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S1 Derivations in M step

In this section, we give detailed derivations of the M step in the SAEM algorithm. We consider two
cases separately: with only instantaneous causal relations from i.i.d. data (Section S1.1), and with
both instantaneous and time-lagged causal relations from stationary time series (Section S1.2).

S1.1 With Instantaneous Causal Relations

With only instantaneous causal relations, the specific and shared causal model is represented as
X(t) = BX(t) + E(t), e9)
with
P(bij) = > 1y Wk/\/,(biﬂﬂmja Th i)y
p(E) = 22:1 Tk ZZ’:l W,Ek,N(Emgk,, EkE,k')v
where B is an m x m causal adjacency matrix with entries b;;.
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The model defined in (1) and (2) can be regarded as a latent variable model, with
U = {{bw}” 1-{aijp}} as latent variables that we are interested in, and 6 =

b, {eis b {owii b {Whsigp b {0ksijin (T b Ak 1> {26 4} } as free parameters that need
to be estimated. In particular, we exploit a stochastic approximation expectation maximization
(SAEM [1]) algorithm, combined with Gibbs sampling in the E step, for model estimation.

SAEM computes the E step by Monte Carlo integration and uses a stochastic approximation update
of the quantity Q at the rth iteration:

M
9,(0) =1 —0a,)0,_1(0) + a, Z — log Py(X1im, g (hinrid)y, 3)

where U indicates sampled particles of U, M the generated number of particles, X" = {X*}7_;
and X* = (X*(1),---, X3(ly)), ULmmd) = {Um)yn_ | and {a, },>1 is a decreasing sequence
of positive step size, with ), = ocoand ) a; < co.

By inductive reasoning, Qr (0) can be rewritten as

2 MZZ )1 —ap_1) - (1 — ayyr)ay - LU, (4)

i=1 j=1
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where L(47) = log Py(X', BUm43)) Let o = (1 — a)(1 — 1) -+ (1 — i1);. More
specifically,

IOg PG(X]-?TL’ B(l:n}iyj))
= Yi log Py(X*, BE19)) 5
> o1 (log Py(X)|B9) +log Py(B+41)) 5)
Sy (tsdog | det(I = BEH)| 4 3712 log Py(Ej™"7)) + log Py(BC47)),

where
q q
Py(EC) ZZ B N (ES, GE, SE ), (6)
k=1k’=1
and
q
By = [T Py = T1 Dm0 ks 02 120 ™
i17512 iz k=1

For presentation convenience, we reorganize the form of some parameters and latent variables. Let B
be an m(m—1)x 1 vector, which is derived by stacking each column of B in sequence after removing
diagonal entries. The same operation is applied to py ;,4, to get fI. Xy is an m(m — 1) x m(m — 1)
diagonal matrix, with entries o7, ; ; . Thus,

PQ(B(S’M)) — pg(B Sw) Zﬂ-k/\/ (S”)Wk ). 8)
k=1

Each parameter is estimated by setting the corresponding partial derivative of the expected log-
likelihood Q,. to zero.
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To estimate 7, we add a regularization term on Q,. to guarantee ), _; 7}, = 1, and have
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Set S = 0, and multiply Wfk, on both sides and sum over k', and derive
kk’/

1 r M on ls T /N sz]“u /7EE/
Gy anyy Ehamda B oS oo
i=1 j=1 s=1 t=1 Zk:1 Zk/:1 Wkﬂkka(E »Hkk/a Ekk,)

and thus
r M n (8,%,5) E
Ak = L Z Z NO) Zk’ L e N (B3 s Siie) (a0
= (5,2,9) E \
M i=1 j=1 s=1t=1 Zk 1 Zk/ 1 Wkﬂkk/N(E aﬂkk/a Ekk/)
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We multiply 7/, on both sides, and derive
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To estimate 7%, we add a regularization term on 9, to guarantee > {_, m; = 1, and get
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By taking the derivative of Qy,(6) w.r.t i}, we have
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By taking the derivative of Qk(H) w.r.t X, we have
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Therefore, we update the parameters in the inner EM of the M step with the following way:
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S1.2  With Both Instantaneous and Time-Lagged Causal Relations

