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Abstract

The Sinkhorn “distance,” a variant of the Wasserstein distance with entropic regu-
larization, is an increasingly popular tool in machine learning and statistical inference.
However, the time and memory requirements of standard algorithms for computing
this distance grow quadratically with the size of the data, making them prohibitively
expensive on massive data sets. In this work, we show that this challenge is surpris-
ingly easy to circumvent: combining two simple techniques—the Nyström method and
Sinkhorn scaling—provably yields an accurate approximation of the Sinkhorn distance
with significantly lower time and memory requirements than other approaches. We
prove our results via new, explicit analyses of the Nyström method and of the stabil-
ity properties of Sinkhorn scaling. We validate our claims experimentally by showing
that our approach easily computes Sinkhorn distances on data sets hundreds of times
larger than can be handled by other techniques.
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1 Introduction

Optimal transport is a fundamental notion in probability theory and geometry (Villani,
2008), which has recently attracted a great deal of interest in the machine learning com-
munity as a tool for image recognition (Li et al., 2013; Rubner et al., 2000), domain
adaptation (Courty et al., 2014, 2017), and generative modeling (Arjovsky et al., 2017;
Bousquet et al., 2017; Genevay et al., 2016), among many other applications (see, e.g.,
Kolouri et al., 2017; Peyré and Cuturi, 2017).

The growth of this field has been fueled in part by computational advances, many
of them stemming from an influential proposal of Cuturi (2013) to modify the definition
of optimal transport to include an entropic penalty. The resulting quantity, which Cu-
turi (2013) called the Sinkhorn “distance”1 after Sinkhorn (1967), is significantly faster
to compute than its unregularized counterpart. Though originally attractive purely for
computational reasons, the Sinkhorn distance has since become an object of study in its
own right because it appears to possess better statistical properties than the unregular-
ized distance both in theory and in practice (Genevay et al., 2018; Montavon et al., 2016;
Peyré and Cuturi, 2017; Rigollet and Weed, 2018; Schiebinger et al., 2019). Computing
this distance as quickly as possible has therefore become an area of active study.

We briefly recall the setting. Let p and q be probability distributions supported on
at most n points in Rd. We denote by M(p,q) the set of all couplings between p and q,
and for any P ∈ M(p,q), we denote by H(P ) its Shannon entropy. (See Section 2.1 for
full definitions.) The Sinkhorn distance between p and q is defined as

Wη(p,q) := min
P∈M(p,q)

∑
ij

Pij‖xi − xj‖22 − η−1H(P ) , (1)

for a parameter η > 0. We stress that we use the squared Euclidean cost in our formulation
of the Sinkhorn distance. This choice of cost—which in the unregularized case corresponds
to what is called the 2-Wasserstein distance (Villani, 2008)—is essential to our results,
and we do not consider other costs here. The squared Euclidean cost is among the most
common in applications (Bousquet et al., 2017; Courty et al., 2017; Forrow et al., 2018;
Genevay et al., 2018; Schiebinger et al., 2019).

Many algorithms to compute Wη(p,q) are known. Cuturi (2013) showed that a simple
iterative procedure known as Sinkhorn’s algorithm had very fast performance in practice,
and later experimental work has shown that greedy and stochastic versions of Sinkhorn’s
algorithm perform even better in certain settings (Altschuler et al., 2017; Genevay et al.,
2016). These algorithms are notable for their versatility: they provably succeed for any
bounded, nonnegative cost. On the other hand, these algorithms are based on matrix
manipulations involving the n × n cost matrix C, so their running times and memory
requirements inevitably scale with n2. In experiments, Cuturi (2013) and Genevay et al.
(2016) showed that these algorithms could reliably be run on problems of size n ≈ 104.

Another line of work has focused on obtaining better running times when the cost
matrix has special structure. A preeminent example is due to Solomon et al. (2015),
who focus on the Wasserstein distance on a compact Riemannian manifold, and show

1We use quotations since it is not technically a distance; see (Cuturi, 2013, Section 3.2) for details. The
quotes are dropped henceforth.
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that an approximation to the entropic regularized Wasserstein distance can be obtained
by repeated convolution with the heat kernel on the domain. Solomon et al. (2015) also
establish that for data supported on a grid in Rd, significant speedups are possible by
decomposing the cost matrix into “slices” along each dimension (see Peyré and Cuturi,
2017, Remark 4.17). While this approach allowed Sinkhorn distances to be computed on
significantly larger problems (n ≈ 108), it does not extend to non-grid settings. Other
proposals include using random sampling of auxiliary points to approximate semi-discrete
costs (Tenetov et al., 2018) or performing a Taylor expansion of the kernel matrix in the
case of the squared Euclidean cost (Altschuler et al., 2018). These approximations both
focus on the η →∞ regime, when the regularization term in (1) is very small, and do not
apply to the moderately regularized case η = O(1) typically used in practice. Moreover,
the running time of these algorithms scales exponentially in the ambient dimension, which
can be very large in applications.

1.1 Our contributions

We show that a simple algorithm can be used to approximate Wη(p,q) quickly on massive
data sets. Our algorithm uses only known tools, but we give novel theoretical guarantees
that allow us to show that the Nyström method combined with Sinkhorn scaling provably
yields a valid approximation algorithm for the Sinkhorn distance at a fraction of the
running time of other approaches.

We establish two theoretical results of independent interest: (i) New Nyström ap-
proximation results showing that instance-adaptive low-rank approximations to Gaussian
kernel matrices can be found for data lying on a low-dimensional manifold (Section 3).
(ii) New stability results about Sinkhorn projections, establishing that a sufficiently good
approximation to the cost matrix can be used (Section 4).

1.2 Prior work

Computing the Sinkhorn distance efficiently is a well studied problem in a number of com-
munities. The Sinkhorn distance is so named because, as was pointed out by Cuturi (2013),
there is an extremely simple iterative algorithm due to Sinkhorn (1967) which converges
quickly to a solution to (1). This algorithm, which we call Sinkhorn scaling, works very well
in practice and can be implemented using only matrix-vector products, which makes it eas-
ily parallelizable. Sinkhorn scaling has been analyzed many times (Altschuler et al., 2017;
Dvurechensky et al., 2018; Franklin and Lorenz, 1989; Kalantari et al., 2008; Linial et al.,
1998), and forms the basis for the first algorithms for the unregularized optimal transport
problem that run in time nearly linear in the size of the cost matrix (Altschuler et al.,
2017; Dvurechensky et al., 2018). Greedy and stochastic algorithms related to Sinkhorn
scaling with better empirical performance have also been explored (Altschuler et al., 2017;
Genevay et al., 2016). Another influential technique, due to Solomon et al. (2015), exploits
the fact that, when the distributions are supported on a grid, Sinkhorn scaling performs
extremely quickly by decomposing the cost matrix along lower-dimensional slices.

Other algorithms have sought to solve (1) by bypassing Sinkhorn scaling entirely.
Blanchet et al. (2018) proposed to solve (1) directly using second-order methods based on
fast Laplacian solvers (Allen-Zhu et al., 2017; Cohen et al., 2017). Blanchet et al. (2018)
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and Quanrud (2019) have noted a connection to packing linear programs, which can also
be exploited to yield near-linear time algorithms for unregularized transport distances.

Our main algorithm relies on constructing a low-rank approximation of a Gaussian
kernel matrix from a small subset of its columns and rows. Computing such approxima-
tions is a problem with an extensive literature in machine learning, where it has been
studied under many different names, e.g., Nyström method (Williams and Seeger, 2001),
sparse greedy approximations (Smola and Schölkopf, 2000), incomplete Cholesky decom-
position (Fine and Scheinberg, 2001), Gram-Schmidt orthonormalization (Shawe-Taylor
and Cristianini, 2004) or CUR matrix decompositions (Mahoney and Drineas, 2009). The
approximation properties of these algorithms are now well understood (Alaoui and Ma-
honey, 2015; Bach, 2013; Gittens, 2011; Mahoney and Drineas, 2009); however, in this
work, we require significantly more accurate bounds than are available from existing re-
sults as well as adaptive bounds for low-dimensional data. To establish these guarantees,
we follow an approach based on approximation theory (see, e.g., Belkin, 2018; Rieger and
Zwicknagl, 2010; Wendland, 2004), which consists of analyzing interpolation operators for
the reproducing kernel Hilbert space corresponding to the Gaussian kernel.

