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A Kac-Rice method

A.1 Summary of the Kac-Rice complexity
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Figure A.1: Curves of the complexity of critical points, dotted and dashed curves from Eq. (A.3),
and of minima, full curve from Eq. (A.5), at overlap value m = 0 at fixed ∆p = 1.0 for different ∆2.
The figure shows qualitatively the same features as Fig. 3, but displays the full positive part of the
complexity for the four cases discussed in the main text, 1/∆2 ∈ {1.5, 1.9, 2.3, 2.7}. Zooms of the
curves of the annealed complexity of critical points and minima when they cross zero at negative loss
are in the panels labelled from (a) to (d) for increasing 1/∆2.

In this section we introduce the Kac-Rice formula and we show how to reduce it to an explicit
expression for the spiked matrix-tensor model. The Kac-Rice formula evaluates the expected number
of critical points of a rough function subject to a number of conditions. For an inference problem
it is interesting to focus on the expected number of critical points constrained to have of given loss
and a given overlap with the ground truth. For convenience reasons we consider the rescaled loss
L(σσσ) = N`(σσσ). The Kac-Rice formula then reads

Eη[N (ε,m|Θ)] =

∫
SN−1

δ (〈σσσ,σσσ∗〉 −m)Eη
[
|detH|

∣∣∣L = N ε, ∂iL = 0 ∀i, λmin > 0
]
×

× φL, ∂iL(σσσ,000, ε)dσσσ ,

(A.1)

where η represents the noise in the problem, Θ the parameters and φ the joint probability density of
the loss and its gradient.

The quantity of interest is the density of the logarithm of the number of critical points
logN (ε,m|Θ)/N . It should be noted that, since the random variable representing the number
of critical point fluctuates at the exponential scale, a correct estimation of the expected value of this
quantity is not logEη[N (ε,m|Θ)], as it would be immediately obtained by using the result of the
Kac-Rice formula [1], but Eη[logN (ε,m|Θ)]. These two quantities are called respectively annealed
and quenched complexities. Using Jensen inequality one observes that the annealed complexity is just
an upper bound of the quenched one. However, for mathematical convenience most of the studies
have been focused on the former. Eventually the second moment of the number of critical points has
been evaluated [2], by an extension of the Kac-Rice formula to higher moments [3], just to prove that
the two are equivalent in some models [2]. The quenched complexity has been evaluated in a related
model in a non rigorous way by studying the n-th moment and applying replica trick, the so-called
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replicated Kac-Rice [4]. Given a random variable Y replica trick says

Eη[log Y ] = lim
n→0+

Eη[Y n]− 1

n
(A.2)

but instead of considering an arbitrary n ∈ R+, the study is done using n ∈ N and performing an
analytic continuation of the result to 0+. The replica trick has already been used in a plethora of
applications and, although not rigorous, it was found correct in all naturally motivated cases that have
been later approached by other techniques. An important mathematical literature has developed in
order to understand the method.

In the next section we sketch the derivation of the quenched Kac-Rice and we provide all the
information to determine the annealed one. Since the threshold is determined considering the
configuration with arbitrarily small overlap m� 1, we focus on that case. Remarkably we found that
as m→ 0 the quenched complexity is equal to the annealed one. We show that the corresponding
Hessian is Eq. (6) in the main text, i.e. it is proportional to a GOE translated by t and perturbed
by a rank n perturbation of strength θ that in the annealed case is of rank 1. Thus we find that the
complexity for the stationary points is [1]

Σsta
a (m, ε|∆p,∆2) = max

εp,ε2
s.t. εp+ε2=ε

1

2
log

Q′′(1)

Q′(1)
+

1

2
log(1−m2)− 1

2

(Q′′(m))
2

Q′(1)
(1−m2)+

− p∆p

2

(
εp +

mp

p∆p

)2

−∆2

(
ε2 +

m2

2∆2

)2

+ Φ(t),

(A.3)

with

Φ(t) =


t2

4 if |t| ≤ 2

t2

4 + log

(√
t2

4 − 1 + |t|
2

)
− |t|4

√
t2 − 4 otherwise

(A.4)

and t = (pεp + 2ε2) /
√
Q′′(1) as already introduced in the main text. Finally studying the eigenvalue

of the Hessian to constrain them in the positive semi-axis, we find the complexity of minima [1]

Σa(m, ε|∆p,∆2) = Σsta
a (m, εp, ε2|∆p,∆2)− L(θ, t) . (A.5)

with

L(θ, t) =


1
4

∫ t
θ+ 1

θ

√
y2 − 4dy − θ

2

(
t−
(
θ + 1

θ

))
+

t2−(θ+ 1
θ )

2

8 θ > 1, 2 ≤ t < θ2+1
θ

∞ t < 2

0 otherwise.
(A.6)

and θ = Q′′(m) (1 −m2)/
√
Q′′(1). In Fig. A.1, we show the two complexities of the stationary

points and of the minima in the parameter space discussed in the main text with discontinuous lines
Eq. (A.3) and full lines Eq. (A.5), respectively. A positive complexity means an exponential number
of critical points (minima). The region where exponentially many minima appear is highlighted in
the small figures, showing the coexistence of exponentially many minima and saddles.

A.2 Derivation of the quenched complexity

We proceed with the computation of the quenched Kac-Rice complexity for the spiked matrix-tensor
model, using replicated Kac-Rice prescription for the spiked pure-tensor model [4]. This implies,
following replica trick Eq. (A.2), the evaluation of the n-th moment of number of minima using
Kac-Rice formula which is given by [3]

Eη[N (ε,m|Θ)n]=

∫
SN−1

· · ·
∫
SN−1

Eη

[(
n∏
a=1

|detH[σσσa]|

)∣∣∣∣∣∀b, c L[σσσb] = Nε, ∂iL[σσσc] = 0 ∀i, λmin> 0

]

× φL, ∂iL ({σσσa},000, ε)
n∏
a=1

δ (〈σσσa,σσσ∗〉 −m) dσσσa .

(A.7)
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Where φ is the joint probability density of the loss and its gradients evaluated on the n replicated
configurations. We hereby sketch the main computation steps and present the results that are the most
relevant for the theory presented in this paper, i.e. for m = 0. The details of the computation and
further results for m > 0 will be presented in a dedicated work elsewhere.

