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Abstract

Compressing word embeddings is important for deploying NLP models in memory-
constrained settings. However, understanding what makes compressed embeddings
perform well on downstream tasks is challenging—existing measures of compres-
sion quality often fail to distinguish between embeddings that perform well and
those that do not. We thus propose the eigenspace overlap score as a new measure.
We relate the eigenspace overlap score to downstream performance by developing
generalization bounds for the compressed embeddings in terms of this score, in the
context of linear and logistic regression. We then show that we can lower bound the
eigenspace overlap score for a simple uniform quantization compression method,
helping to explain the strong empirical performance of this method. Finally, we
show that by using the eigenspace overlap score as a selection criterion between
embeddings drawn from a representative set we compressed, we can efficiently
identify the better performing embedding with up to 2× lower selection error rates
than the next best measure of compression quality, and avoid the cost of training a
model for each task of interest.

1 Introduction

In recent years, word embeddings [22, 28, 23, 29, 10] have brought large improvements to a wide range
of applications in natural language processing (NLP) [1, 5, 37]. However, these word embeddings can
occupy a large amount of memory, making it expensive to deploy them in data centers, and impractical
to use them in memory-constrained environments like smartphones. To reduce and amortize these
costs, embeddings can be compressed [e.g., 33] and shared across many downstream tasks [7].
Recently, there have been numerous successful methods proposed for compressing embeddings; these
methods take a variety of approaches, ranging from compression using k-means clustering [2] to
dictionary learning using neural networks [33, 6].

The goal of this work is to gain a deeper understanding of what makes compressed embeddings
perform well on downstream tasks. Practically, this understanding could allow for evaluating the
quality of a compressed embedding without having to train a model for each task of interest. Our work
is motivated by two surprising empirical observations: First, we find that existing ways [40, 3, 41] of
measuring the quality of compressed embeddings do not effectively explain the relative downstream
performance of different compressed embeddings—for example, failing to discriminate between
embeddings that perform well and those that do not. Second, we observe that a simple uniform
quantization method can match or outperform the state-of-the-art deep compositional code learning
method [33] and the k-means compression method [2] in terms of downstream performance. These
observations suggest that there is currently an incomplete understanding of what makes a compressed
embedding perform well on downstream tasks. One way to narrow this gap in our understanding is to
find a measure of compression quality that (i) is directly related to generalization performance, and
(ii) can be used to analyze the performance of uniformly quantized embeddings.
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Here we introduce the eigenspace overlap score as a new measure of compression quality, and
show that it satisfies the above two desired properties. This score measures the degree of overlap
between the subspaces spanned by the eigenvectors of the Gram matrices of the compressed and
uncompressed embedding matrices. Our theoretical contributions are two-fold, addressing the
surprising observations and desired properties discussed above: First, we prove generalization bounds
for the compressed embeddings in terms of the eigenspace overlap score in the context of linear and
logistic regression, revealing a direct connection between this score and downstream performance.
Second, we prove that in expectation uniformly quantized embeddings attain a high eigenspace
overlap score with the uncompressed embeddings at relatively high compression rates, helping to
explain their strong performance. Inspired by these theoretical connections between the eigenspace
overlap score and generalization performance, we propose using this score as a selection criterion for
efficiently picking among a set of compressed embeddings, without having to train a model for each
task of interest using each embedding.

We empirically validate our theoretical contributions and the efficacy of our proposed selection
criterion by showing three main experimental results: First, we show the eigenspace overlap score is
more predictive of downstream performance than existing measures of compression quality [40, 3, 41].
Second, we show uniform quantization consistently matches or outperforms all the compression
methods to which we compare [2, 33, 15], in terms of both the eigenspace overlap score and
downstream performance. Third, we show the eigenspace overlap score is a more accurate criterion
for choosing between compressed embeddings than existing measures; specifically, we show that
when choosing between embeddings drawn from a representative set we compressed [2, 33, 11, 15],
the eigenspace overlap score is able to identify the one that attains better downstream performance
with up to 2× lower selection error rates than the next best measure of compression quality. We
consider several baseline measures of compression quality: the Pairwise Inner Product (PIP) loss [40],
and two spectral measures of approximation error between the embedding Gram matrices [3, 41].
Our results are consistent across a range of NLP tasks [32, 18, 37], embedding types [28, 23, 10],
and compression methods [2, 33, 11].