Finally, this paper adds to recent work proposing the use of low-rank approximation
for Sinkhorn scaling (Altschuler et al., 2018; Tenetov et al., 2018). We improve upon
those papers in several ways. First, although we also exploit the idea of a low-rank
approximation to the kernel matrix, we do so in a more sophisticated way that allows for
automatic adaptivity to data with low-dimensional structure. These new approximation
results are the key to our adaptive algorithm, and this yields a significant improvement in
practice. Second, the analyses of Altschuler et al. (2018) and Tenetov et al. (2018) only
yield an approximation to Wη(p,q) when η → ∞. In the moderately regularized case
when η = O(1), which is typically used in practice, neither the work of Altschuler et al.
(2018) nor of Tenetov et al. (2018) yields a rigorous error guarantee.

1.3 Outline of paper

Section 2 recalls preliminaries, and then formally states our main result and gives pseu-
docode for our proposed algorithm. The core of our theoretical analysis is in Sections 3
and 4. Section 3 presents our new results for Nyström approximation of Gaussian kernel
matrices and Section 4 presents our new stability results for Sinkhorn scaling. Section 5
then puts these results together to conclude a proof for our main result (Theorem 1).
Finally, Section 6 contains experimental results showing that our proposed algorithm out-
performs state-of-the-art methods. The appendix contains proofs of several lemmas that
are deferred for brevity of the main text.

2 Main result

2.1 Preliminaries and notation

Problem setup. Throughout, p and q are two probability distributions supported on
a set X := {x1, . . . , xn} of points in Rd, with ‖xi‖2 6 R for all i ∈ [n] := {1, . . . , n}.
We define the cost matrix C ∈ Rn×n by Cij = ‖xi − xj‖22. We identify p and q with
vectors in the simplex ∆n := {v ∈ Rn>0 :

∑n
i=1 vi = 1} whose entries denote the weight
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each distribution gives to the points of X. We denote by M(p,q) the set of couplings
between p and q, identified with the set of P ∈ Rn×n>0 satisfying P1 = p and P>1 = q,
where 1 denotes the all-ones vector in Rn. The Shannon entropy of a non-negative matrix
P ∈ Rn×n>0 is denoted H(P ) :=

∑
ij Pij log 1

Pij
, where we adopt the standard convention

that 0 log 1
0 = 0.

Our goal is to approximate the Sinkhorn distance with parameter η > 0:

Wη(p,q) := min
P∈M(p,q)

∑
ij

Pij‖xi − xj‖22 − η−1H(P )

to some additive accuracy ε > 0. By strict convexity, this optimization problem has a
unique minimizer, which we denote henceforth by P η. For shorthand, in the sequel we
write

VM (P ) := 〈M,P 〉 − η−1H(P ),

for a matrix M ∈ Rn×n. In particular, we have Wη(p,q) = minP∈M(p,q) VC(P ). For the
purpose of simplifying some bounds, we assume throughout that n > 2, η ∈ [1, n], R > 1,
ε 6 1.

Sinkhorn scaling. Our approach is based on Sinkhorn scaling, an algorithm due to Sinkhorn
(1967) and popularized for optimal transport by Cuturi (2013). We recall the following
fundamental definition.

Definition 1. Given p,q ∈ ∆n and K ∈ Rn×n with positive entries, the Sinkhorn projec-
tion ΠSM(p,q)(K) of K ontoM(p,q) is the unique matrix inM(p,q) of the form D1KD2

for positive diagonal matrices D1 and D2.

Since p and q remain fixed throughout, we abbreviate ΠSM(p,q) by ΠS except when we

want to make the feasible set M(p,q) explicit.

Proposition 1 (Wilson, 1969). Let K have strictly positive entries, and let logK be the
matrix defined by (logK)ij := log(Kij). Then

ΠSM(p,q)(K) = argmin
P∈M(p,q)

〈− logK,P 〉 −H(P ) .

Note that the strict convexity of −H(P ) and the compactness of M(p,q) implies that the
minimizer exists and is unique.

This yields the following simple but key connection between Sinkhorn distances and
Sinkhorn scaling.

Corollary 1.
P η = ΠSM(p,q)(K) ,

where K is defined by Kij = e−ηCij .

Sinkhorn (1967) proposed to find ΠS(K) by alternately renormalizing the rows and
columns of K. This well known algorithm has excellent performance in practice, is simple
to implement, and is easily parallelizable since it can be written entirely in terms of matrix-
vector products (Peyré and Cuturi, 2017, Section 4.2). Pseudocode for the version of the
algorithm we use can be found in Appendix A.1.
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Notation. We define the probability simplices ∆n := {p ∈ Rn>0 : p>1 = 1} and
∆n×n := {P ∈ Rn×n>0 : 1>P1 = 1}. Elements of ∆n×n will be called joint distri-
butions. The Kullback-Leibler divergence between two joint distributions P and Q is
KL(P‖Q) :=

∑
ij Pij log

Pij
Qij

.

Throughout the paper, all matrix exponentials and logarithms will be taken entrywise,
i.e., (eA)ij := eAij and (logA)ij := logAij for A ∈ Rn×n.

Given a matrix A, we denote by ‖A‖op its operator norm (i.e., largest singular value),
by ‖A‖∗ its nuclear norm (i.e., the sum of its singular values), by ‖A‖1 its entrywise `1 norm
(i.e., ‖A‖1 :=

∑
ij |Aij |), and by ‖A‖∞ its entrywise `∞ norm (i.e., ‖A‖∞ := maxij |Aij |).

We abbreviate “positive semidefinite” by “PSD.”
The notation f = O(g) means that f 6 Cg for some universal constant C, and

g = Ω(f) means f = O(g). The notation Õ(·) omits polylogarithmic factors depending on
R, η, n, and ε.

2.2 Main result and proposed algorithm

Pseudocode for our proposed algorithm is given in Algorithm 1. Nys-Sink (pronounced
“nice sink”) computes a low-rank Nyström approximation of the kernel matrix via a col-
umn sampling procedure. While explicit low-rank approximations of Gaussian kernel
matrices can also be obtained via Taylor explansion (Cotter et al., 2011), our approach
automatically adapts to the properties of the data set, leading to much better performance
in practice.

As noted in Section 1, the Nyström method constructs a low-rank approximation to a
Gaussian kernel matrix K = e−ηC based on a small number of its columns. In order to
design an efficient algorithm, we aim to construct such an approximation with the smallest
possible rank. The key quantity for understanding the error of this algorithm is the so-
called effective dimension (also sometimes called the “degrees of freedom”) of the kernel
K (Friedman et al., 2001; Musco and Musco, 2017; Zhang, 2005).

Definition 2. Let λj(K) denote the jth largest eigenvalue of K (with multiplicity). Then
the effective dimension of K at level τ > 0 is

deff(τ) :=

n∑
j=1

λj(K)

λj(K) + τn
. (2)

The effective dimension deff(τ) indicates how large the rank of an approximation K̃
to K must be in order to obtain the guarantee ‖K̃ − K‖op 6 τn. As we will show in
Section 5, below, it will suffice for our application to obtain an approximate kernel K̃
satisfying ‖K̃ − K‖op 6 ε′

2 e
−4ηR2

, where ε′ = Õ(εR−2). We are therefore motivated to
define the following quantity, which informally captures the smallest possible rank of an
approximation of this quality.

Definition 3. Given X = {x1, . . . , xn} ⊆ Rd with ‖xi‖2 6 R for all i ∈ [n], η > 0, and
ε′ ∈ (0, 1), the approximation rank is

r∗(X, η, ε′) := deff

(
ε′

2ne
−4ηR2

)
where deff(·) is the effective rank for the kernel matrix K := e−ηC .
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As we show below, we adaptively construct an approximate kernel K̃ whose rank is
at most a logarithmic factor bigger than r∗(X, η, ε′) with high probability. We also give
concrete bounds on r∗(X, η, ε′) below.