It is convenient to consider free variables on RN and constrain them using a Lagrange multiplier γ.
Thus L(σσσa) 7→ L(σσσa) − γ

2

(∑
i(σ

a
i )2 − 1

)
. Using the fact that the gradient must be zero on

the sphere, i.e. that ∇iL(σσσa) − γ σai = 0 ∀i, we obtain a simple expression for the multiplier:
γ = 〈∇∇∇L(σσσa),σσσa〉. Moreover by separating the two terms in the loss that represent the contribution
of the two channels, L = Lp+L2, we define Lp = Nεp and L2 = Nε2 so to obtain for the multiplier
the even simpler equation γ = pεp + 2ε2. To take advantage of this simple formula, in the following
we work with the contributions of the two channels to the loss function separately and we impose the
constraint on their sum, Nε = N(εp + ε2), only at the end.

The use of Cartesian coordinates allows us to evaluate easily the moments and covariances by means
of standard derivatives.

Eη [L[σσσa]] = −NQ(〈σσσa,σσσ∗〉) , (A.8)

Cov
[
L[σσσa],L[σσσb]

]
= N Q

(
〈σσσa,σσσb〉

)
. (A.9)

Taking derivatives of these equation gives all the covariances of loss, gradient and Hessian. For
instance, we can easily see that the covariance of the Hessian is given by:

∂4

∂σai ∂σ
a
j ∂σ

b
k∂σ

b
l

Cov
[
L[σσσa],L[σσσb]

]
N

= Q′′′′
(
〈σσσa,σσσb〉

)
〈σσσb, eeeai 〉〈σσσb, eeeaj 〉〈σσσa, eeebk〉〈σσσa, eeebl 〉+

+Q′′′
(
〈σσσa,σσσb〉

)(
〈eeeai , eeebk〉〈σσσb, eeeaj 〉〈σσσa, eeebl 〉+〈eeeaj , eeebk〉〈σσσb, eeeai 〉〈σσσa, eeebl 〉+〈eeeai , eeebl 〉〈σσσb, eeeaj 〉〈σσσa, eeebk〉+

+ 〈eeeaj , eeebl 〉〈σσσb, eeeai 〉〈σσσa, eeebk〉
)

+Q′′
(
〈σσσa,σσσb〉

) (
〈eeeai , eeebk〉〈eeeaj , eeebl 〉+ 〈eeeai , eeebl 〉〈eeeaj , eeebk〉

)
,

(A.10)

where {eeeai }i and {eeebk}k are the reference frames associated to replica a and b respectively.

Remark 1 (annealed Hessian) In particular notice that if n = 1 there is only one replica and using
an orthogonal basis where the N -th direction is aligned with the replica and projecting on the sphere
by discarding the last coordinates we obtain a simple expression:

1

N
Cov [Hij [σσσ],Hkl[σσσ]] = Q′′(1) (δikδjl + δilδjk) (A.11)

with the delta representing Kronecker’s deltas. This is the expression of a GOE. We can as well
compute the mean deriving twice in the i-th and j-th coordinate. Following [5] we make another
convenient choice for the basis imposing that the signal lies in the space spanned by the eee1 and
eeeN = σσσ. This gives,

1

N
E [Hij [σσσ]] = Q′′(〈σσσa,σσσ∗〉) 〈σσσ∗, eeei〉〈σσσ∗, eeej〉 = Q′′(〈σσσa,σσσ∗〉) 〈σσσ∗, eeei〉〈σσσ∗, eeej〉δi1δj1 (A.12)

that, when m = 0, equals
1

N
E [H[σσσ]] = Q′′(0)eee1eee

T
1 . (A.13)

Wrapping together Eq. (A.11), Eq. (A.13) and the expression for the Langrange multiplier that acts
as a translation, we obtain the Hessian presented in the main text Eq. (6). Observe, however, that the
Hessian in which we are interested in is not the simple Hessian of the loss but rather the Hessian of
the loss conditioned to a given loss and a given gradient. Using Eq. (A.9) to compute the covariance
of Hessian and loss, and of Hessian and gradient under this basis, we can observe that these random
variables are unconditioned. Thus the conditioning does not affect the distribution of the Hessian of
the loss and therefore Eq. (6) is recovered.

Eq. (A.8) and Eq. (A.9) are basic ingredients required to continue with the analysis. In the next
two sections we first compute the joint density of the loss and its gradient, and second compute the
expected value of the determinant of the Hessians. In the final section we put together the results
obtaining the complexities already presented in the summary A.1.
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A.2.1 Joint probability density.

In order to evaluate the joint probability density φ we focus on the covariance matrix of the loss and
its gradient, that using Eq. (A.9) is given by:

1

N
[CCCL,∇L]

a,b
=

[
Q′′
(
〈σσσa,σσσb〉

)
σσσa ⊗ σσσb +Q′

(
〈σσσa,σσσb〉

)
IN Q′

(
〈σσσa,σσσb〉

)
σσσb,T

Q′
(
〈σσσa,σσσb〉

)
σσσa Q

(
〈σσσa,σσσb〉

) ]
. (A.14)

The joint density corresponds to the probability of observing a zero gradient on the sphere and a
given loss, (γ σσσT , ε)T , in the multivariate Gaussian variable (∇∇∇LT ,L)T . Thus taking into account
the first moments of loss and gradient, obtained from Eq. (A.8), we define the auxiliary vector
[µµµ(εp, ε2)]a =

(
(pεp + 2ε2)σσσa,T +Q′(〈σσσa,σσσ∗〉)σσσ∗,T , ε+Q(〈σσσa,σσσ∗〉)

)T
. The probability density

is given by

φL, ∂iL ({σσσa},000, ε)∝
∫∫

δ(ε−εp−ε2) exp

−1

2

∑
a,b

[µµµ(εp, ε2)]a,T
[
CCC−1L,∇L

]a,b
[µµµ(εp, ε2)]b

 dεpdε2.
(A.15)

This expression can be evaluated by observing that there is a set of (N + 1)n-dimensional vectors
that forms a closed group under the action of the covariance matrix Eq. (A.14). This set is composed
by the following four vectors

ξξξT1 =
(
σσσ1,T , 0,σσσ2,T , 0, . . . ,σσσn,T , 0

)
, (A.16)

