
Appendix

A Pairwise MACKRL

This section aims to give a better intuition about Pairwise MACKRL using the example of three
agents A := {1, 2, 3}. The explicitly written-out joint policy of Pairwise MACKRL for these agents
is:

⇡✓(u
1
env, u

2
env, u

3
env) = ⇡A

ps,✓(u
A
ps={{1}, {2, 3}}|I1,2,3

s ) · ⇡1
✓(u

1
env|⌧1)

·
⇣
⇡2,3

pc,✓(u
2,3
env |I2,3

s ) + ⇡2,3
pc,✓(u

2,3
d |I2,3

s ) · ⇡2
✓(u

2
env|⌧2) · ⇡3

✓(u
3
env|⌧3)

⌘

+ ⇡A
ps,✓(u

A
ps={{2}, {1, 3}}|I1,2,3

s ) · ⇡2
✓(u

2
env|⌧2)

·
⇣
⇡1,3

pc,✓(u
1,3
env |I1,3

s ) + ⇡1,3
pc,✓(u

1,3
d |I1,3

s ) · ⇡1
✓(u

1
env|⌧1) · ⇡2

✓(u
3
env|⌧3)

⌘

+ ⇡A
ps,✓(u

A
ps={{3}, {1, 2}}|I1,2,3

s ) · ⇡3
✓(u

3
env|⌧3)

·
⇣
⇡1,2

pc,✓(u
1,2
env |I1,2

s ) + ⇡1,2
pc,✓(u

1,2
d |I1,2

s ) · ⇡1
✓(u

1
env|⌧1) · ⇡2

✓(u
2
env|⌧2)

⌘
.

Conditional variables beyond common knowledge IG and action-observation histories ⌧a have
been omitted for brevity. See Table 1 for a detailed depiction of Pairwise MACKRL’s hierarchical
controllers.

Level Policy / Controller #⇡

1 ⇡ps(ups|IA
st
, ups

t�1, h
ps
t�1) 1

2 ⇡aa
0

pc (uaa
0 |Iaa

0

st
, uaa

0

t�1, h
aa

0

t�1, aa
0) 3

3 ⇡a(ua|za
t
, ha

t�1, u
a

t�1, a) 3

Table 1: Hierarchy of pairwise MACKRL, where h is the hidden state of RNNs and za
t

are observa-
tions. #⇡ shows the number of controllers at this level for 3 agents.

However the sampling of each agent’s actions ua

env 2 Ua only needs to traverse one branch of the tree,
as shown in Figure 6. At the top level, an agent id partition ups is categorically sampled from the pair
selector policy ⇡ps,✓. At the second level, the pair selector policy for the pair contained in the partition
⇡a,b

pc is categorically sampled from in order to receive ua,b where a, b 2 ups. If the delegation action
d is sampled, then both ua and ub are categorically resampled from their respective independent
policies ⇡a and ⇡b. Otherwise, ua and ub are determined by ua,b. The leftover agent c 62 ups samples
its action from its corresponding independent policy ⇡c. Note that this sampling scheme naturally
generalised for n > 3.

ups
t
⇠ ⇡ps,✓(ups|IA

st
), ups

t
2 {(1, 2), (1, 3), (2, 3)}

uc

t
⇠ ⇡c

✓
(uc|⌧ c

t
), c 62 ups

t

ua,b

t
⇠ ⇡a,b

pc,✓(u
a,b|Ia,b

st
), a, b 2 ups

t

ua

t
, ub

t
2 ua,b

t
ua

t
⇠ ⇡a

✓
(ua|⌧a

t
), ub

t
⇠ ⇡b

✓
(ub|⌧ b

t
)

ua,b

t
=d ua,b

t
6=d

Figure 6: Action sampling for MACKRL for n = 3 agents.

14



Game
matrix
A,B

CK
available
Yes,No

c1, c2 = CK;�1,�2 =

8
>><

>>:

B,B with prob. p2
�

B, ? with prob. (1� p�) p�
?, B with prob. p� (1� p�)

?, ? with prob. (1� p�)
2

No1� p
ck

c1, c2 = CK;�1,�2 = B
Yes
pck

B
1
2

CK
available
Yes, No

c1, c2 = CK;�1,�2 =

8
>><

>>:

A,A with prob. p2
�

A, ? with prob. (1� p�) p�
?, A with prob. p� (1� p�)

?, ? with prob. (1� p�)
2

No1� p
ck

c1, c2 = CK;�1,�2 = A
Yes
pck

A
1

2

Figure 7: Probability tree for our simple single-step matrix game. The game chooses randomly
between matrix A or B, and whether common knowledge is available or not. If common knowledge
is available, both agents can condition their actions on the game matrix chosen. Otherwise, both
agents independently only have a random chance of observing the game matrix choice. Here, pck is
the probability that common knowledge exists and p� is the probability that an agent independently
observes the game matrix choice. The observations of each agent 1 and 2 are given by tuples (c1,�1)
and (c2,�2), respectively, where c1, c2 2 {CK, CK} and �1,�2 2 {A,B, ?}.