With both instantaneous and time-lagged causal relations, the specific and shared causal model is
represented as

X(t) = —i—ZAXt— )+ E(t), (28)



with

».U

(bi) = Dof—y TN (bijl ik igs o7 i5)
Plagjp) = 2= lﬂkN(aijP‘VkiijI%ij ) (29)
p(E) = Zk 17Tk2k' 17Tk: % (E|#k K Ek’)

The quantity Q at the rth iteration in SAEM is:

M
~ 1 . . . . .
Qr(0) = (1= ) Qra(6) + 70 > log (X1, Bl ginord)), (30)
j=1

with
log Py(X1i, Bimtd) | A(Linij))
= Z:zl log Pp(X?#, B(s:b:d) A(s,i,j))
= 21}21 (1og PO(X(S)|B(s,i,j)7A(s,i,j)) + log PQ(B(S,Z-,]-)) +log PQ(A(S,Z-,J-)))
= YU, (I log |det(I — BeH)| + Yt log Py(E(™"")) + log Py(B(*:9)) + log Py(AL+)),

(3D
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k=1k'=1
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i1 Fio 11712 k=1
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PG(A(S’i’j)) - H P9( EszQJ) H Zﬂ N E:’?j)‘Vkﬂliz’o‘}l%,ilb)' (34)
1,12 11,12 k=1

For presentation convenience, we reorganize the form of some parameters and latent variables. Let
B be an m(m — 1) x 1 vector, which is derived by stacking each column of B in sequence after
removing diagonal entries. The same operation is applied to p, i,, to get i, to v to derive ., and
to A to derive A. 3, is an m(m — 1) x m(m — 1) diagonal matrix, with entries 7 ivip- Similarly,
we can derive 2. Thus,

Py(B)) = Py( B me (B9 | fig, ), (35)
k=1
and
Pp(A9)) = (,.9)) Z TN (A |7, Q). (36)

By inductive reasoning, Qr (0) can be rewritten as

1 - M ..
- M Z Z(l - ar)(l - arfl) e (1 — Ozi+1)ai . L('Lx])’ (37)

i=1 j=1

where L(*7) = log Py(X ™, Bmid)  A0n40)) Let o) = (1—ap)(1 —ap_1) -+ (1 — 1) .

Each parameter is estimated by setting the corresponding partial derivative of the expected log-
likelihood Q,. to zero.

The estimations of 7/, ukEk,, ZkEk,, W, and Xy are the same as those in Section S1.1.



To estimate 7y, we add a regularization term on Q,. to guarantee ZZ:l 7, = 1, and have
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By taking the derivative of Qk(H) w.r.t i, we have
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S2 Proof of Theorem 1

In order to prove Theorem 1, we first give the following lemma about identifiability of mixture
models from grouped samples.

Lemma S1 (Identifiability of Mixture Models from Grouped Samples [6]). Suppose we have obser-
vations from a mixture model and that they are grouped, such that observations in the same group
are known to be drawn from the same component. Denote by q the number of groups. If there
are at least 2q — 1 observations per group, any mixture of q probability measures can be uniquely
identified.

Proof. See [6]. L]
Next, we give the proof of Theorem 1, based on Lemma S1.

Proof. Condition 1 means that b;; and a;; , take a degenerate Gaussian distribution in each group;
their distributions can be represented as follows:

P(bij) = > Ty, (big),  Plaijp) = iy Tk, (i),

where d,,, .. (bi;) = 1, if bjj = 5, and 0 if otherwise; 6,, . (aijp) = 1, if ajj = v 5, and 0
if otherwise. With condition 1, the identifiability of the proposed causal model can be seen as finite
mixture models with grouped samples. The “grouped samples” means that for each individual there
are several samples, and it is known in advance that they are identically distributed samples from the
same component. Note the difference between identifiability of finite mixture models with grouped
samples and the case where the observations are drawn i.i.d. from a mixture model.