ξξξT2 =

∑
e 6=1

σσσe,T , 0,
∑
e 6=2

σσσe,T , 0, . . . ,
∑
e 6=n

σσσe,T , 0

 , (A.17)

ξξξT3 =
(
000T , 1,000T , 1, . . . ,000T , 1

)
, (A.18)

ξξξT4 =
(
σσσ∗,T , 0,σσσ∗,T , 0, . . . ,σσσ∗,T , 0

)
, (A.19)

where 000 is an N dimensional null vector. Indeed the auxiliary vector can be rewritten in terms of the
elements of this set of newly defined vectors as follows

[µµµ(εp, ε2)]a = (pεp + 2ε2)[ξξξ1]a + (ε+Q(〈σσσa,σσσ∗〉) [ξξξ3]a +Q′(〈σσσa,σσσ∗〉) [ξ4]a . (A.20)

At this point we exploit the fact that the set of these vectors forms a closed group under the action of
the covariance matrix. In fact we can invert its action on the set {ξξξk}4k=1 only, without the need to
evaluate the inverse of the full covariance matrix. Using this trick, the integrand in Eq. (A.15) can be
evaluated. The result for the integrand in Eq. (A.15) contains the dependence on the configurations
of replicas only in terms of the overlaps qa,b = 〈σσσa,σσσb〉 with each other, and of the overlap of each
of them with the ground truth, i.e. the magnetisation ma = 〈σσσa,σσσ∗〉. In this formulation, hence, the
problem of evaluating a free integral over n vectors on the sphere has been translated into the task of
evaluating an integral over the possible choices of the n× n matrix of the overlaps provided that we
consider the multiplying factor that comes from the volume V ({qa,b}, {ma}) of configurations that
are compatible with that choice and the condition on the magnetisations.

The next step is to make an ansatz on the form of the matrix of these overlaps which must be
consistent with the condition on the vector of magnetisations required in the Kac-Rice formula. The
simplest ansatz is called replica symmetric ansatz and assumes that the overlaps of different replicas
are independent of the indices a and b, i.e.

〈σσσa,σσσb〉 = δab + (1− δab) q . (A.21)

Note that the replica symmetric ansatz is compatible with the condition 〈σσσa,σσσ∗〉 = m ∀a imposed in
the Kac-Rice formula. Within this ansatz the probability density can be evaluated as a function of q
and m for arbitrary n and the analytic continuation at n→ 0+ can be finally taken to evaluate the
quenched complexity. The expression for generic n is too long and convoluted to be reported here.
However in the limit n→ 1 it corresponds to the expression of the probability density of losses and
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gradients evaluated in the annealed computation which has the following nice expression

φL, ∂iL ({σσσa},000, ε) ∝
∫ ∫

δ(ε− εp − ε2) exp

[
−N

2

(Q′′(m))
2

Q′(1)
(1−m2)

]
×

× exp

[
−Np

2
∆p

(
εp +

mp

p∆p

)2

−N∆2

(
ε2 +

m2

2∆2

)2
]
dεpdε2

' max
εp,ε2

s.t. εp+ε2=ε

exp

[
−N

2

(Q′′(m))
2

Q′(1)
(1−m2)− Np

2
∆p

(
εp +

mp

p∆p

)2

−N∆2

(
ε2 +

m2

2∆2

)2
]
.

(A.22)

We must also consider the normalisation of the density that is given by

exp

[
−Nn

2
log(2πQ′(1))

]
. (A.23)

Finally we come back to the volume term V ({qa,b}, {ma}). Constraining the configurations to a
given overlap q with each other and m with the ground truth produces a volume term that can be
easily evaluated as

V (q,m) ' exp

[
Nn

2

(
log

2πe(1− q)
N

− m2 − q
1− q

)]
, (A.24)

and for one single replica (which is useful in the computation of the annealed complexity) is simply

V (m) ' exp

[
N

2

(
log

2πe

N
+ log(1−m2)

)]
. (A.25)

Under the replica symmetric assumption we make a Laplace approximation that allows to evaluate
the quenched complexity as an extremisation of the entire expression that depends on the overlap
variable q through the volume term V (q,m) and the probability density φ. An interesting remark
concerns the limit q → 0 in quenched joint probability density. Indeed in that case the two joint
probability coincide module a factor n. We checked numerically that as m→ 0 the optimal q goes to
0, which implies that the equations of the annealed and quenched complexities do correspond on the
equator m = 0.

A.2.2 Expected value of the Hessian.

As discussed introducing Eq. (A.9), the Hessian is a matrix-valued random variable with multivariate
Gaussian distribution. In evaluating the Kac-Rice formula we must consider the distribution of
the Hessian conditioned to the loss and its gradient, this can be imposed using the formula for
conditioning of Gaussian random variables. GivenXXX,YYY Gaussian random variables with covariance
CCC and mean µµµ the distribution of XXX conditioned to YYY = yyy∗ is still Gaussian with covariance and
mean

CCCXXX|YYY=yyy∗ = CCCXXX −CCCXYXYXYCCC−1YYY CCCXYXYXY ;

µµµXXX|YYY=yyy∗ = µµµXXX +CCCXYXYXYCCC
−1
YYY (yyy∗ −µµµYYY ) .

In the annealed case, by using Eq. (A.9) and the expression for the Langrange multiplier γ we get
that the Hessian corresponds to a shifted GOE subject to a rank one perturbation, as already discussed
in the main text (see Eq. (6)). In the replicated Kac-Rice formula a more complicated expression
appears that depends on the product of the determinants of Hessians associated to different replicas.
However, using a proper reference frame, it was already noticed [2, 4] that each Hessian corresponds
also to a GOE since it is dominated by a (N − n)× (N − n) GOE block as n� N . Moreover it has
also been shown [2, 4] that the expectation value of the product the Hessian determinants is equivalent
to the product of the expectation values of each determinant. Thus we can still use standard results
on the spectrum of GOE random matrices to evaluate the term in the Kac-Rice that depends on the
Hessian. The distribution of the spectrum of the eigenvalue is given by

ρ(λ)dλ =

√
4Q′′(1)− (λ+ γ)2

2πQ′′(1)
dλ , (A.26)
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Figure A.2: Shift of the Hessian, from Eq. (6), as function the loss density for different values of m.
The qualitative behaviour shown in the figure does not change varying the parameter of the systems,
i.e. it is always a decreasing function. The figure shows results obtained using p = 3, ∆p = 1.0 and
1/∆2 = 2.3.

thus the determinant is given by∫
ρ(λ) log |λ| dλ =

1

2
log[2Q′′(1)] +

1

π

∫ √
2− λ2 log

∣∣∣λ− γ/√Q′′(1)
∣∣∣ dλ . (A.27)

where we recognise t = γ/
√
Q′′(1). After some algebra we find:

1

2
log[Q′′(1)]− 1

2
+ Φ(t) (A.28)

with Φ(t) defined in Eq. (A.4).