The rest of this paper is organized as follows. In Section 2 we review background on word embedding
compression methods and existing measures of compression quality, and present the two motivating
empirical observations. In Section 3 we present the eigenspace overlap score along with our corre-
sponding theoretical contributions, and propose to use the eigenspace overlap score as a selection
criterion. In Section 4, we show the results from our extensive experiments validating the practical
significance of our theoretical contributions, and the efficacy of our proposed selection criterion. We
present related work in Section 5, and conclude in Section 6.

2 Background and Motivation

We first review different compression methods in Section 2.1 and existing ways to measure the
quality of a compressed embedding relative to the uncompressed embedding in Section 2.2. We then
show in Section 2.3 that existing measures of compression quality do not satisfactorily explain the
relative downstream performance of existing compression methods; this motivates our work to better
understand the downstream performance of compressed embeddings.

2.1 Embedding Compression Methods

We now discuss a number of compression methods for word embeddings. For the purposes of this
paper, the goal of an embedding compression method C(·) is to take as input an uncompressed
embedding X ∈ Rn×d, and produce as output a compressed embedding X̃ := C(X) ∈ Rn×k which
uses less memory than X , but attains similar performance to X when used in downstream models.
Here, n denotes the vocabulary size, d and k the uncompressed and compressed dimensions.

Deep Compositional Code Learning (DCCL) The DCCL method [33] uses a dictionary learning
approach to represent a large number of word vectors using a much smaller number of basis vectors.
The dictionaries are trained using an autoencoder-style architecture to minimize the embedding matrix
reconstruction error. A similar approach was independently proposed by Chen et al. [6].

K-means Compression The k-means algorithm can be used to compress word embeddings by
first clustering all the scalar entries in the word embedding matrix, and then replacing each scalar
with the closest centroid [2]. Using 2b centroids allows for storing each matrix entry using only b bits.
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Dimensionality Reduction One can train an embedding with a lower dimension, or use a method
like principal component analysis (PCA) to reduce the dimensionality of an existing embedding.

Uniform Quantization To compress real numbers, uniform quantization divides an interval into
sub-intervals of equal size, and then (deterministically or stochastically) rounds the numbers in
each sub-interval to one of the boundaries [11, 13]. To apply uniform quantization to embedding
compression, we propose to first determine the optimal threshold at which to clip the extreme values in
the word embedding matrix, and then uniformly quantize the clipped embeddings within the clipped
interval. For more details about uniform quantization and how we use it to compress embeddings, see
Appendices A.1 and D.3 respectively.

2.2 Measures of Compression Quality

We review ways of measuring the compression quality of a compressed embedding relative to
the uncompressed embedding. For our purposes, an ideal measure would consider a compressed
embedding to have high quality when it is likely to perform similarly to the uncompressed embedding
on downstream tasks, and low quality otherwise. Such a measure would shed light on what determines
the downstream performance of a compressed embedding, and give us a way of measuring the quality
of a compressed embedding without having to train a downstream model for each task.

Several of the measures discussed below are based on comparing the pairwise inner product (Gram)
matrices of the compressed and uncompressed embeddings. The Gram matrices of embeddings are
natural to consider for two reasons: First, the loss function for training word embeddings typically
only considers dot products between embedding vectors [22, 28]. Second, one can view word
embedding training as implicit matrix factorization [20], and thus comparing the Gram matrices
of two embedding matrices is similar to comparing the matrices these embeddings are implicitly
factoring. We now review several existing ways of measuring compression quality.

Word Embedding Reconstruction Error The first and simplest way of comparing two embed-
dings X and X̃ is to measure the reconstruction error ‖X − X̃‖F . Note that in order to be able to
use this measure of quality, X and X̃ must have the same dimension.

Pairwise Inner Product (PIP) Loss Given XXT and X̃X̃T , the Gram matrices of the uncom-
pressed and compressed embeddings, the Pairwise Inner Product (PIP Loss) [40] is defined as
‖XXT − X̃X̃T ‖F . This measure of quality was recently proposed to explain the existence of an
optimal dimension for word embeddings, in terms of a bias-variance trade-off for the PIP loss.