Our proposed algorithm makes use of several subroutines. The AdaptiveNyström
procedure in line 2 combines an algorithm of Musco and Musco (2017) with a doubling
trick that enables automatic adaptivity; this is described in Section 3. It outputs the
approximate kernel K̃ and its rank r. The Sinkhorn procedure in line 3 is the Sinkhorn
scaling algorithm for projecting K̃ onto M(p,q), pseudocode for which can be found in
Appendix A.1. We use a variant of the standard algorithm, which returns both the scaling
matrices and an approximation of the cost of an optimal solution. The Round procedure
in line 4 is Algorithm 2 of Altschuler et al. (2017); for completeness, pseudocode can be
found here in Appendix A.2.

We emphasize that neither D1K̃D2 nor P̂ (which is of the form D′1K̃D
′
2 + vwT for

diagonal matrices D′1, D
′
2 and vectors v, w) are ever represented explicitly, since this would

take Ω(n2) time. Instead, we maintain these matrices in low-rank factorized forms. This
enables Algorithm 1 to be implemented efficiently in o(n2) time, since the procedures
Sinkhorn and Round can both be implemented such that they depend on K̃ only through
matrix-vector multiplications with K̃. Moreover, we also emphasize that all steps of
Algorithm 1 are easily parallelizable since they can be re-written in terms of matrix-vector
multiplications.

We note also that although the present paper focuses specifically on the squared Eu-
clidean cost c(xi, xj) = ‖xi − xj‖22 (corresponding to the 2-Wasserstein case of optimal
transport pervasively used in applications; see intro), our algorithm Nys-Sink readily
extends to other cases of optimal transport. Indeed, since the Nyström method works
not only for Gaussian kernel matrices Kij = e−η‖xi−xj‖

2
2 , but in fact more generally for

any PSD kernel matrix, our algorithm can be used on any optimal transport instance for
which the corresponding kernel matrix Kij = e−ηc(xi,xj) is PSD.

Input: X = {x1, . . . , xn} ⊆ Rd, p,q ∈ ∆n, ε, η > 0
Output: P̂ ∈M(p,q), Ŵ ∈ R, r ∈ N

1: ε′ ← min(1, εη

50(4R2η+log
n
ηε )

)

2: (K̃, r)← AdaptiveNyström(X, η, ε
′

2 e
−4ηR2

) . Compute low-rank approximation

3: (D1, D2, Ŵ )← Sinkhorn(K̃,p,q, ε′) . Approximate Sinkhorn projection and cost
4: P̂ ← Round(D1K̃D2,p,q) . Round to feasible set
5: return P̂ , Ŵ

Algorithm 1: Nys-Sink

Our main result is the following.

Theorem 1. Let ε, δ ∈ (0, 1). Algorithm 1 runs in Õ
(
nr
(
r + ηR4

ε

))
time, uses O(n(r+

d)) space, and returns a feasible matrix P̂ ∈M(p,q) in factored form and scalars Ŵ ∈ R
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and r ∈ N, where

|VC(P̂ )−Wη(p,q)| 6 ε, (3a)

KL(P̂‖P η) 6 ηε, (3b)

|Ŵ −Wη(p,q)| 6 ε, (3c)

and, with probability 1− δ,

r 6 c · r∗(X, η, ε′) log n
δ , (3d)

for a universal constant c and where ε′ = Ω̃(εR−2).

We note that, while our algorithm is randomized, we obtain a deterministic guarantee
that P̂ is a good solution. We also note that runtime dependence on the radius R—which
governs the scale of the problem—is inevitable since we seek an additive guarantee.

Crucially, we show in Section 3 that r∗—which controls the running time of the algo-
rithm with high probability by (3d)—adapts to the intrinsic dimension of the data. This
adaptivity is crucial in applications, where data can have much lower dimension than the
ambient space. We informally summarize this behavior in the following theorem.

Theorem 2 (Informal). 1. There exists an universal constant c > 0 such that, for any
n points in a ball of radius R in Rd,

r∗(X, η, ε′) 6 (c(ηR2 + log n
ε′η ))d .

2. For any k-dimensional manifold Ω satisfying certain technical conditions and η > 0,
there exists a constant cΩ,η such that for any n points lying on Ω,

r∗(X, η, ε′) 6 cΩ,η(log n
ε′ )

5k/2 .

The formal versions of these bounds appear in Section 3. The second bound is signif-
icantly better than the first when k � d, and clearly shows the benefits of an adaptive
procedure.

Combining Theorems 1 and 2 yields the following time and space complexity for our
algorithm.

Corollary 2 (Informal). If X consists of n points lying in a ball of radius R in Rd, then
with high probability Algorithm 1 requires

Õ

(
n · 1

ε

(
cηR2 + c log

n

ε

)2d+1
)

time and Õ

(
n ·
(
cηR2 + c log

n

ε

)d)
space.

Moreover, if X lies on a k-dimensional manifold Ω, then with high probability Algo-
rithm 1 requires

Õ

(
n ·

cΩ,η

ε

(
log

n

ε

)5k
)

time and Õ

(
n · cΩ,η

(
log

n

ε

)5k/2
)

space.
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Altschuler et al. (2017) noted that an approximation to the unregularized optimal
transport cost is obtained by taking η = Θ

(
ε−1 log n

)
. Thus it follows that Algo-

rithm 1 computes an additive ε approximation to the unregularized transport distance

in O
(
n
(
ε−1R2 log n

)O(d)
)

time with high probability. However, a theoretically better

running time for that problem can be obtained by a simple but impractical algorithm
based on rounding the input distributions to an ε-net and then running Sinkhorn scaling
on the resulting instance.2

3 Kernel approximation via the Nyström method

In this section, we describe the algorithm AdaptiveNyström used in line 2 of Algorithm 1
and bound its runtime complexity, space complexity, and error. We first establish basic
properties of Nyström approximation and give pseudocode for AdaptiveNyström (Sec-
tions 3.1 and 3.2) before stating and proving formal versions of the bounds appearing in
Theorem 2 (Sections 3.3 and 3.4).

3.1 Preliminaries: Nyström and error in terms of effective dimension

Given points X = {x1, . . . , xn} with ‖xi‖2 6 R for all i ∈ [n], let K ∈ Rn×n denote the
matrix with entries Kij := kη(xi, xj), where kη(x, x

′) := e−η‖x−x
′‖2 . Note that kη(x, x

′)

is the Gaussian kernel e−‖x−x
′‖2/(2σ2) between points x and x′ with bandwith parameter

σ2 = 1
2η . For r ∈ N, we consider an approximation of the matrix K that is of the form

K̃ = V A−1V >,

where V ∈ Rn×r and A ∈ Rr×r. In particular we will consider the approximation given by
the Nyström method which, given a set Xr = {x̃1, . . . , x̃r} ⊂ X, constructs V and A as:

Vij = kη(xi, x̃j), Ajj′ = kη(x̃j , x̃
′
j),

for i ∈ [n] and j, j′ ∈ [r]. Note that the matrix K̃ is never computed explicitly. Indeed,
our proposed Algorithm 1 only depends on K̃ through computing matrix-vector products
K̃v, where v ∈ Rn, and these can be computed efficiently as

K̃v = V (L−>(L−1(V >v))), (4)

where L ∈ Rr×r is the lower triangular matrix satisfying LL> = A obtained by the
Cholesky decomposition of A, and where we compute products of the form L−1v (resp.
L−>v) by solving the triangular system Lx = v (resp. L>x = v). Once a Cholesky decom-
position of A has been obtained—at computational cost O(r3)—matrix-vector products
can therefore be computed in time O(nr).

We now turn to understanding the approximation error of this method. In this paper
we will sample the set Xr via approximate leverage-score sampling. In particular, we do
this via Algorithm 2 of Musco and Musco (2017). The following lemma shows that taking
the rank r to be on the order of the effective dimension deff(τ) (see Definition 3) is sufficient
to guarantee that K̃ approximates K to within error τ in operator norm.

2We are indebted to Piotr Indyk for inspiring this remark.
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Lemma 1. Let τ, δ > 0. Consider sampling Xr from X according to Algorithm 2 of Musco
and Musco (2017), for some positive integer r > 400deff(τ) log 3n

δ . Then:

1. Sampling Xr and forming the matrices V and L (which define K̃, see (4)) requires
O(nr2 + r3) time and O(n(r + d)) space.