A.2.3 Complexities: Putting pieces together

By putting the above pieces together we obtain the annealed complexity of stationary points Eq. (A.3)
where we can finally distinguish the origin of the various terms: the first term comes from the
normalisation of the density and the determinant of the Hessian, the second comes from the volume
prefactor, the third, fourth and fifth terms are originated by the probability density of loss and gradient
and the last term comes from the product of Hessians.

In order to select only the minima in the study of the complexity we must impose that the smallest
eigenvalue is positive. There are two possible scenarios: either the smallest eigenvalue is determined
by the left edge of the bulk of the spectrum (the perturbation does not induces any BBP transition), or
it is outside the bulk of the spectrum. In the first case the probability that the smallest eigenvalue
is positive is suppressed by a factor e−N

2

and the corresponding large deviation function is infinite.
In the second case the large deviation function associated to the shift in the position of the smallest
eigenvalue, that would allow to keep it positive, is finite and must be evaluated. The problem can
be addressed with a replica computation [4] and focuses only on the typical value of the eigenvalue,
missing the large deviation function. As we already discussed as m→ 0 we found numerically that
the overlap q that extremises the complexity is q = 0, which leads back to the annealed complexity
as we have shown computing the density. Since the main focus in the paper is on the critical points at
the equator we do not compute the isolated eigenvalue in a quenched approach but we rather use the
large deviation function as it can be obtained in the annealed approximation [6] of which we report
here the result. The condition on having a positive minimum eigenvalue suppresses the number of
critical points by a factor e−NL(θ,t), with L(θ, t) given in Eq. (A.6), that enters in Eq. (A.3) leading
to Eq. (A.5).

Remark 2 (threshold loss) Stefano TODO The derivation I was making is wrong.. this must be
updated!!!
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B CHSCK Equations

In this section we present a derivation of CHSCK equations for the spiked matrix-tensor model using
the generating functional formalism and later the asymptotic analysis under the hypothesis presented
in the main text. The starting point is the loss, Eq. (3), expliciting the observations, Eqs. (1-2),

`(σσσ|TTT ,YYY ) = −
√

(p− 1)!

∆p

√
N

∑
i1<···<ip

ηi1...ipσi1 . . . σip −
1

p∆p
〈σσσ,σσσ∗〉p+

− 1

∆2

√
N

∑
i<j

ηijσiσj −
1

2∆2
〈σσσ,σσσ∗〉2

(B.1)

and the gradient flow Eq. (4) that for mathematical convenience we associate to an auxiliary function
fff(σσσ)

σ̇i(t) = −µ(t)σ(t)− ∂`(σσσ(t)|TTT ,YYY )

∂σi(t)

.
= fi (σσσ(t)) . (B.2)

The next section shows in detail the derivation that proceeds by introducing a probability distribution
for the different evolutions, or trajectories, of the dynamics at a fixed realization of the noise. Then the
distribution is averaged over the noise and this implies some technical steps before obtaining the final
form. The resulting distribution is used to average correlation, response function and magnetisation
over all the trajectories giving the CHSCK Eqs. (8-11). In the analysis an important role is played
by the normalisation constant of the distribution of the trajectories, that is used in the final steps to
derive with simplicity the equations.

After deriving the equations we show how to apply the hypothesis on the large time behaviour of t
and t′ to the CHSCK Eqs. In the last part this analysis provides the constants R and µ∞ used to the
derive the threshold in the main text, and some interesting additional information, such as the value
of the loss at the threshold shown in the right panel of Fig. 4.

B.1 Derivation of CHSCK Equations

The first step is to discretise the time in M time steps of length h. We want the trajectories to be
a solution at every time step of Eq. (4), which discretized looks as σa+1

i − σai = fi (σσσa)h with a
the time index. Let’s call ya+1 a solution to this equation. We can define the probability density of
observing a trajectory satisfying Eq. (4) at a fixed noise:

p(σσσ1, . . . ,σσσM ) =

∫ ∏
ai

δ
(
σa+1
i − yai (σσσa)

)M−1∏
a=0

dµaS . (B.3)

where µS is the measure over SN−1.

The normalisation constant is the integral of this probability and is called generating functional Z
and since the previous object is already properly normalised it is equal to 1. Rewriting the δs as
Fourier transforms and therefore including the auxiliary variables σ̃σσa,

1 =

∫ ∏
ai

exp
[
Nσ̃ai

(
σa+1
i − σai − fi(σσσa)h

)]M−1∏
a=0

dµaS
dσ̃σσa

2πi
(B.4)

where in order to have mathematically well-defined quantities in the large N limit we have a factor in
the exponential. Moving to the continuum, the generating functional appears as a path integral

1 = Z =

∫
D [σσσ, σ̃σσ]

∏
i

exp

[
N

∫
σ̃i(t) (∂tσi(t)− fi(σσσ(t))) dt

]
. (B.5)

So far the object we derived is a distribution that tells whether a trajectory from arbitrary initial
condition respects or not gradient-flow dynamics, however, our interest is in average trajectories with
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respect to the realization of the disorder. Therefore the distribution has to be averaged and after some
algebraic manipulation gives the average generating functional in Eq. (B.7),

1 = Eη [Z] =

∫
D [σσσ, σ̃σσ]

∏
i

exp

[
N

∫
σ̃i(t)

(
∂tσi(t) + µ(t)σi(t)−Q′(〈σσσ(t),σσσ∗〉p−1)σ∗i

)
dt

]
×

× Eη

∏
i

exp

−∫ σ̃i(t)

−√N(p− 1)!

∆p

∑
i1<···<ip

ηi i1...ip−1
σi1 . . . σip−1

 dt

×
× Eη

∏
i

exp

−∫ σ̃i(t)

−√N
∆2

∑
j

ηijσj

 dt

 .