Spectral Approximation Error A symmetric matrix A is defined [41] to be a (∆1,∆2)-spectral
approximation of another symmetric matrix B if it satisfies (1−∆1)B � A � (1 + ∆2)B (in the
semidefinite order). Zhang et al. [41] show that if X̃X̃T + λI is a (∆1,∆2)-spectral approximation
of XXT + λI for sufficiently small values of ∆1 and ∆2, then the linear model trained using X̃ and
regularization parameter λ will attain similar generalization performance to the model trained using
X . Avron et al. [3] use a single scalar ∆ in place of ∆1 and ∆2, and use this scalar as a measure of
approximation error, while Zhang et al. [41] consider ∆1 and ∆2 independently, and use the quantity
∆max := max( 1

1−∆1
,∆2) to measure approximation error.

2.3 Two Motivating Empirical Observations

We now present two empirical observations which illustrate the need to better understand the down-
stream performance of models trained using compressed embeddings. In these experiments we
compare the downstream performance of the methods introduced in Section 2.1, and attempt to
use the measures of compression quality from Section 2.2 to explain the relative performance of
these compression methods. Our observations reveal that explaining the downstream performance of
compressed embeddings is challenging. We now provide an overview of these two observations; for
a more thorough presentation of these results, see Section 4.

• First, we observe that the downstream performance of embeddings compressed using the var-
ious methods from Section 2.1 cannot be satisfactorily explained in terms of any of the ex-
isting measures of compression quality described in Section 2.2. For example, in Figure 1
we see that on GloVe embeddings [28], the uniform quantization method with compression
rate 32× can have over 1.3× higher PIP loss than dimensionality reduction with compres-
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sion rate 6×, while attaining better downstream performance by over 2.5 F1 points on the
Stanford Question Answering Dataset (SQuAD) [32]. Furthermore, the PIP loss and the two
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Figure 1: The PIP loss does not satisfac-
torily explain the relative downstream
performance of different compression
methods.

spectral measures of approximation error ∆ and ∆max

only achieve Spearman correlation absolute values of
0.49, 0.46, and 0.62 with the question answering test
F1 score, respectively (Table 1). These results show
that existing measures of compression quality correlate
relatively poorly with downstream performance.

• Our second observation is that the simple uniform quan-
tization method matches or outperforms the more com-
plex DCCL and k-means compression methods across
a number of tasks, embedding types, and compression
ratios. For example, with a compression ratio of 32×,
uniform quantization attains an average F1 score 0.47
points below the uncompressed GloVe embeddings on
the Stanford Question Answering Dataset [32], while
the DCCL method [33] is 0.43 points below.

These two observations suggest the need to better understand the downstream performance of
compressed embeddings. Toward this end, we focus on finding a measure of compression quality
with the properties that (i) we can directly relate it to generalization performance, and (ii) we can use
it to analyze the performance of uniformly quantized embeddings.

3 A New Measure of Compression Quality

To better understand what properties of compressed embeddings determine their downstream perfor-
mance, and to help explain the motivating empirical observations above, we introduce the eigenspace
overlap score, and show that it satisfies the two desired properties described above. In Section 3.1
we present generalization bounds for compressed embeddings in the context of linear and logistic
regression, in terms of the eigenspace overlap score between the compressed and uncompressed
embeddings. In Section 3.2 we show that in expectation, uniformly quantized embeddings attain high
eigenspace overlap scores, helping to explain their strong downstream performance. Based on the
connection between the eigenspace overlap score and downstream performance, in Section 3.3 we
propose using this score as a way of efficiently selecting among different compressed embeddings.

3.1 The Eigenspace Overlap Score and Generalization Performance

We begin by defining the eigenspace overlap score, which measures how well a compressed embed-
ding approximates an uncompressed embedding. We then present our theoretical results relating the
generalization performance of compressed embeddings to their eigenspace overlap scores.

3.1.1 The Eigenspace Overlap Score

We now define the eigenspace overlap score, and discuss the intuition behind this definition.