B Experimental Setup - StarCraft II

All policies are implemented as two-layer recurrent neural networks (GRUs) with 64 hidden units,
while the critic is feed forward and uses full state information. Parameters are shared across controllers
within each of the second and third levels of the hierarchy. We also feed into the policy the agent
index or index pairs. For exploration, we use a bounded softmax distribution in which the agent
samples from a softmax over the policy logits with probability (1� ✏) and samples randomly with
probability ✏. We anneal ✏ from 0.5 to 0.01 across the first 50k environment steps.

Episodes are collected using eight parallel SCII environments. Optimisation is carried out on a single
GPU with Adam and a learning rate of 0.0005 for both the agents and the critic. The policies are fully
unrolled and updated in a large mini-batch of T ⇥B entries, where T = 60 and B = 8. By contrast,
the critic is optimised in small mini-batches of size 8, one for each time-step, looping backwards in
time. We found that this stabilised and accelerated training compared to full batch updates for the
critic. The target network for the critic is updated after every 200 critic updates. We use � = 0.8 in
TD(�) to accelerate reward propagation.

C Pair controller introspection

Figure 8: Delegation rate vs. number of enemies (2s3z) in
the common knowledge of the pair controller over training.

We now test the hypothesis that
MACKRL’s superior performance is
indeed due to its ability to learn how
to use common knowledge for coordi-
nation. To demonstrate that the pair
controller can indeed learn to delegate
strategically, we plot in Figure 8 the
percentage of delegation actions ud

against the number of enemies in the
common knowledge of the selected
pair controller, in situations where
there is at least some common knowl-
edge.

Since we start with randomly ini-
tialised policies, at the beginning of training the pair controller delegates only rarely to the de-
centralised controllers. As training proceeds, it learns to delegate in most situations where the number
of enemies in the common knowledge of the pair is small, the exception being no visible enemies,
which happens too rarely (5% of cases). This shows that MACKRL can learn to delegate in order

15



to take advantage of the private observations of the agents, but also learns to coordinate in the joint
action space when there is substantial common knowledge.

D Holenstein’s Strategy

Given two agent-specific pair controller policies ⇡̃aa
0

pc,a
, both agents can optimally minimise disagree-

ment when sampling independently form their respective policies by following Holenstein’s strategy
(Holenstein, 2007; Bavarian et al., 2016): With a suitably chosen � > 0, each agent a is assigned a
set

Ha = {(u, p) 2 Uaa
0

pc
⇥ � : p < ⇡̃aa

0

pc,a
(u)}, � = {0, �, 2�, . . . , 1} (3)

Let ⇣ be a shared ⇠-seeded random permutation of the elements in Uaa
0

pc
⇥ �, then agent a samples

⇣(ia), where ia is the smallest index such that ⇣(ia) 2 Ha (and agent a0 proceeds analogously).
Given the total variational distance � between the categorical probability distributions defined by ⇡̃aa

0

pc,a

and ⇡̃aa
0

pc,a0 , the disagreement probability of agents a, a0 is then guaranteed to be at most 2�/(1 + �)
(Bavarian et al., 2016).

E Common Knowledge with Entities

To exploit a particular form of field-of-view common knowledge with MACKRL, we formalise an
instance of a Dec-POMDP, in which such common knowledge naturally arises. In this Dec-POMDP,
the state s is composed of a number of entities e 2 E , with state features se, i.e., s = {se | e 2 E}.
Some entities are agents a 2 A ✓ E . Other entities could be enemies, obstacles, or goals.

The agents have a particular form of partial observability: the observation za contains the subset of
state features se from all the entities e that a can see. Whether a can observe e is determined by
the binary mask µa

�
sa, se

�
2 {>,?} over the agent’s and entity’s observable features. An agent

can always observe itself, i.e., µa(sa, sa) = >, 8a 2 A. The set of all entities the agent can see is
therefore Ma := {e |µa(sa, se)} ✓ E , and the agent’s observation is specified by the deterministic
observation function o(s, a) such that za = o(s, a) = {se | e 2 Ma} 2 Z . In the example of Figure
1, MA = MB = {A,B} and MC = {A,B,C}.

This special Dec-POMDP yields perceptual aliasing in which the state features of each entity are
either accurately observed or completely occluded. The Dec-POMDP could be augmented with
additional state features that do not correspond to entities, as well as additional possibly noisy
observation features, without disrupting the common knowledge we establish about entities. For
simplicity, we omit such additions.

A key property of the binary mask µa is that it depends only on the features sa and se to determine
whether agent a can see entity e. If we assume that an agent a’s mask µa is common knowledge, then
this means that another agent b, that can see a and e, i.e., a, e 2 Mb, can deduce whether a can also
see e. This assumption can give rise to common knowledge about entities. Figure 1 demonstrates this
for 3 agents with commonly known observation radii.