2. Computing matrix-vector products with K̃ can be done in time O(nr).

3. With probability at least 1− δ, ‖K − K̃‖op 6 τn.

Proof. The result follows directly from Theorem 7 of Musco and Musco (2017) and the
fact that deff(τ) 6 rank(K) 6 n for any τ > 0.

3.2 Adaptive Nyström with doubling trick

Here we give pseudocode for the AdaptiveNyström subroutine in Algorithm 2. The
algorithm is based on a simple doubling trick, so that the rank of the approximate kernel
can be chosen adaptively. The observation enabling this trick is that given a Nyström
approximation K̃ to the actual kernel matrix K = e−η‖xi−xj‖

2
2 , the entrywise error ‖K −

K̃‖∞ of the approximation can be computed exactly in O(nr2) time. The reason for this
is that (i) the entrywise norm ‖K − K̃‖max is equal to the maximum entrywise error on
the diagonal maxi∈[n] |Kii− K̃ii| = 1−mini∈[n] K̃ii, proven below in Lemma 2; and (ii) the

quantity 1−mini∈[n] K̃ii is easy to compute quickly.
Below, line 4 in Algorithm 2 denotes the approximate leverage-score sampling scheme

of Musco and Musco (2017, Algorithm 2) when applied to the Gaussian kernel matrix
Kij := e−η‖xi−xj‖

2
. We note that the BLESS algorithm of Rudi et al. (2018) allows for

re-using previously sampled points when doubling the sampling rank. Although this does
not affect the asymptotic runtime, it may lead to speedups in practice.

Input: X = {x1, . . . , xn} ∈ Rd×n, η > 0, τ > 0
Output: K̃ ∈ Rn×n, r ∈ N

1: err← +∞, r ← 1
2: while err > τ do
3: r ← 2r
4: K̃ ← Nyström(X, η, r)
5: err← 1−mini∈[n] K̃ii

6: end while
7: return (K̃, rank(K̃))

Algorithm 2: AdaptiveNyström

Lemma 2. Let (K̃, r) denote the (random) output of AdaptiveNyström(X, η, τ). Then:

1. ‖K − K̃‖∞ 6 τ .

2. The algorithm used O(nr) space and terminated in O(nr2) time.

11



3. There exists a universal constant c such that simultaneously for every δ > 0,

P
(
r 6 c · deff

(
τ
n

)
log
(
n
δ

) )
> 1− δ.

Proof. By construction, the Nyström approximation K̃ is a PSD approximation of K in
the sense that K � K̃ � 0, see e.g., Musco and Musco (2017, Theorem 3). Since Sylvester’s
criterion for 2× 2 minors guarantees that the maximum modulus entry of a PSD matrix
is always achieved on the diagonal, it follows that ‖K − K̃‖∞ = maxi∈[n] |Kii− K̃ii|. Now

each Kii = 1 by definition of K, and each K̃ii ∈ [0, 1] since K � K̃ � 0. Therefore we
conclude

‖K − K̃‖∞ = 1−min
i∈[n]

K̃ii.

This implies Item 1. Item 2 follows upon using the space and runtime complexity bounds
in Lemma 1 and noting that the final call to Nyström is the dominant for both space and
runtime. Item 3 is immediate from Lemma 1 and the fact that ‖K − K̃‖∞ 6 ‖K − K̃‖op

(Lemma J).

3.3 General results: data points lie in a ball

In this section we assume no structure on X apart from the fact that X ⊆ Bd
R where Bd

R

is a ball of radius R in Rd centered around the origin, for some R > 0 and d ∈ N. First we
characterize the eigenvalues of K in terms of η, d,R, and then we use this to bound deff.

Theorem 3. Let X := {x1, . . . xn} ⊆ Bd
R, and let K ∈ Rn×n be the matrix with entries

Kij := e−η‖xi−xj‖
2
. Then:

1. For each t ∈ N, t > (2e)d, λt+1(K) 6 ne
− d

2e
t1/d log d t1/d

4e2ηR2 .

2. For each τ ∈ (0, 1], deff(τ) 6 3
(
6 + 41

d ηR
2 + 3

d log 1
τ

)d
.

We sketch the proof of Theorem 3 here; details are deferred to Appendix B.5 for
brevity of the main text. We begin by recalling the argument of Cotter et al. (2011) that
truncating the Taylor expansion of the Gaussian kernel guarantees for each positive integer
T the existence of a rank MT :=

(
d+T
T

)
matrix K̃T satisfying

‖K − K̃T ‖∞ 6
(2ηR2)T+1

(T + 1)!
.

On the other hand, by the Eckart-Young-Mirsky Theorem,

λMT+1 = inf
K̄T∈Rn×n, rank(K̄T )6MT

‖K − K̄T ‖op.

Therefore by combining the above two displays, we conclude that

λMT+1 6 ‖K − K̃T ‖op 6 n‖K − K̃T ‖∞ 6 n
(2ηR2)T+1

(T + 1)!
.

Proofs of the two claims follow by bounding this quantity. Details are in Appendix B.5.
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Theorem 3 characterizes the eigenvalue decay and effective dimension of Gaussian
kernel matrices in terms of the dimensionality of the space, with explicit constants and
explicit dependence on the width parameter η and the radius R of the ball (see Belkin,
2018, for asymptotic results). This yields the following bound on the optimal rank for
approximating Gaussian kernel matrices of data lying in a Euclidean ball.

Corollary 3. Let ε′ ∈ (0, 1) and η > 0. If X consists of n points lying in a ball of radius
R around the origin in Rd, then

r∗(X, η, ε′) 6 3

(
6 +

53

d
ηR2 +

3

d
log

2n

ε′

)d
Proof. Directly from the explicit bound of Theorem 3 and the definition of r∗(X, η, ε′).

3.4 Adaptivity: data points lie on a low dimensional manifold

In this section we consider X ⊂ Ω ⊂ Rd, where Ω is a low dimensional manifold. In
Theorem 4 we give a result about the approximation properties of the Gaussian kernel
over manifolds and a bound on the eigenvalue decay and effective dimension of Gaussian
kernel matrices. We prove that the effective dimension is logarithmic in the precision
parameter τ to a power depending only on the dimensionality k of the manifold (to be
contrasted to the dimensionality of the ambient space d� k).

Let Ω ⊂ Rd be a smooth compact manifold without boundary, and k < d. Let
(Ψj , Uj)j∈[T ], with T ∈ N, be an atlas for Ω, where without loss of generality, (Uj)j are

open sets covering Ω, Ψj : Uj → Bk
rj are smooth maps with smooth inverses, mapping

Uj bijectively to Bk
rj , balls of radius rj centered around the origin of Rk. We assume the

following quantitative control on the smoothness of the atlas.

Assumption 1. There exists Q > 0 such that

sup
u∈Bkrj

‖DαΨ−1
j (u)‖ 6 Q|α|, α ∈ Nk, j ∈ [T ],

where |α| =
∑k

j=1 αj and Dα = ∂|α|

∂u
α1
1 ...∂u

αk
k

, for α ∈ Nk.

Before stating our result, we need to introduce the following helpful definition. Given
f : Rd → R, and X = {x1, . . . , xn} ⊂ Ω, denote by f̂X the function

f̂X(x) :=
n∑
i=1

cikη(x, xi), c = K−1vf ,

with vf = (f(x1), . . . , f(xn)) and K ∈ Rn×n the kernel matrix over X, i.e. Kij =

kη(xi, xj). Note that f̂X(xi) = f(xi) by construction (Wendland, 2004). We have the
following result.

Theorem 4. Let Ω ⊂ Bd
R ⊂ Rd be a smooth compact manifold without boundary satisfying

Assumption 1. Let X ⊂ Ω be a set of cardinality n ∈ N. Then the following holds
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1. Let hX,Ω = supx′∈Ω infx∈X ‖x− x′‖. Let H be the RKHS associated to the Gaussian
kernel of a given width. There exist c, h > 0 not depending on X,n, such that, when
hX,Ω 6 h the following holds

|f(x)− f̂X(x)| 6 e−ch
−2/5
X,Ω ‖f‖H, ∀f ∈ H, x ∈ Ω.

2. Let K be the Gaussian kernel matrix associated to X. Then there exists a constant
c not depending on X or n, for which

λp+1(K) 6 ne−cp
2
5k , ∀p ∈ [n].