Definition 1. Given two full-rank embedding matricesX ∈ Rn×d, X̃ ∈ Rn×k, whose Gram matrices
have eigendecompositions XXT = UΛUT , X̃X̃T = Ũ Λ̃ŨT for U ∈ Rn×d, Ũ ∈ Rn×k, we define
the eigenspace overlap score E(X, X̃) := 1

max(d,k)‖UT Ũ‖2F .

This score quantifies the similarity between the subspaces spanned by the eigenvectors with nonzero
eigenvalues of X̃X̃T and XXT . In particular, assuming k ≤ d, it measures the ratio between
the squared Frobenius norm of U before and after being projected onto Ũ . It attains a maximum
value of one when span(U) = span(Ũ), and a minimum value of zero when these two spans are
orthogonal. Computing this score takes time O(nmax(d, k)2), as it requires computing the singular
value decompositions (SVDs) of X and X̃ . As is clear from the definition, the eigenspace overlap
score only depends on the left singular vectors of the two embedding matrices. To better understand
why this is a desirable property, consider two embedding matrices X and X̃ with the same left
singular vectors. It follows that the output of any linear model over X can be exactly matched by the
output of a linear model over X̃; if we consider the SVDs X = USV T , X̃ := US̃Ṽ T , then for any
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parameter vector w ∈ Rd over X , w̃ := Ṽ S̃−1SV Tw gives Xw = X̃w̃. This observation shows
how central the left singular vectors of an embedding matrix are to the set of models which use this
matrix, and thus why it is reasonable for the eigenspace overlap score to only consider the left singular
vectors. In Appendix B.3 we discuss this score’s robustness to perturbations, while in Appendix B.4
we discuss the connection between this score and a variant of embedding reconstruction error.

3.1.2 Generalization Results

We now present our theoretical results relating the difference in generalization performance between
models trained on compressed vs. uncompressed embeddings, in terms of the eigenspace overlap
score. For these results, we consider an average-case analysis in the context of fixed design linear
regression, for both the squared loss function and for any Lipschitz continuous loss function (e.g.,
logistic loss). We consider the fixed design setting for ease of analysis; for example, when using the
squared loss there is a closed-form expression for a regressor’s generalization performance. Before
presenting our results in Theorems 1 and 2 for the two types of loss functions, we briefly review fixed
design linear regression, and discuss the average-case setting we consider.

In fixed design linear regression, we observe a set of labeled points {(xi, yi)}ni=1 where the observed
labels yi = ȳi + εi ∈ R are perturbed from the true labels ȳi with independent noise εi with mean
zero and variance σ2. If we let xi ∈ Rd denote the ith row of the matrix X ∈ Rn×d with SVD
X = USV T , let y and ȳ in Rn denote the perturbed and true label vectors, and let ` : R× R→ R
be a convex loss function, we can define fX,ε as the linear model which minimizes the empirical
loss: fX,ε(x) := xTw∗ where w∗ := arg minw∈Rd

∑n
i=1 `(x

T
i w, yi). When the loss function is the

squared loss, we can use the closed-form solution w∗ = (XTX)−1XT y to show that the expected
loss of fX,ε is equal to Rȳ(X) := Eε

[
1
n

∑n
i=1(`(fX,ε(xi), ȳi)

]
= 1

n (‖ȳ‖2 − ‖UT ȳ‖2 + dσ2); for
the derivation, see Appendix A.2. If we instead consider any Lipschitz continuous convex loss
function (e.g., the logistic loss1) there may not be a closed-form solution for the parameter vector w∗,
but we can still derive upper bounds on the expected loss in this setting (see Theorem 2).

We consider average-case analysis for two reasons: First, in the setting where one would like to
use the same compressed embedding across many tasks (i.e., different label vectors ȳ), an average-
case result describes the average performance across these tasks. Second, for both empirical and
theoretical reasons we argue that worst-case bounds are too loose to explain our empirical observations.
Empirically, we observe that compressed embeddings with large values of ∆1 and ∆2 (defined in
Section 2.2) can still attain strong generalization performance (Appendix E.6), even though these
values imply large worst-case bounds on the generalization error [41]. From a theoretical perspective,
worst-case bounds must account for all possible label vectors, including those chosen adversarially.
For example, if there exists a single direction in span(U) orthogonal to span(Ũ) (which always
occurs when dim(Ũ) < dim(U)) the label vector ȳ can be in this direction, resulting in large
generalization error for X̃ and small generalization error for X . Thus, we consider an average-case
analysis in which we assume ȳ is a random label vector in span(U). We consider this setting because
we are most interested in the situation where we know the uncompressed embedding matrix X
performs well (in this case,Rȳ(X) = dσ2/n), and we would like to understand how well X̃ can do.2