(B.6)

In averaging over the η we need to be careful in grouping all the permutations of i with i1, . . . , ip−1.
For instance the exponent of the term in p is gives by

−
√
N(p− 1)!

∆p

∑
i1<···<ip

∫
ηi1...ip

(
σ̃i1(t)σi2(t) . . . σip(t) + · · ·+ σi1(t)σi2(t) . . . σ̃ip(t)

)
dt

=
N(p− 1)!

2∆p

∑
i1<···<ip

∫∫ (
σ̃i1(t)σi2(t) . . . σip(t)+perm.

)(
σ̃i1(t′)σi2(t′) . . . σip(t′)+perm.

)
dtdt′

=
N

2∆p

∫∫ (
〈σ̃σσ(t), σ̃σσ(t′)〉〈σσσ(t),σσσ(t)〉p−1+(p− 1)〈σ̃σσ(t),σσσ(t′)〉〈σσσ(t), σ̃σσ(t′)〉〈σσσ(t),σσσ(t)〉p−2

)
dtdt′.

This gives an action S[σσσ, σ̃σσ] defined by

1 = Z =

∫
D[σσσ, σ̃σσ]eS[σσσ,σ̃σσ] =

=

∫
D [σσσ, σ̃σσ]

∏
i

exp

[
N

∫
σ̃i(t)

(
∂tσi(t) + µ(t)σi(t)−Q′(〈σσσ(t),σσσ∗〉p−1)σ∗i

)
dt

]
×

× exp

[
N

2∆p

∫∫
〈σ̃σσ(t), σ̃σσ(t′)〉〈σσσ(t),σσσ(t)〉p−1dtdt′

]
×

× exp

[
N

2∆p

∫∫
(p− 1)〈σ̃σσ(t),σσσ(t′)〉〈σσσ(t), σ̃σσ(t′)〉〈σσσ(t),σσσ(t)〉p−2dtdt′

]
×

× exp

[
N

2∆2

∫∫
(〈σ̃σσ(t), σ̃σσ(t′)〉〈σσσ(t),σσσ(t)〉+ 〈σ̃σσ(t),σσσ(t′)〉〈σσσ(t), σ̃σσ(t′)〉) dtdt′

]
.

(B.7)

A simple way to proceed once evaluated the action was proposed in [7] and consists in taking
the expectation with respect to the path distribution and exploiting simple identities together with
integration by part:

0 = −
〈
δσi(t

′)

δσ̃i(t)

〉
S

=

〈
σi(t

′)
δS

δσ̃i(t)

〉
S

=

= N

〈
∂tσi(t)σi(t

′) + µ(t)σi(t)σi(t
′)−Q′(〈σσσ(t),σσσ∗〉p−1)σ∗i σi(t

′)+

+
1

∆p

∫ [
〈σσσ(t),σσσ(t)〉p−1σ̃i(t′′) + (p− 1)〈σ̃σσ(t),σσσ(t′′)〉〈σσσ(t),σσσ(t)〉p−2σi(t′′)

]
dt′′+

+
1

∆2

∫
[〈σσσ(t),σσσ(t)〉σ̃i(t′′) + 〈σ̃σσ(t),σσσ(t′′)〉σi(t′′)] dt′′

〉
S

.

(B.8)
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Figure B.1: t = − (pεp(t) + 2ε2(t)) /
√
Q′′(1) for p = 3, ∆p = 1.0 and 1/∆2 = 1.9 evaluated

numerically from the CHSCK equations.

Finally, summing over the index i and dividing by N we recover Eq. (8). The remaining CHSCK
Eqs. (9-10) follow analogously from:

δ(t− t′) =
∑
i

〈
δσ̃i(t

′)

δσ̃i(t)

〉
S

= −
∑
i

〈
σ̃i(t

′)
δS

δσ̃i(t)

〉
S

; (B.9)

0 = −
〈

δσ∗i
δσ̃i(t)

〉
S

=

〈
σ∗i

δS
δσ̃i(t)

〉
S
. (B.10)

and Eq. (11) comes from imposing the spherical constrain, C(t, t) = 1 ∀t, on Eq. (8).

In the following we are going to perform the analysis proposed by [8] in the present model. We need
to consider Langevin dynamics instead of gradient-flow dynamics

σ̇i(t) = −µ(t)σ(t)− ∂`(σσσ(t)|TTT ,YYY )

∂σi(t)
+

1√
N
η
(L)
i (t) , (B.11)

where the last term represents the Langevin noise, which is white Gaussian noise with moments:
EL[η

(L)
i (t)] = 0 and EL[η

(L)
i (t)η

(L)
j (t′)] = 2Tδijδ(t− t′) with T that has the physical meaning of

temperature. The CHSCK equations are slightly modified,
∂

∂t
C(t, t′) = TR(t′, t)− µ(t)C(t, t′) +Q′(m(t))m(t′)+

+

∫ t

0

R(t, t′′)Q′′(C(t, t′′))C(t′, t′′)dt′′ +

∫ t′

0

R(t′, t′′)Q′(C(t, t′′))dt′′ ,

(B.12)

∂

∂t
R(t, t′) = −µ(t)R(t, t′) +

∫ t

t′
R(t, t′′)Q′′(C(t, t′′))R(t′′, t′)dt′′ , (B.13)

∂

∂t
m(t) = −µ(t)m(t) +Q′(m(t)) +

∫ t

0

R(t, t′′)m(t′′)Q′′(C(t, t′′))dt′′ , (B.14)

µ(t) = T +Q′(m(t))m(t) +

∫ t

0

R(t, t′′) [Q′(C(t, t′′)) +Q′′(C(t, t′′))C(t, t′′)] dt′′ . (B.15)

B.2 CHSCK Equations Separation of Time-Scales

The theory of glassy dynamics [9] is quite involved. We have therefore decided to show first some
numerical results that directly confirm assumptions made in the main text, and then show in full glory
that these assumptions can be obtained analytically from the theory.