3. Let τ ∈ (0, 1]. Let K be the Gaussian kernel matrix associated to X and deff(τ) the
effective dimension computed on K. There exists c1, c2 not depending on X, n, or
τ , for which

deff(τ) 6

(
c1 log

1

τ

)5k/2

+ c2.

Proof. First we recall some basic multi-index notation and introduce Sobolev Spaces.
When α ∈ Nd0, x ∈ Rd, g : Rd → R, we write

xα =
∏
i

xαii , |α| =
∑
i

αi, α! =
∏
i

αi!, Dα =
∂|α|

∂xα1
1 . . . ∂xαnn

.

Next, we recall the definition of Sobolev spaces. For m, p ∈ N and B ⊆ Rk, define the
norm ‖ · ‖Wm

p (B) by

‖f‖pWm
p (B) =

∑
|α|6m

‖Dαf‖pLp(B),

and the space of Wm
p (B) as Wm

p (B) = C∞(B)
‖·‖Wm

p (B) .
For any j ∈ [T ], u ∈ H we have the following. By Lemma O, we have that there exists

a constant Cd,k,R,rj such that for any q > k,

‖u ◦Ψ−1
j ‖W q

2 (Bkrj ) 6 Cd,k,R,rjq
k(2qdQ)q‖u‖

W
q+(d+1)/2
2 (BdR)

.

Now note that by Theorem 7.5 of Rieger and Zwicknagl (2010) we have that there exists
a constant Cη such that

‖u‖
W
q+(d+1)/2
2 (BdR)

6 ‖u‖
W
q+(d+1)/2
2 (Rd)

6 (Cη)
q+(d+1)/2

(
q +

d+ 1

2

) q
2

+ d+1
4

‖u‖H.

Then, since qm 6 mm(1 +m)q, for any q > 1, we have

‖u ◦Ψ−1
j ‖W q

2 (Bkrj ) 6 Cqd,k,R,rj ,Q,ηq
3q
2 ‖u‖H,

for a suitable constant Cd,k,R,rj ,Q,η depending on Cd,k,R,rj ,Q, Cη and (d+ 1)/2.
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In particular we want to study ‖u‖L∞(Ω), for u = f − f̂X . We have

‖u‖L∞(Ω) = sup
j∈[T ]

‖u‖L∞(Uj) = sup
j∈[T ]

‖u ◦Ψ−1
j ‖L∞(Bkrj ).

Now for j ∈ [T ], denote by Zj the set Zj = {Ψj(x)|x ∈ X ∩ Uj}. By construction of

u = f − f̂X , we have
(u ◦Ψ−1

j )|Zj = u|X∩Uj = 0.

Define hZj ,Bkrj
= supz∈Bkrj

infz′∈Zj ‖z − z′‖. We have established that there exists C > 0,

such that ‖u ◦ Ψ−1
j ‖W q

2 (Bkrj ) 6 Cqq
3
2
q‖u‖H, and by construction (u ◦ Ψj)|Zj = 0. We can

therefore apply Theorem 3.5 of Rieger and Zwicknagl (2010) to obtain that there exists a
cj , hj > 0, for which, when hZj ,Bkrj

6 hj , then

‖u ◦Ψ−1
j ‖L∞(Bkrj ) 6 exp

(
−cjh−2/5

Zj ,Bkrj

)
‖u‖H.

Now, denote by h̄S,U = supx′∈U infx∈S d(x, x′) with d the geodesic distance over the man-
ifold Ω. By applying Theorem 8 of Fuselier and Wright (2012), we have that there
exist C and h0 not depending on X or n such that, when h̄X,Ω 6 h0, the inequality
h̄Xj∩Uj ,Uj 6 Ch̄X,Ω holds for any j ∈ [T ]. Moreover, since by Theorem 6 of the same
paper ‖x− x′‖ 6 d(x, x′) 6 C1‖x− x′‖, for C1 > 1 and x, x′ ∈ Ω, then

hZj ,Bkrj
6 h̄Xj∩Uj ,Uj 6 Ch̄X,Ω 6 CC1hX,Ω.

Finally, defining c1 = c(2 maxj Cj)
−2/5, h = C−1

1 min(h0, C
−1 minj hj), when hX,Ω 6 h,

‖f − f̂X‖L∞(Ω) = max
j∈[T ]

‖u ◦Ψ−1
j ‖L∞(Bkrj ) 6 e−c1h

−2/5
X,Ω ‖f‖H, ∀f ∈ H, x ∈ Ω.

The proof of Points 2 and 3 now proceeds as in Theorem 3. Details are deferred to
Appendix B.5.

Point 1 of the result above is new, to our knowledge, and extends interpolation results
on manifolds (Fuselier and Wright, 2012; Hangelbroek et al., 2010; Wendland, 2004), from
polynomial to exponential decay, generalizing a technique of Rieger and Zwicknagl (2010)
to a subset of real analytic manifolds. Points 2 and 3 are a generalization of Theorem 3 to
the case of manifolds. In particular, the crucial point is that now the eigenvalue decay and
the effective dimension depend on the dimension of the manifold k and not the ambient
dimension d � k. We think that the factor 5/2 in the exponent of the eigenvalues and
effective dimension is a result of the specific proof technique used and could be removed
with a refined analysis, which is out of the scope of this paper.

We finally conclude the desired bound on the optimal rank in the manifold case.

Corollary 4. Let ε′ ∈ (0, 1), η > 0, and let Ω ⊂ Rd be a manifold of dimensionality k 6 d
satisfying Assumption 1. There exists cΩ,η > 0 not depending on X or n such that

r∗(X, η, ε′) 6 cΩ,η

(
log

n

ε′

)5k/2
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Proof. By the definition of r∗(X, η, ε′) and the bound of Theorem 4, we have

r∗(X, η, ε′) 6
(
c1(4ηR2 + log 2n

ε′ )
)5k/2

+ c2 .

Since log 2n
ε′ > 1, we may set cΩ,η = max

{
(8c1ηR

2)5k/2, c2

}
to obtain the claim.

4 Sinkhorn scaling an approximate kernel matrix

The main result of this section, presented next, gives both a runtime bound and an error
bound on the approximate Sinkhorn scaling performed in line 3 of Algorithm 1.3 The
runtime bound shows that we only need a small number of iterations to perform this
approximate Sinkhorn projection on the approximate kernel matrix. The error bound
shows that the objective function VC(·) in (1) is stable with respect to both (i) Sinkhorn
projecting an approximate kernel matrix K̃ instead of the true kernel matrix K, and (ii)
only performing an approximate Sinkhorn projection.

The results of this section apply to any bounded cost matrix C ∈ Rn×n, not just the
cost matrix Cij = ‖xi − xj‖22 for the squared Euclidean distance. To emphasize this, we
state this result and the rest of this section in terms of an arbitrary such matrix C. Note
that ‖C‖∞ 6 4R2 when Cij = ‖xi − xj‖22 and all points lie in a Euclidean ball of radius
R. We therefore state all results in this section for ε′ := min(1, εη

50(‖C‖∞η+log
n
ηε )

).

Theorem 5. If K = e−ηC and if K̃ ∈ Rn×n>0 satisfies ‖ logK − log K̃‖∞ 6 ε′, then Line 3

of Algorithm 1 outputs D1, D2, and Ŵ such that P̃ := D1K̃D2 satisfies ‖P̃1 − p‖1 +
‖P̃>1− q‖1 6 ε′ and

|VC(P η)− VC(P̃ )| 6 ε

2
(5a)

|Ŵ − VC(P̃ )| 6 ε

2
(5b)

Moreover, if matrix-vector products can be computed with K̃ and K̃> in time Tmult, then
this takes time Õ((n+ Tmult)η‖C‖∞ε′−1).

The running time bound in Theorem 5 for the time required to produce D1 and D2

follows directly from prior work which has shown that Sinkhorn scaling can produce an
approximation to the Sinkhorn projection of a positive matrix in time nearly independent
of the dimension n.

