction
	Graph generation
	Graph clustering
	Drug-drug interaction network