The mutual knowledge MG of a group of agents G ✓ A in state s is the set of entities that all agents
in the group can see in that state: MG := \a2G Ma. However, mutual knowledge does not imply
common knowledge. Instead, the common knowledge IG of group G in state s 2 S is the set of
entities such that all agents in G see IG , know that all other agents in G see IG , know that they know
that all other agents see IG , and so forth (Osborne & Rubinstein, 1994).

To know that another agent b also sees e 2 E , agent a must see b and b must see e, i.e., µa(sa, sb) ^
µb(sb, se). Common knowledge IG can then be formalised recursively for every agent a 2 G as:

Ia

0 := Ma , Ia

m
:=

\

b2G

�
e 2 Ib

m�1 |µa(sa, sb)
 
, IG := lim

m!1
Ia

m
. (4)

This definition formalises the above description that common knowledge is the set of entities that
a group member sees (m = 0), that it knows all other group members see as well (m = 1), and so
forth ad infinitum. In the example of Figure 1, IAB = {A,B} and IAC = IBC = IABC = ?.

16



The following lemma establishes that, in our setting, if a group of agents can all see each other, their
common knowledge is their mutual knowledge.
Lemma 1. In the setting described in this Section, and when all masks are known to all agents, the
common knowledge of a group of agents G in state s 2 S is

IG =

(
MG , if

V
a,b2G

µa(sa, sb)

?, otherwise
. (5)

Proof. The lemma follows by induction on m. The recursive definition of common knowledge (4)
holds trivially if IG = ?. Starting from the knowledge of any agent a in state s, Ia

0 = Ma, definition
(4) yields:

Ia

1 =

(
MG , if

V
b2G

µa(sa, sb)

?, otherwise
.

Next we show inductively that if all agents in group G know the mutual knowledge MG of state s at
some iteration m, that is, Ic

m

ind.
= MG , then this mutual knowledge becomes common knowledge two

iterations later. Applying the definition (4) for any agent a 2 G twice yields:

Ia

m+2 =
\

b2G

\

c2G

n
e 2 Ic

m

���µa(sa, sb) ^ µb(sb, sc)
o
=
�
e2E

�� V
b2G

�
µ
a(sa,sb)^

V
c2G

�
µ
b(sb,sc)^ e2Ic

m

�� 

ind.
=

�
e 2 MG

�� V
b,c2G

µb(sb, sc)
 
,

which is the right side of (5), and where we used
V
b2G

�
µa(sa, sb) ^

V
c2G

µb(sb, sc)
�
=

V
b,c2G

µb(sb, sc) , 8a 2 G .

Finally, applying (4) one more time to this result, yields:

Ia

m+3 =
\

b2G

n
e 2 Ib

m+2

���µa(sa, sb)
o

= Ia

m+2 .

For all m � 3, Ia

m
remains thus the right hand side of (5). As IG = limm!1 Ia

m
, we can thus

conclude that, starting at the knowledge of any agent of group G, in which all agents can see each
other, the mutual knowledge is the common knowledge.

The common knowledge can be computed using only the visible set Ma of every agent a 2 G.
Moreover, actions that have been chosen by a policy, which itself is common knowledge, and that
further depends only on common knowledge and a shared random seed, are also common knowledge.
The common knowledge of group G up to time t is thus some common prior knowledge ⇠ and the
commonly known trajectory ⌧G

t
= (⇠, zG1 ,u

G
1 , . . . , z

G
t
,uG

t
), with zG

k
= {se

k
| e 2 IG}. Knowing

all binary masks µa makes it possible to derive ⌧G
t

= IG(⌧a
t
, ⇠) from the observation trajectory

⌧a
t
= (za1 , . . . , z

a

t
) of any agent a 2 G and the shared prior knowledge ⇠. A function that conditions

on ⌧G can therefore be computed independently by every member of G.

Note that (by definition) common knowledge can only arise from entities that are observed identically
by all agents. If only one agent receives non-deterministic observations, for example induced by
sensor noise, the other agents cannot deduce the group’s mutual (and thus common) knowledge.
Our method therefore only guarantees perfect decentralisation of the learned policy in settings with
deterministic observations, like simulations and computer games. However, in Section 4.1 we show
empirically that, using a naive correlated sampling protocol similar to the theoretically optimal
Holenstein protocol (Holenstein, 2007; Bavarian et al., 2016), MACKRL can still succeed in the
presence of moderate sensor noise.

17


	Introduction
	Problem Setting
	Multi-Agent Common Knowledge Reinforcement Learning
	Pairwise MACKRL
	Training

	Experiments and Results
	Single-step matrix game
	StarCraft II micromanagement

	Related Work
	Conclusion and Future Work
	Pairwise MACKRL
	Experimental Setup - StarCraft II
	Pair controller introspection
	Holenstein's Strategy
	Common Knowledge with Entities