Theorem 6 (Altschuler et al., 2017; Dvurechensky et al., 2018). Given a matrix K̃ ∈
Rn×n>0 , the Sinkhorn scaling algorithm computes diagonal matrices D1 and D2 such that

P̃ := D1K̃D2 satisfies ‖P̃1 − p‖1 + ‖P̃>1 − q‖1 6 δ in O(δ−1 log n
δminij K̃ij

) iterations,

each of which requires O(1) matrix-vector products with K̃ and O(n) additional processing
time.

3Pseudocode for the variant we employ can be found in Appendix A.1.
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Lemma A establishes that computing the approximate cost Ŵ requires O(n+ Tmult)
additional time. To obtain the running time claimed in Theorem 5, it therefore suffices to
use the fact that log 1

minij K̃ij
6 log 1

minij Kij
+ ‖ logK − log K̃‖∞ 6 η‖C‖∞ + ε′.

The remainder of the section is devoted to proving the error bounds in Theorem 5.
Subsection 4.1 proves stability bounds for using an approximate kernel matrix, Subsec-
tion 4.2 proves stability bounds for using an approximate Sinkhorn projection, and then
Subsection 4.3 combines these results to prove the error bounds in Theorem 5.

4.1 Using an approximate kernel matrix

Here we present the first ingredient for the proof of Theorem 5: that Sinkhorn projection
is Lipschitz with respect to the logarithm of the matrix to be scaled. If we view Sinkhorn
projection as a saddle-point approximation to a Gibbs distribution over the vertices of
M(p,q) (see discussion by Kosowsky and Yuille, 1994a), then this result is analogous
to the fact that the total variation between Gibbs distributions is controlled by the `∞
distance between the energy functions (Simon, 1979).

Proposition 2. For any p,q ∈ ∆n and any K, K̃ ∈ Rn×n+ ,

‖ΠS(K)−ΠS(K̃)‖1 6 ‖ logK − log K̃‖∞ .

Proof. Note that −H(P ) is 1-strongly convex with respect to the `1 norm (Bubeck,
2015, Section 4.3). By Proposition 1, ΠS(K) = argminP∈M(p,q)〈− logK,P 〉 − H(P )

and ΠS(K̃) = argminP∈M(p,q)〈− log K̃, P 〉 − H(P ). The claim follows upon applying
Lemma I.

In words, Proposition 2 establishes that the Sinkhorn projection operator is Lipschitz
on the “logarithmic scale.” By contrast, we show in Appendix C that the Sinkhorn
projection does not satisfy a Lipschitz property in the standard sense for any choice of
matrix norm.

4.2 Using an approximate Sinkhorn projection

Here we present the second ingredient for the proof of Theorem 5: that the objective
function VC(·) for Sinkhorn distances in (1) is stable with respect to the target row and
column sums p and q of the outputted matrix.

Proposition 3. Given K̃ ∈ Rn×n>0 , let C̃ ∈ Rn×n satisfy C̃ij := −η−1 log K̃ij. Let D1 and

D2 be positive diagonal matrices such that P̃ := D1K̃D2 ∈ ∆n×n, with δ := ‖p− P̃1‖1 +
‖q− P̃>1‖1. If δ 6 1, then

|VC̃(ΠS(K̃))− VC̃(P̃ )| 6 δ‖C̃‖∞ + η−1δ log
2n

δ
,

Proof. Write p̃ := P̃1 and q̃ := P̃>1. Then P̃ = ΠSM(p̃,q̃)(K̃) by the definition of the
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Sinkhorn projection. If we write P ∗ := ΠSM(p,q)(K̃), then Proposition 1 implies

P̃ = argmin
P∈M(p̃,q̃)

VC̃(P )

P ∗ = argmin
P∈M(p,q)

VC̃(P )

Lemma G establishes that the Hausdorff distance between M(p̃, q̃) and M(p,q) with
respect to ‖ · ‖1 is at most δ, and by Lemma E, the function VC̃ satisfies

|VC̃(P )− VC̃(Q)| 6 ω(‖P −Q‖1) ,

where ω(δ) := δ‖C̃‖∞ + η−1δ log 2n
δ is increasing and and continuous on [0, 1] as long as

n > 2. Applying Lemma H then yields the claim.

4.3 Proof of Theorem 5

The runtime claim was proven in Section 4; here we prove the error bounds. We first
show (5a). Define C̃ := −η−1 log K̃. Since P η = ΠS(K) by Corollary 1, we can decompose
the error as

|VC(P η)− VC(P̃ )| 6
∣∣∣VC (ΠS (K)

)
− VC

(
ΠS
(
K̃
))∣∣∣ (6a)

+
∣∣∣VC (ΠS

(
K̃
))
− VC̃

(
ΠS
(
K̃
))∣∣∣ (6b)

+
∣∣∣VC̃ (ΠS

(
K̃
))
− VC̃

(
P̃
)∣∣∣ (6c)

+
∣∣∣VC̃ (P̃)− VC (P̃)∣∣∣ . (6d)

By Proposition 2 and Lemma E, term (6a) is at most ε′‖C‖∞+η−1ε′ log 2n
ε′ . Proposition 3

implies that (6c) is at most ε′‖C̃‖∞ + η−1ε′ log 2n
ε′ . Finally, by Lemma C, terms (6b)

and (6d) are each at most η−1ε′. Thus

|VC(ΠS(K))− VC(P̃ )| 6
(
ε′‖C‖∞ + η−1ε′ log

2n

ε′

)
+

(
ε′‖C̃‖∞ + η−1ε′ log

2n

ε′

)
+ 2η−1ε′

6 2ε′‖C‖∞ + η−1(ε′2 + 2ε′) + 2η−1ε′ log
2n

ε′

6 ε′(2‖C‖∞ + 3η−1) + 2η−1ε′ log
2n

ε′
,

where the second inequality follows from the fact that ‖C̃‖∞ 6 ‖C‖∞ + ‖C − C̃‖∞ 6
‖C‖∞ + η−1ε′. The proof of (5a) is then complete by invoking Lemma M.

To prove (5b), by Lemma A we have Ŵ = VC̃(P̃ ), and by Lemma C, we therefore have

|Ŵ − VC(P̃ )| 6 η−1ε′ 6 ε
2 .

5 Proof of Theorem 1

In this section, we combine the results of the preceding three sections to prove Theorem 1.

18



Error analysis. First, we show that∣∣∣VC(P̂ )−Wη(p,q)
∣∣∣ =

∣∣∣VC(P̂ )− VC(P η)
∣∣∣ 6 ε . (7)

We do so by bounding |VC(P̂ ) − VC(P̃ )| + |VC(P̃ ) − VC(P η)|, where P̃ := D1K̃D2 is the
approximate projection computed in Line 3. By Lemma 2, the output of Line 2 satisfies
‖K − K̃‖∞ 6 ε′

2 e
−4ηR2

, and by Lemma L this implies that ‖ logK − log K̃‖∞ 6 ε′.

Therefore, by Theorem 5, |VC(P̃ ) − VC(P η)| 6 ε
2 . Moreover, by Lemma B, ‖P̃ − P̂‖1 6

‖P̃1 − p‖1 + ‖P̃ T1 − q‖1 6 ε′, thus by an application of Lemmas E and M, we have
that |VC(P̂ ) − VC(P̃ )| 6 ε

2 . Therefore |VC(P̂ ) − VC(P̃ )| + |VC(P̃ ) − VC(P η)| 6 ε, which
proves (7) and thus also (3a).

Next, we prove (3b). By Proposition 1, P η = argminP∈M(p,q) VC(P ). Thus

ε > VC(P̂ )− VC(P η) = ∇VC(P η)(P̂ − P η) + η−1KL(P̂‖P η) > η−1KL(P̂‖P η) .

where above the first inequality is by (7), the equality is by Lemma F, and the final
inequality is by first-order KKT conditions which give ∇VC(P η)(P̂ − P η) > 0. After
rearranging, we conclude that KL(P̂‖P η) 6 ηε, proving (3b).

Finally, by Theorem 5, |Ŵ − VC(P̃ )| 6 ε
2 , and we have already shown in our proof of

(3a) that |VC(P̃ )− VC(P η)| 6 ε
2 , which proves (3c).