We now present our result for the squared loss. To maintain a constant signal (ȳ) to noise (ε) ratio for
different embedding matrix sizes, we define c ∈ R as the scalar for which σ2 = c2 · Eȳ

[
1
n

∑n
i=1 ȳ

2
i

]
.

Thus, when c = 1 the entries of the true label vector on average have the same variance as the noise.
Theorem 1. Let X = USV T ∈ Rn×d be the singular value decomposition of a full-rank embedding
matrix X , and let X̃ ∈ Rn×k be another full-rank embedding matrix. Let ȳ = Uz ∈ Rn denote a
random label vector in span(U), where z is random with zero mean and identity covariance matrix.
Letting σ2 = c2 · Eȳ

[
1
n

∑n
i=1 ȳ

2
i

]
= c2 dn denote the variance of the label noise, it follows that

Eȳ
[
Rȳ(X̃)−Rȳ(X)

]
=

d

n
·
(

1− E(X, X̃)
)
− c2 · d(d− k)

n2
. (1)

1We consider the logistic loss `(z′, z) := −
(
σ(z) log

(
σ(z′)

)
+ (1− σ(z)) log

(
1− σ(z′)

))
, where here

σ : R→ R denotes the sigmoid function, and z and z′ both represent logits. If z′ := wTx is bounded (which
occurs when the weight vector and data are both bounded), this loss is Lipschitz continuous in both arguments.

2The difference between average-case and worst-case analysis is central to understanding the difference be-
tween (∆1,∆2)-spectral approximation (which yields worst-case generalization bounds) [41] and the eigenspace
overlap score (which yields average-case generalization bounds).
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This theorem reveals that a larger eigenspace overlap score E(X, X̃) results in better expected loss
for the compressed embedding. Note that if we focus on the low-dimensional and low-noise setting,
where d � n and c2 = O(1), we can effectively ignore the term c2 d(d−k)

n2 = O(d2/n2), and the
generalization performance is determined by the eigenspace overlap score.

We now present a result analogous to Theorem 1 for Lipschitz continuous loss functions.

Theorem 2. Let X ∈ Rn×d, X̃ ∈ Rn×k, ȳ ∈ Rn, and c ∈ R be defined as in Theorem 1. Let
` : R × R → R be a convex non-negative loss function which is L-Lipschitz continuous in both
arguments and satisfies arg minv′ `(v

′, v) = v ∀v ∈ R. It follows that

Eȳ
[
Rȳ(X̃)−Rȳ(X)

]
≤ L

√
d√
n

(√
1− E(X, X̃) + 2c

)
.

Similarly to Theorem 1, we see that a larger eigenspace overlap score results in a tighter bound on
the generalization performance of the compressed embeddings. See Appendix B for the proofs for
Theorems 1 and 2, where we consider the more general setting of z having arbitrary covariance.

3.2 The Eigenspace Overlap Score and Uniform Quantization

To help explain the strong downstream performance of uniformly quantized embeddings, in this
section we present a lower bound on the expected eigenspace overlap score for uniformly quantized
embeddings. Combining this result with Theorem 1 directly provides a guarantee on the performance
of the uniformly quantized embeddings.