B.2.1 Numerical tests

The first property that we wish to test is that for low signal-to-noise ratio GF is trapped in minima that
are marginally stable. This can be checked computing from the CHSCK equations the evolution of
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Figure B.2: Support of the density of eigenvalues of the Hessian along the dynamics for p = 3,
∆p = 1.0 and 1/∆2 = 1.9. This figure illustrates the GF tends to the marginally stable minima for
low signal-to-noise ratio.
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Figure B.3: The correlation function C(t, t′) with p = 3, ∆p = 1.0 and 1/∆2 = 1.5 evaluated
numerically from the CHSCK equations. The correlation is plotted as difference of the two times
showing the as t−t′ � t, t′ it remains close to 1. This shows as well that in this regime the correlation
function shows time translational invariance.

t = − (pεp(t) + 2ε2(t)) /
√
Q′′(1), the terms εp(t) and ε2(t) can be expressed in terms of C,R,m

as shown in Rmk. 6 of section B.2.6. In Fig. B.1 we show that t = − (pεp(t) + 2ε2(t)) /
√
Q′′(1)

(εp(t) starts from zero at initial time and then converges to two. Thus the minima to which GF tends
to at long times and for small signal-to-noise ratio are indeed the marginally stable ones characterized
by a spectrum of the Hessian whose left edge touches zero. Actually, transferring the results obtained
in the context of spin-glasses to our case [10], we know that as long as m remains zero, i.e for small
signal-to-noise ratio, the spectrum of the Hessian along the dynamics is a Wigner semi-circle with
support [

√
Q′′(1)(−2 + t),

√
Q′′(1)(2 + t)]. We show the evolution of the support as a function of

time in Fig. B.2. This is another illustration of the fact that minima trapping GF are marginally stable.

The other point we wish to test is the assumption (i) made in the main text on C(t, t′), which we
repeat here for convenience: C(t, t′) = 1 when t − t′ finite; C(t, t′) becomes less than one when
t− t′ diverges with t and t′. We show in Fig. B.3 the correlation function C(t, t′) as a function of
t− t′ (in log-scale) for several values of t′. This is a good illustration of the "aging ansatz" defined in
the main text.

Let us stress that these numerical tests where already done in the past on similar spin-glass models.
We show them here in order to make the paper self-contained and so that the reader does not have
to go back to physics literature. In the same vein, in the next sections we show the full theoretical
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analysis of the dynamical equations, which closely follows the theory of glassy dynamics developed
in physics [9].

B.2.2 General aging ansatz

We study the behaviours of the dynamics at large times in the two-time regimes introduced in the
main text (now generalized at finite temperature).

1. t, t′ � 1 with t−t′
t → 0, see Fig. B.3. In this regime we have two important aspects: the

two-times function depends only on the difference of the two times, τ = t − t′, and we
say that they respect time-translational invariance. Under this observation we redefine the
two functions as C(t, t′)→ CTTI(τ) ≡ C(t− t′, 0) and R(t, t′)→ RTTI(τ) ≡ R(t− t′, 0).
The second important aspect is the validity of the fluctuation-dissipation theorem (FDT)
that links correlation and response function by the relation RTTI(τ) = − 1

T
dCTTI
dτ (τ) for τ

positive.

2. t, t′ � 1 with t−t′
t = O(1). In this regime the relevant variable to consider is λ = t′

t .
In reason of the "weak-long term memory" property it is useful to redefine rescale the
response function and defineR(λ) = tR(t, t′). It is also convenient to consider the function
qC(λ) = C(t, t′) with q = limτ→∞ CTTI(τ). Finally, in this regime a generalised version
of the fluctuation-dissipation theorem holdsR(λ) = 1

T xq
dC(λ)
dλ where x is called violation

parameter.

Under the (generalized) FDT the equations for correlation and response function that we obtain in the
two-time regime collapse into a single equation. In the first regime we analyse only the correlation
because of this link, while in the second regime we consider the two equations separately since we
need to determine the violation parameter x.

In the analysis that follows we use massively the hypothesis of the two regimes to split the integrals
and analyse them separately. We start analysing the single time equation for the Lagrange multiplier
µ(t), then we proceed with the two-times function concentrating first on the time-translational
invariant part and then on the aging part.

B.2.3 Langrange multiplier in the large time limit.

Starting from Eq. (B.15), we introduce the symbol ♣p to isolate the two contribution of matrix and
tensor to the integral. As the time tends to infinitym and µ tend to their asymptotic value, respectively
m∞ and µ∞, Eq. (B.15) tends to

µ∞ = T +Q′(m∞)m∞ + p♣p + 2♣p=2 .

We can now use the idea of the separation in two-time regimes. Call Qp(x) = xp/(p∆p) the part
related to p in Q(x),

♣p =

∫ t

0

Q′p(C(t, t′′))R(t, t′′)dt′′ =

∫
FDT

+

∫
aging

=

= −
∫ 0

t

Q′p(C(t, t− t̃))R(t, t− t̃)dt̃+

∫ 1

0

R(λ)Q′p(qC(λ))dλ =

= +

∫ ∞
0

Q′p(CTTI(t̃))RTTI(t̃)dt̃+

∫ 1

0

R(λ)Q′p(qC(λ))dλ =

= −
∫ ∞
0

1

T

d

dt̃
Qp(CTTI(t̃))dt̃+

∫ 1

0

R(λ)Q′p(qC(λ))dλ =

=
1− qp

T∆p
+

∫ 1

0

R(λ)Q′p(qC(λ))dλ

the resulting equation is

µ∞ = T +Q′(m∞)m∞ +
1

T
[Q′(1)− q Q′(q)] +

+ p

∫ 1

0

R(λ)Q′p(qC(λ))dλ+ 2

∫ 1

0

R(λ)Q′2(qC(λ))dλ .

(B.16)
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B.2.4 Regime 1: FDT.

We apply the same scheme of separating the times scale and applying FDT to the correlation function.
All over the analysis we isolate terms in the equations using the symbols ♣ and ♠. Eq. (B.12) in the
large time is

(∂τ + µ∞)CTTI(τ) = Q′(m∞)m∞ +♠+♣ , (B.17)

with:

♣ =

∫ t′

0

Q′(C(t, t′′))R(t′, t′′)dt′′ =

∫
FDT

+

∫
aging

=

= −
∫ 0

t′
Q′(C(t, t′ − t̃))R(t′, t′ − t̃)dt̃+

∫ 1

0

Q′(qC(λ))R(λ)dλ =

= − 1

T

∫ ∞
0

Q′(CTTI(τ + t̃))
d

dt̃
CTTI(t̃)dt̃+

∫ 1

0

Q′(qC(λ))R(λ)dλ

and

♠ =

∫ t

0

Q′′(C(t, t′′))R(t, t′′)C(t′, t′′)dt′′ =

∫ t

t′
+

∫ t′

0

=

∫ t

t′
+

∫
FDT

+

∫
aging

=

=
1

T
[Q′(1)CTTI(τ)−Q′(q)q]− 1

T

∫ τ

0

Q′(CTTI(τ − t̃))
d

dt̃
CTTI(t̃)dt̃

+
1

T

∫ ∞
0

Q′(CTTI(τ + t̃))
d

dt̃
CTTI(t̃)dt̃+

∫ 1

0

R(λ)Q′′(qC(λ)) qC(λ)dλ .