Runtime analysis. Let r denote the rank of K̃. Note that r is a random variable. By
Lemma 2, we have that

P
(
r 6 cr∗(X, η, ε′) log n

δ

)
> 1− δ. (8)

Now by Lemma 2, the AdaptiveNyström algorithm in line 2 runs in time O(nr2), and
moreover further matrix-vector multiplications with K̃ can be computed in time O(nr).
Thus the Sinkhorn algorithm in line 3 runs in time Õ(nrηR2ε′−1) by Theorem 5, and
the Round algorithm in line 4 runs in time O(nr) by Lemma B. Combining these bounds
and using the choice of ε′ completes the proof of Theorem 1.

6 Experimental results

In this section we empirically validate our theoretical results. To run our experiments, we
used a desktop with 32GB ram and 16 cores Xeon E5-2623 3GHz. The code is optimized
in terms of matrix-matrix and matrix-vector products using BLAS-LAPACK primitives.

Fig. 1 plots the time-accuracy tradeoff for Nys-Sink, compared to the standard
Sinkhorn algorithm. This experiment is run on random point clouds of size n ≈ 20000,
which corresponds to cost matrices of dimension approximately 20000×20000. Fig. 1 shows
that Nys-Sink is consistently orders of magnitude faster to obtain the same accuracy.

Next, we investigate Nys-Sink’s dependence on the intrinsic dimension and ambient
dimension of the input. This is done by running Nys-Sink on distributions supported
on 1-dimensional curves embedded in higher dimensions, illustrated in Fig. 2, left. Fig. 2,
right, indicates that an approximation rank of r = 300 is sufficient to achieve an error
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Figure 1: Time-accuracy tradeoff for Nys-Sink and Sinkhorn, for a range of regulariza-
tion parameters η (each corresponding to a different Sinkhorn distance Wη) and approxi-
mation ranks r. Each experiment has been repeated 50 times; the variance is indicated by
the shaded area around the curves. Note that curves in the plot start at different points
corresponding to the time required for initialization.

smaller than 10−4 for any ambient dimension 5 6 d 6 100. This empirically validates
the result in Corollary 4, namely that the approximation rank – and consequently the
computational complexity of Nys-Sink – is independent of the ambient dimension.

Finally, we evaluate the performance of our algorithm on a benchmark dataset used in
computer graphics: we measure Wasserstein distance between 3D cloud points from “The
Stanford 3D Scanning Repository”4. In the first experiment, we measure the distance
between armadillo (n = 1.7 × 105 points) and dragon (at resolution 2, n = 1.0 × 105

points), and in the second experiment we measure the distance between armadillo and
xyz-dragon which has more points (n = 3.6× 106 points). The point clouds are centered
and normalized in the unit cube. The regularization parameter is set to η = 15, reflecting
the moderate regularization regime typically used in practice.

We compare our algorithm (Nys-Sink)—run with approximation rank r = 2000 for T =
20 iterations on a GPU—against two algorithms implemented in the library GeomLoss5.
These algorithms are both highly optimized and implemented for GPUs. They are: (a) an
algorithm based on an annealing heuristic for η (controlled by the parameter α, such that
at each iteration ηt = αηt−1, see Kosowsky and Yuille, 1994b) and (b) a multiresolution
algorithm based on coarse-to-fine clustering of the dataset together with the annealing

4http://graphics.stanford.edu/data/3Dscanrep/
5http://www.kernel-operations.io/geomloss/
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Figure 2: Left: one-dimensional curve embedded in Rd, for d = 3. For d > 4, the curve
we use in dimension d is obtained from the curve we use in the dimension d− 1 by adding
a perpendicular segment of length 1/d2 to one endpoint. Right: Accuracy of Nys-Sink
as a function of running time, for different ambient dimensions. Each experiment uses a
fixed approximation rank r = 300.

heuristic (Schmitzer, 2019). Table 1 reports the results, which demonstrate that our
method is comparable in terms of precision, and has computational time that is orders of
magnitude smaller than the competitors. We note the parameters r and T for Nys-Sink
are chosen by hand to balance precision and time complexity.

We note that in these experiments, instead of using Algorithm 2 to choose the rank
adaptively, we simply run experiments with a small fixed choice of r. As our experiments
demonstrate, Nys-Sink achieves good empirical performance even when the rank r is
smaller than our theoretical analysis requires. Investigating this empirical success further
is an interesting topic for future study.
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Experiment 1: n ≈ 3× 105 Wη time (s)

Nys-Sink (r = 2000, T = 20) 0.087 ± 0.008 0.4 ± 0.1
Dual-Sink + Annealing (α = 0.95) 0.087 35.4
Dual-Sink Multiscale + Annealing (α = 0.95) 0.090 3.4

Experiment 2: n ≈ 3.8× 106 Wη time (s)

Nys-Sink (r = 2000, T = 20) 0.11 ± 0.01 6.3 ± 0.8
Dual-Sink + Annealing (α = 0.95) 0.10 1168
Dual-Sink Multiscale + Annealing (α = 0.95) 0.11 103.6

Table 1: Comparison of our proposed algorithm to existing, highly-optimized GPU-based
algorithms, on a large-scale computer graphics benchmark dataset.

A Pseudocode for subroutines

A.1 Pseudocode for Sinkhorn algorithm

As mentioned in the main text, we use the following variant of the classical Sinkhorn
algorithm for our theoretical results. Note that in this paper, K̃ is not stored explicitly but
instead is stored in factored form. This enables the Sinkhorn algorithm to be implemented
quickly since all computations using K̃ are matrix-vector multiplications with K̃ and K̃T

(see discussion in 3.1 for details).
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Input: K̃ (in factored form), p,q ∈ ∆n, δ > 0
Output: Positive diagonal matrices D1, D2 ∈ Rn×n, cost Ŵ

1: τ ← δ
8 , D1, D2 ← In×n, k ← 0

2: p′ ← (1− τ)p + τ
n1, q′ ← (1− τ)q + τ

n1 . Round p and q

3: while ‖D1K̃D21− p′‖1 + ‖(D1K̃D2)>1− q′‖1 6 δ
2 do

4: k ← k + 1
5: if k odd then
6: (D1)ii ← p′i/(K̃D21)i for i = 1, . . . , n. . Renormalize rows
7: else
8: (D2)jj ← q′j/((D1K̃)>1)j for j = 1, . . . , n. . Renormalize columns
9: end if

10: end while
11: Ŵ ←

∑n
i=1 log(D1)ii(D1K̃D2)1)i +

∑n
j=1 log(D2)jj((D1K̃D2)>1)j

12: return D1, D2, Ŵ

Algorithm 3: Sinkhorn

Lemma A. Let C̃ := −η−1 log K̃ and let P̃ := D1K̃D2, where D1 and D2 are the scaling
matrices output by Sinkhorn. Then the output Ŵ of Sinkhorn satisfies Ŵ = VC̃(P̃ ).

Moreover, computing Ŵ takes time O(Tmult+n), where Tmult is the time required to take
matrix-vector products with K̃ and K̃>.

Proof. Then

〈C̃, P̃ 〉 − η−1H(P̃ ) = 〈C̃, P̃ 〉+ η−1
n∑

i,j=1

P̃ij log P̃ij

= 〈C̃, P̃ 〉+ η−1
n∑

i,j=1

P̃ij(log(D1)ii + log(D2)jj − ηC̃ij)

=

n∑
i,j=1

P̃ij log(D1)ii +

n∑
i,j=1

P̃ij log(D2)jj

=

n∑
i=1

log(D1)ii(P̃1)i +

n∑
j=1

log(D2)jj(P̃
>1)j = Ŵ .

Moreover, the matrices log(D1) and log(D2) can each be formed in O(n) time, so comput-
ing Ŵ takes time O(Tmult + n), as claimed.

A.2 Pseudocode for rounding algorithm

For completeness, here we briefly recall the rounding algorithm Round from (Altschuler
et al., 2017) and prove a slight variant of their Lemma 7 that we need for our purposes.

It will be convenient to develop a little notation. For a vector x ∈ Rn, D(x) denotes
the n×n diagonal matrix with diagonal entries [D(x)]ii = xi. For a matrix A, r(A) := A1
and c(A) := AT1 denote the row and column marginals of A, respectively. We further
denote ri(A) = [r(A)]i and similarly cj(A) := [c(A)]j .