To prove this bound on the eigenspace overlap score, we use the Davis-Kahan sin(Θ) theorem [8],
which upper bounds the amount the eigenvectors of a matrix can change after the matrix is perturbed,
in terms of the perturbation magnitude. Because for uniform quantization we can exactly characterize
the magnitude of the perturbation, this theorem allows us to bound the eigenspace overlap score of
uniformly quantized embeddings. Note that we assume unbiased stochastic rounding is used for the
uniform quantization (see [13] or Appendix A.1). We now present the result (proof in Appendix C):
Theorem 3. Let X ∈ Rn×d be a bounded embedding matrix with Xij ∈ [− 1√

d
, 1√

d
]3 and smallest

singular value σmin = a
√
n/d, for a ∈ (0, 1].4 Let X̃ be an unbiased stochastic uniform quantization

of X , where b bits are used per entry. Then for n ≥ max(33, d), we can lower bound the expected
eigenspace overlap score of X̃ , over the randomness of the stochastic quantization, as follows:

E
[
1− E(X, X̃)

]
≤ 20

(2b − 1)2a4
.

A consequence of this theorem is that with only a logarithmic number of bits b ≥ log2

( √
20

a2
√
ε

+ 1
)
,

uniform quantization can attain an expected eigenspace overlap score of at least 1− ε. This helps
explain the strong downstream performance of uniform quantization at high compression rates.

In Appendix C.2 we empirically validate that the scaling of the eigenspace overlap score with respect
to the quantities in Theorem 3 matches the theory; we show 1− E(X, X̃) drops as the precision b
and the scalar a are increased, and is relatively unaffected by changes to the vocabulary size n and
dimension d.

3.3 The Eigenspace Overlap Score as a Selection Criterion

Due to the theoretical connections between generalization performance and the eigenspace overlap
score, we propose using the eigenspace overlap score as a selection criterion between different
compressed embeddings. Specifically, the algorithm we propose takes as input an uncompressed em-
bedding along with two or more compressed versions of this embedding, and returns the compressed
embedding with the highest eigenspace overlap score to the uncompressed embedding. Ideally,
a selection criterion should be both accurate and robust. For each downstream task, we consider

3This bound on the entries of X results in the entries of its Gram matrix being bounded by a constant
independent of d.

4The maximum possible value of σmin is
√
n/d, which occurs when ‖X‖2F = n and σmin = σmax.
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Figure 2: Downstream performance vs. measures of compression quality. We plot the perfor-
mance of compressed fastText embeddings on the SQuAD question answering task as a function
of different measures of compression quality. The eigenspace overlap score E demonstrates better
alignment with downstream performance across compression methods than the other measures. We
quantify the degree of alignment using the Spearman correlation ρ, and include ρ in the plot titles.

accuracy as the fraction of cases where a criterion selects the best-performing embedding on the
task. We quantify the robustness as the maximum observed performance difference between the
selected embedding and the one which performs the best on a downstream task. In Section 4.3, we
empirically validate that the eigenspace overlap score is a more accurate and robust criterion than
existing measures of compression quality.

4 Experiments

We empirically validate our theory relating the eigenspace overlap score with generalization per-
formance, our analysis on the strong performance of uniform quantization, and the efficacy of the
eigenspace overlap score as an embedding selection criterion. We first demonstrate that this score
correlates better with downstream performance than existing measures of compression quality in
Section 4.1. We then demonstrate in Section 4.2 that uniform quantization consistently matches or
outperforms the compression methods to which we compare, both in terms of the eigenspace overlap
score and downstream performance. In Section 4.3, we show that the eigenspace overlap score is a
more accurate and robust selection criterion than other measures of compression quality.

Experiment setup We evaluate compressed versions of publicly available 300-dimensional fast-
Text and GloVe embeddings on question answering and sentiment analysis tasks, and compressed
768-dimensional WordPiece embeddings from the pre-trained case-sensitive BERTBASE model [10]
on tasks from the General Language Understanding Evaluation (GLUE) benchmark [37]. We use the
four compression methods discussed in Section 2: DCCL, k-means, dimensionality reduction, and
uniform quantization.5 For the tasks, we consider question answering using the DrQA model [5] on
the Stanford Question Answering Dataset (SQuAD) [32], sentiment analysis using a CNN model [18]
on all the datasets used by Kim [18], and language understanding using the BERTBASE model on the
tasks in the GLUE benchmark [37]. We present results on the SQuAD dataset, the largest sentiment
analysis dataset (SST-1 [34]) and the two largest GLUE tasks (MNLI and QQP) in this section, and
include the results on the other sentiment analysis and GLUE tasks in Appendix E. We evaluate
downstream performance using the F1 score for question answering, accuracy for sentiment analysis,
and the standard evaluation metric for each GLUE task (Table 5 in Appendix D). Across embedding
types and tasks, we first compress the pre-trained embeddings, and then train the non-embedding
model parameters in the standard manner for each task, keeping the embeddings fixed throughout
training. For the GLUE tasks, we add a linear layer on top of the final layer of the pre-trained BERT
model (as in [10]), and then fine-tune the non-embedding model parameters.6 For more details on the
various embeddings, tasks, and hyperparameters we use, see Appendix D.