Substituting these expressions and using Eq. (B.16) in Eq. (B.17) we have the first equation, which
characterises the first regime

∂τCTTI(τ) +
( 1

T
Q′(1)− µ∞

)
[1− CTTI(τ)] + T = − 1

T

∫ τ

0

Q′(CTTI(τ − τ ′′))
d

dτ ′′
CTTI(τ

′′)dτ ′′ .

(B.18)
An important limit that is used later on in the computation is when τ →∞ and the variations of CTTI
becomes irrelevant. This gives:

µ∞ =
T

1− q
+
Q′(1)−Q′(q)

T
. (B.19)

B.2.5 Regime 2: aging.

Starting from the evolution of the response function (B.13), in this regime the time derivative is
negligible.

0 = −µ∞
R(λ)

t
+♣

with ♣ that can be separated into three terms ♣(1), ♣(2) and ♣(3)

♣ =

∫ t

t′
R(t, t′′)Q′′(C(t, t′′))R(t′′, t′)dt′′ =

∫
t′′.t

+

∫
t′′&t′

+

∫
aging

= ♣(1) +♣(2) +♣(3) .

In the first two integrals we can apply FDT respectively for t′′ close to t and for t′′ close to t′:

♣(1) =

∫ ∞
0

R(t, t− t̃)Q′′(C(t, t− t̃))R(λ)

t
dt̃ = −R(λ)

t

1

T

∫ ∞
0

d

dt̃
Q′(CTTI(t̃))dt̃ =

=
1

T

R(λ)

t
(Q′(1)−Q′(q)) ,
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♣(2) =

∫ ∞
0

1

t
R(λ)Q′′(qC(λ))R(t′ + t̃, t′)dt̃ = −R(λ)

t
Q′′(qC(λ))

1

T

∫ ∞
0

d

dt̃
CTTI(t̃)dt̃ =

=
1

T

R(λ)

t
Q′′(qC(λ))(1− q) .

The last terms displays aging:

♣(3) =

∫ t

t′

R( t
′′

t )

t

R( t
′

t′′ )

t′′
Q′′
(
qC
(
t′′

t

))
dt′′ =

1

t

∫ 1

λ

R(λ′′)

λ′′
R
(
λ

λ′′

)
Q′′ (qC(λ′′)) dλ′′ .

Combining these pieces together and using (B.19) we obtain an expression for the aging function of
the response:

0 =

[
− T

1− q
+
Q′′(qC(λ))(1− q)

T

]
R(λ) +

∫ 1

λ

R(λ′′)

λ′′
R
(
λ

λ′′

)
Q′′ (qC(λ′′)) dλ′′ . (B.20)

Following the same steps in Eq. (B.12) and using again (B.19) we obtain the expression for the
correlation:

0 = −
[

T

1− q
+
Q′(qC(λ))(1− q)

q C(λ)T

]
q C(λ) +Q′(m∞)m∞+

+

∫ λ

0

Q′(qC(λ′′))R
(
λ′′

λ

)
dλ′′

λ
+ q

∫ 1

0

R(λ′′)Q′′(qC(λ′′))C

[(
λ′′

λ

)sign(λ−λ′′)
]
dλ′′

. (B.21)

Remark 3 (generalized-FDT) In the derivation we never used generalized-FDT ansatz, R(λ) =
1
T xq

dC(λ)
dλ . A posteriori we can observe its validity as Eq. (B.20) and Eq. (B.21) collapse to a single

equation as Eq. (B.21) is derived by λ and generalized-FDT is used.

B.2.6 Characterisation of the unknown parameters.

In order to fully characterized the FDT Eq. (B.18) and the aging Eqs. (B.20-B.21), we need to
determine the parameters m∞, µ∞, q, the FDT violation index x and q0 = qC(0). We do not
determine all of them, we consider only the few that are used in the analysis, but for sake of
completeness we say how the five equations can be determined: Eq. (B.14) taking t→∞, Eq. (B.16)
plugging the generalized FDT ansatz, Eq. (B.18) in the large τ limit, Eq. (B.20) in the limit λ→ 1,
Eq. (B.21) in the limit λ→ 0.

In particular the limλ→ 1 of Eq. (B.20) gives

T 2

(1− q)2
= Q′′(q) . (B.22)

From Eq. (B.21), in the limit λ→ 1 and λ→ 0 we obtain

0 =

[
Tq

1− q
− Q′(q)(1− q)

T

]
+Q′(m∞)m∞ +

x

T
[q Q′(q)− q0Q′(q0)] , (B.23)

0 =

[
Tq0

1− q
− Q′(q0)(1− q)

T

]
+Q′(m∞)m∞ + q0

x

T
[Q′(q)− Q′(q0)] . (B.24)

In the regime where the system does not find a good overlap with the signal thus m∞ = 0, the second
equation gives the solution q0 = 0. As T tends to 0 (and q tends to 1)

x

T
=

1

q Q′(q)

[
T

1− q
− Q′(1)(1− q)

T

]
=

1

q Q′(q)

[√
Q′′(q)− Q′(1)√

Q′′(q)

]
. (B.25)

Remark 4 (R) In the large time limit, and using FDT, we have

R =

∫ ∞
0

RTTI(τ
′′)dτ ′′ = − 1

T

∫ ∞
0

C ′TTI(τ
′′)dτ ′′ =

1− q
T

, (B.26)

using Eq. (B.22) as T → 0 we the result reported in the main text

R =
1√
Q′′(1)

. (B.27)
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Remark 5 (marginal states) Combining Eq. (B.22) with Eq. (B.19), we obtain:

µ∞ =
√
Q′′(q) +

1

T
[Q′(1)−Q′(q)] (B.28)

expanding q / 1, and using again Eq. (B.22),

µ∞ = 2
√
Q′′(1) . (B.29)

As we explained in the main text, the distribution of the Hessian is associated to a semicircle of radius
2
√
Q′′(1) and centred in µ. This equation tells that asymptotically, if aging does not stops – as

it happens if it jumps to the solution – the systems tends to the marginal states. We have shown a
numerical confirmation of this property in Fig. B.1.