Under condition 1, where the parameters o, ;; = 0 and wy;j, = 0, for all i, j,k,p € N, the
proposed causal model can be seen as finite mixture models with grouped samples. Furthermore,
according to Lemma S1, if condition 2 (I > 2q — 1) satisfies, the cumulative distribution function
of each mixture component, as well as the mixture proportion, is identifiable; that is, P(X |z, = 1)
is identifiable, for k = 1,- - , ¢, and P(Z) is identifiable.

After identifying P(X |z, = 1), fork = 1,--- , g, we next show that instantaneous causal relations
b;; and lagged causal relations a;,,, in each group are identifiable. Because b;; and a;; ,, are fixed
within the group, individuals at group k satisfy the following generating process:

X(t) = BX(t) + i A,X(t—p) + E(t), (48)
p=1

where B and A, are free parameters. The above equation can be reorganized as

pL
X(t)=>_(I-B) "AX(t—p)+ (I - B)'E(t). (49)
p=1
It has been show both B and A, in Eq. (49) are identifiable and their estimations are consistent,

given that the noise term E is non-Gaussian and that the instantaneous causal structure for each
individual is acyclic [2].

In addition, if there are cycles in the instantaneous causal structure, the identifiability requires two
more conditions [3]: (1) the cycles are disjoint, and (2) the causal model is stable, i.e., klim BF = 0.
— 00
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S3 Cellular Signaling Networks

We applied the proposed method to multivariate flow cytometry data, which were measured from
11 phosphorylated proteins and phospholipids [5]. The 11 variables are Raf, Mek, P1c, PIP2, PIP3,
Erk, Akt, Pka, Pkc, P38, and Jnk. A series of stimulatory cues and inhibitory interventions were
performed, leading to different conditions. With different interventions in different conditions, the
causal relations over the 11 variables may change across them. The data from each condition mimic
a group, and in each condition, we segmented the data into subsets, with 30 samples in each subset,
mimicking an individual.

We applied SSCM on the data from condition phorbol myristate acetate (denoted by con-
dition 1) and condition anti-CD3 + anti-CD28 + LY294002 (denoted by condition 2). After
learning the model parameters, we clustered the subsets (individuals) into groups. Table S1 reports
the clustering performance, measured by Adjusted Rand Index (ARI [4]). Our method achieves the
best performance, with ARI 0.92.

Table S1: Clustering performance on flow cytometry data
Methods SSCM LiNGAM IB MC Plain K-Means
ARI 0.92 0.21 0.78 0.25 0.87

We then estimated group-specific causal graphs. We denoted by B* the estimated causal adjacency
matrix for group (condition) s, with s = 1, 2. Figure S1 shows the difference between the estimated
causal adjacency matrix from group 1 and that from group 2, i.e., B! — B2, We can see that
compared to group 1, the causal strength of the following edges in group 2 are inhibited: PIP2 —
PIP3, Erk — Pka, Jnk — Pkc, and the following edges are enhanced: Raf — Mek, Mek — Raf,
Akt — Pka, Pkc — P38. The findings are consistent with the performed interventions. In condition
2, reagents anti-CD3, anti-CD28, and LY294002 are used. Specifically, anti-CD3/CD28 activates
T cells and induces proliferation and cytokine production. Induced signaling through the T cell
receptor activates Plc, Raf, Mek, Erk, and Pkc, while LY294002 activates Akt and inhibits PIP2 [5].
From our results, we found that Pkc, Raf, Mek, and Akt were activated, and PIP2 were inhibited.

Raf Mek Plc PIP2 PIP3 Erk Akt Pka Pkc P38 Jnk

Figure S1: The difference between the estimated causal adjacency matrix from condition 1 and that
from condition 2, i.e., B! — B2.

Furthermore, we denoted by G* the estimated causal graph of group s, with s = 1,2. It was
determined as follows: ij = 1if |bfj| > 0.2, and ij = 0 if otherwise. Figure S2(a) and (b) give
the estimated cellular signaling networks of group 1 and group 2, respectively.
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