4.1 The Eigenspace Overlap Score and Downstream Performance
To empirically validate the theoretical connection between the eigenspace overlap score and down-
stream performance, we show that the eigenspace overlap score correlates better with downstream
performance than the existing measures of compression quality discussed in Section 2. Thus, even
though our analysis is for linear and logistic regression, we see the eigenspace overlap score also has
strong empirical correlation with downstream performance on tasks using neural network models.

5For dimensionality reduction, we use PCA for fastText and BERT embeddings (compression rates: 1, 2, 4,
8), and publicly available lower-dimensional embeddings for GloVe (compression rates: 1, 1.5, 3, 6).

6Freezing the WordPiece embeddings does not observably affect performance (see Appendix E.1).
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Table 1: Spearman correlation between measures of compression quality and downstream
performance. For each measure of compression quality, we show the absolute value of its Spearman
correlation with downstream performance, on the SQuAD (question answering), SST-1 (sentiment
analysis), MNLI (natural language inference), and QQP (question pair matching) tasks. We see that
the eigenspace overlap score E attains stronger correlation than the other measures.

Dataset SQuAD SST-1 MNLI QQP

Embedding GloVe fastText GloVe fastText BERT WordPiece BERT WordPiece

PIP loss 0.49 0.34 0.46 0.25 0.45 0.45
∆ 0.46 0.31 0.33 0.29 0.44 0.36

∆max 0.62 0.72 0.51 0.60 0.86 0.86
1− E 0.81 0.91 0.75 0.73 0.92 0.93

In Figure 2 we present results for question answering (SQuAD) performance for compressed fastText
embeddings as a function of the various measures of compression quality. In each plot, for each
combination of compression rate and compression method, we plot the average compression quality
measure (x-axis) and the average downstream performance (y-axis) across the five random seeds
used (error bars indicate standard deviations). If the ranking based on the measure of compression
quality was identical to the ranking based on downstream performance, we would see a monotonically
decreasing sequence of points. As we can see from the rightmost plot in Figure 2, the downstream per-
formance decreases smoothly as the eigenspace overlap value decreases; the downstream performance
does not align as well with the other measures of compression quality (left three plots).

To quantify how well the ranking based on the quality measures matches the ranking based on
downstream performance, we compute the Spearman correlation ρ between these quantities. In
Table 1 we can see that the eigenspace overlap score gets consistently higher correlation values with
downstream performance than the other measures of compression quality. Note that ∆max also attains
relatively high correlation values, though the eigenspace overlap score still outperforms ∆max by
0.06 to 0.24 on the tasks in Table 1. See Appendix E.5 for similar results on other tasks.

4.2 Downstream Performance of Uniform Quantization
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Figure 3: Eigenspace overlap and downstream per-
formance of uniform quantization. Uniform quantiza-
tion can attain high values for the eigenspace overlap E ,
and match the k-means and DCCL methods for fastText
embeddings on the question answering (SQuAD) task.

We show that across tasks and compres-
sion rates uniform quantization consis-
tently matches or outperforms the other
compression methods, in terms of both
the eigenspace overlap score and down-
stream performance. These empirical
results validate our analysis from Sec-
tion 3.2 showing that uniformly quan-
tized embeddings in expectation attain
high eigenspace overlap scores, and are
thus likely to attain strong downstream
performance. In Figure 3 we plot the av-
erage eigenspace overlap (left) and aver-
age question answering (SQuAD) perfor-
mance (right) of compressed fastText embeddings for different compression methods and compression
rates; we visualize the standard deviation over five random seeds with error bars. Our primary con-
clusion is that the simple uniform quantization method consistently performs similarly to or better
than the other compression methods, both in terms of the eigenspace overlap score and downstream
performance.7 Given the connections between downstream performance and the eigenspace overlap
score, the high eigenspace overlap scores attained by uniform quantization help explain its strong
downstream performance. For results with the same trend on the GLUE and sentiment tasks, see
Appendices E.1, E.4.8

7We apply uniform quantization to compress embeddings trained end-to-end for a translation task in Ap-
pendix E.2; we show it outperforms a tensorized factorization [16] proposed for the task-specific setting.