Remark 6 (threshold loss) As we show in the main text the Lagrange multiplier µ depends on the
two losses as µ = −pεp − 2ε2 (or µ = T − pεp − 2ε2 for arbitrary temperature). Observing that
the equation holds for any ∆p and ∆2, in particular when they tend to infinity and therefore their
contribution to the total loss becomes irrelevant, it follows from Eq. (11) (respectively Eq. (B.15)),

εp(t) = −1

p

[
Q′p(m(t))m(t) +

∫ t

0

R(t, t′′)
[
Q′p(C(t, t′′)) +Q′′p(C(t, t′′))C(t, t′′)

]
dt′′
]

(B.30)

and analogously ε2(t). We then write the expression for the total loss

ε(t) = −1

p
Q′p(m(t))m(t)− 1

2
[Q′2(m(t))m(t)] +

+

∫ t

0

R(t, t′′) [Q′(C(t, t′′)) +Q′′(C(t, t′′))C(t, t′′)] dt′′ .

(B.31)

From the equation we established above and using the aging ansatz, one can obtain the asymptotic
value of the loss for low signal-to-noise ratio, i.e. the loss of the minima trapping the dynamics. As
anticipated in the footnote of the main text, we find that the asymptotic dynamical loss is not the one
of the most numerous minima, εKR

th , which can be obtained by the Kac-Rice method, but very slightly
lower.

This is an interesting point. Recently, it was found in similar cases [11] that GF tends to marginally
stable minima which are not the most numerous ones. However, for the purpose of this paper, in
which the only important ingredient is that the minima trapping the dynamics are marginally stable,
this is not relevant. Hence, our results on this aspect will be presented elsewhere.

Remark 7 (threshold energy) The large time limit of Eq. (B.31) gives two threshold states. Apply-
ing the same scheme used in Eq. (B.16), i.e. integrating Eq. (B.30) for t, t′ � 1 considering the two
time-regimes gives

εdyn
p,th = −1

p

[
Q′p(m∞)m∞ +

1

T

[
Q′p(1)− q Q′p(q)

]
+ p

∫ 1

0

R(λ)Q′p(qC(λ))dλ

]
. (B.32)

Applying the generalized fluctuation dissipation ansatz and Eq. (B.25) in the integral, and finally
taking T → 0 (q → 1)

εdyn
p,th = −1

p

Q′p(1) +Q′′p(1)√
Q′′(1)

− x

T
Qp(1) . (B.33)

The threshold energy will be given by the some of two contributions, giving

εdyn
th = − Q′(1)√

Q′′(1)
− Q(1) (Q′′(1)−Q′(1))√

Q′′(1)Q′(1)
. (B.34)
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C Numerical Simulations of Gradient-Flow
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Figure C.1: Evolution of the loss in time from numerical simulations realised over 100 instances
of disorder and noise, for the spiked matrix-tensor model with p = 3. The simulations has been
done with systems of size N = 216 − 1 = 65535 with parameters 1/∆2 ∈ {1.5, 1.9, 2.3, 2.7} and
∆p = 1.0.

In order to evaluate Gradient flow dynamics we discretized time and evaluated Eq. (4) numerically
using effectively gradient descent

σt+1
i = −µtσti −

∂`(σσσt|TTT ,YYY )

∂σti
. (C.1)

In our experiments we run the dynamics on numerous realisations of the problem for different values
of the parameters at p = 3. Given a signal σσσ∗ ∈ SN−1, the number of computations per interaction
scales as N3, which makes the system hard to simulate for large N . In order to increase the size
of the system, we considered a diluted system, as proposed in [12], instead of the real system, such
that the first and the second moment of the loss, in the leading order on N . In the original system
the (hyper)-graph of interaction is fully connected and counts N3/3! (hyper)-edges for the tensor
and N2/2 edges for the matrix. In the diluted systems we replace the (hyper)-graphs by graphs less
connected in particular we take N2 (hyper)-edges for the tensor and N

√
N edges for the matrix. In

systems with spherical variables there is a known problem [13] associated with reducing too much
the number of interaction. In general given a tensor of order p if the number of interaction becomes
less then Np−1 the system tends to favour a finite number of (hyper)-edges and aligns completely
with them. The dynamics then converges to a final configuration where O(p) spins have value of
order O(1) and the rest is of order O(1/

√
N). In order to have the same averages for the observables

— such as overlap with the signal and loss — called #(·) that counts the number of interactions, we
multiplied the variances of the noise by N3/2/(3!#(TTT )) and N/(2#(YYY )) respectively the tensor
noise and the matrix noise.

Using this observation in the code we obtain a simple algorithm that given a dt approximate gradient
flow by computing a gradient descent dynamics, with dt = 1.0 in the simulations. This value was
chosen observing that in the runs the algorithm always descends in terms of loss and not appreciable
difference appeared reducing it further. The code is made available and attached to this paper. Using
this code we were able to simulate systems of the size N = 216 − 1 = 65535 and reduce finite size
effects. Fig. C.1 shows the average over different initialisation and realisation of the noise for the
parameters presented in the paper ∆p = 1.0 and 1/∆2 ∈ {1.5, , 1.9, , 2.3, , 2.7, }. In the figure we
use a continuous line surrounded by a shadow to represent mean and standard deviation under a
Gaussian hypothesis, individual simulations are represented using dashed-dotted lines. For p = 3
and ∆p = 1.0 the critical threshold for gradient flow occurs at 1/∆GF

2 = 2.0 and in fact we observe
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that the green line (1/∆2 = 1.9) shows finite size effects and some simulations find good overlap
with the ground truth. To conclude the figure shows a very good agreement with the averaged value
evaluated using CHSCK equations, see Fig. 4-b. In particular is evident how all the dynamics tends
to the threshold states, whose corresponding losses are drown with horizontal dotted lines, before
eventually find the good direction and then the signal.
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