8We provide a memory-efficient implementation of the uniform quantization method in https://github.
com/HazyResearch/smallfry.
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Table 2: The selection error rate of each measure of compression quality as a selection criterion.
Across all pairs of compressed embeddings from our experiments, we measure for each task the
fraction of cases when a quality measure selects the worse performing embedding. We observe that
the eigenspace overlap score E achieves lower error rates than other compression quality measures.

Dataset SQuAD SST-1 MNLI QQP

Embedding GloVe fastText GloVe fastText BERT WordPiece BERT WordPiece

PIP loss 0.32 0.37 0.32 0.40 0.31 0.32
∆ 0.34 0.58 0.39 0.57 0.32 0.33

∆max 0.28 0.22 0.30 0.27 0.15 0.16
1− E 0.17 0.11 0.19 0.20 0.10 0.10

4.3 Compressed Embedding Selection with the Eigenspace Overlap Score

We now show that the eigenspace overlap score is a more accurate and robust selection criterion for
compressed embeddings than the existing measures of compression quality. In our experiment, we
first enumerate all the embeddings we compressed using different compression methods, compression
rates, and five random seeds, and we evaluate each of these embeddings on the various downstream
tasks; we use the same random seed for compression and for downstream training. We then consider
for each task all pairs of compressed embeddings, and for each measure of compression quality
report the selection error rate—the fraction of cases where the embedding with a higher compression
quality score attains worse downstream performance. We show in Table 2 that across different tasks
the eigenspace overlap score achieves lower selection error rates than the PIP loss and the spectral
distance measures ∆ and ∆max, with 1.3× to 2× lower selection error rates than the second best
measure. To demonstrate the robustness of the eigenspace overlap score as a criterion, we measure
the maximum difference in downstream performance, across all pairs of compressed embeddings
discussed above, between the better performing embedding and the one selected by the eigenspace
overlap score. We observe that this maximum performance difference is 1.1× to 5.5× smaller for
the eigenspace overlap score than for the measure of compression quality with the second smallest
maximum performance difference. See Appendix E.8 for more detailed results on the robustness of
the eigenspace overlap score as a selection criterion.

5 Related Work
Compressing machine learning models is critical for training and inference in resource-constrained
settings. To enable low-memory training, recent work investigates using low numerical precision [21,
9] and sparsity [35, 24]. To compress a model for low-memory inference, Han et al. [14] investigate
pruning and quantization for deep neural networks.

Our work on understanding the generalization performance of compressed embeddings is also closely
related to work on understanding the generalization performance of kernel approximation methods
[38, 31]. In particular, training a linear model over compressed word embeddings can be viewed as
training a model with a linear kernel using an approximation to the kernel matrix. Recently, there
has been work on how different measures of kernel approximation error relate to the generalization
performance of the model trained using the approximate kernels, with Avron et al. [3] and Zhang
et al. [41] proposing the spectral measures of approximation error which we consider in this work.

6 Conclusion and Future Work
We proposed the eigenspace overlap score, a new way to measure the quality of a compressed
embedding without requiring training for each downstream task of interest. We related this score
to the generalization performance of linear and logistic regression models, used this score to better
understand the strong empirical performance of uniformly quantized embeddings, and showed that
this score is an accurate and robust selection criterion for compressed embeddings. Although this
work focuses on word embeddings, for future work we hope to show that the ideas presented here
extend to other domains—for example, to other types of embeddings (e.g., graph node embeddings
[12]), and to compressing the activations of neural networks. We also believe that our work can help
understand the performance of any model trained using compressed or perturbed features, and to
understand why certain proposed methods for compressing neural networks succeed while others fail.
We hope this work inspires improvements to compression methods in various domains.
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