23



Input: F ∈ Rn×n and p,q ∈ ∆n

Output: G ∈M(p,q)
1: X ← D(x), where xi := pi

ri(F ) ∧ 1

2: F ′ ← XF
3: Y ← D(y), where yj :=

qj
cj(F ′)

∧ 1

4: F ′′ ← F ′Y
5: errr ← p− r(F ′′), errc ← q− c(F ′′)
6: Output G← F ′′ + errrerrTc /‖errr‖1

Algorithm 4: Round (from Algorithm 2 in (Altschuler et al., 2017))

Lemma B. If p,q ∈ ∆n and F ∈ Rn×n>0 , then Round(F,p,q) outputs a matrix G ∈
M(p,q) of the form G = D1FD2+uv> for positive diagonal matrices D1 and D2 satisfying

‖G− F‖1 6
[
‖F1− p‖1 + ‖F T1− q‖1

]
.

Moreover, the algorithm only uses O(1) matrix-vector products with F and O(n) additional
processing time.

Proof. The runtime claim is clear. Next, let ∆ := ‖F‖1 − ‖F ′′‖1 =
∑n

i=1(ri(F )− pi)+ +∑n
j=1(cj(F

′)−qj)+ denote the amount of mass removed from F to create F ′′. Observe that∑n
i=1(ri(F )−pi)+ = 1

2 ‖r(F )−p‖1. Since F ′ 6 F entrywise, we also have
∑n

j=1(cj(F
′)−

qj)+ 6
∑n

j=1(cj(F ) − qj)+ = 1
2 ‖c(F ) − q‖1. Thus ∆ 6 1

2(‖r(F ) − p‖1 + ‖c(F ) − q‖1).
The proof is complete since ‖F −G‖1 6 ‖F − F ′′‖1 + ‖F ′′ −G‖1 = 2∆.

B Omitted proofs

B.1 Stability inequalities for Sinkhorn distances

Lemma C. Let C, C̃ ∈ Rn×n. If P ∈ ∆n×n, then

|VC(P )− VC̃(P )| 6 ‖C − C̃‖∞ .

Proof. By Hölder’s inequality, |VC(P ) − VC̃(P )| = |〈C − C̃, P 〉| 6 ‖C − C̃‖∞‖P‖1 =

‖C − C̃‖∞.

Lemma D. Let P,Q ∈ ∆n×n. If ‖P −Q‖1 6 δ 6 1, then

|H(P )−H(Q)| 6 δ log
2n

δ
.

Proof. By Ho and Yeung (2010, Theorem 6), |H(P )−H(Q)| 6 δ
2 log(n2−1)+h

(
δ
2

)
, where

h is the binary entropy function. If δ 6 1, then h( δ2) 6 δ log 2
δ , which yields the claim.

Lemma E. Let M ∈ Rn×n, η > 0, and P,Q ∈ ∆n×n. If ‖P −Q‖1 6 δ 6 1, then

|VM (P )− VM (Q)| 6 δ‖M‖∞ + η−1δ log
2n

δ
.
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Proof. By definition of VM (·) and the triangle inequality, |VM (P )−VM (Q)| 6 |
∑

ij(Pij −
Qij)Mij |+ η−1|H(P )−H(P̃ )|. By Hölder’s inequality, the former term is upper bounded
by ‖P −Q‖1‖M‖∞ 6 δ‖M‖∞. By Lemma D, the latter term above is upper bounded by
η−1δ log 2n

δ .

B.2 Bregman divergence of Sinkhorn distances

The remainder in the first-order Taylor expansion of VC(·) between any two joint distri-
butions is exactly the KL-divergence between them.

Lemma F. For any C ∈ Rn×n, η > 0, and P,Q ∈ ∆n×n,

VC(Q) = VC(P ) + 〈∇VC(P ), (Q− P )〉+ η−1KL(Q‖P ).

Proof. Observing that ∇VC(P ) has ijth entry Cij + η−1(1 + logPij), we expand the right
hand side as [〈C,P 〉 + η−1

∑
ij Pij logPij ] + [〈C,Q − P 〉 + η−1

∑
ij(Qij − Pij) logPij〉] +

[η−1
∑

ij Qij log
Qij
Pij

] = 〈C,Q〉+ η−1
∑

ij Qij logQij = VC(Q).

B.3 Hausdorff distance between transport polytopes

Lemma G. Let dH denote the Hausdorff distance with respect to ‖ ·‖1. If p, p̃,q, q̃ ∈ ∆n,
then

dH(M(p,q),M(p̃, q̃)) 6 ‖p− p̃‖1 + ‖q− q̃‖1 .

Proof. Follows immediately from Lemma B.

Lemma H. Fix a norm ‖ · ‖ on X . If f : X → R satisfies |f(x)− f(y)| 6 ω(‖x− y‖) for
ω an increasing, upper semicontinuous function, then for any two sets A,B ⊆ X ,∣∣∣∣ inf

x∈A
f(x)− inf

x∈B
f(x)

∣∣∣∣ 6 ω(dH(A,B)) ,

where dH(A,B) is the Hausdorff distance between A and B with respect to ‖ · ‖.

Proof.

inf
x∈A

f(x)− inf
x∈B

f(x) 6 sup
y∈B

inf
x∈A

f(x)− f(y)

6 sup
y∈B

inf
x∈A

ω(‖x− y‖)

6 ω(sup
y∈B

inf
x∈A
‖x− y‖)

6 ω(dH(A,B)) .

Interchanging the role of A and B yields the claim.
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B.4 Miscellaneous helpful lemmas

Lemma I. Let X ⊂ Rd be convex, and let f : X → R be 1-strongly-convex with respect to
some norm ‖ · ‖. If x∗a = argminx∈X 〈a, x〉+ f(x) and x∗b = argminx∈X 〈b, x〉+ f(x), then

‖x∗a − x∗b‖ 6 ‖a− b‖∗ ,

where ‖ · ‖∗ denotes the dual norm to ‖ · ‖.

Proof. This amounts to the well known fact (see, e.g., Hiriart-Urruty and Lemaréchal,
2001, Theorem 4.2.1) that the Legendre transform of a strongly convex function has Lip-
schitz gradients. We assume without loss of generality that f = +∞ outside of X , so
that f can be extended to a function on all of Rd and thus we can take the minima to
be unconstrained. The fact that f(y) + 〈y, a〉 > f(x∗a) + 〈x∗a, a〉 for all y implies that
−a ∈ ∂f(x∗a), and likewise −b ∈ ∂f(x∗b). Thus by definition of strong convexity, we have

f(x∗a) > f(x∗b) + 〈−b, x∗a − x∗b〉+
1

2
‖x∗a − x∗b‖2,

f(x∗b) > f(x∗a) + 〈−a, x∗b − x∗a〉+
1

2
‖x∗b − x∗a‖2,

Adding these inequalities yields

〈b− a, x∗a − x∗b〉 > ‖x∗a − x∗b‖2 ,

which implies the claim via the definition of the dual norm.

Lemma J. For any matrix A ∈ Rn×n,

‖A‖∞ 6 ‖A‖op 6 n‖A‖∞

Proof. By duality between the operator norm and the nuclear norm, ‖A‖∞ = maxi,j∈[n] |eTi Aej | 6
maxi,j∈[n] ‖A‖op‖eieTj ‖∗ = ‖A‖op. This establishes the first inequality.

Next, for any v ∈ Rn with unit norm ‖v‖2 = 1, note that ‖Av‖22 =
∑n

i=1

(∑n
j=1Aijvj

)2
6∑n

i=1 n‖A‖2∞
∑n

j=1 v
2
j = n2‖A‖2∞, proving the second inequality.

Lemma K. For any a, b > 0,

| log a− log b| 6 |a− b|
min{a, b}

.

Proof. Without loss of generality, assume a > b. Then log a − log b = log a
b 6 a

b − 1 =
a−b

min{a,b} , as claimed.

Lemma L. Let {x1, . . . , xn} ⊂ Rd lie in an Euclidean ball of radius R, and let η > 0.
Denote by K ∈ Rn×n the matrix with entries Kij := e−η‖xi−xj‖

2
2. If a matrix K̃ ∈ Rn×n

satisfies ‖K − K̃‖∞ 6 ε′

2 e
−4ηR2

for some ε′ ∈ (0, 1), then

‖ logK − log K̃‖∞ 6 ε′ .
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Proof. Since ‖xi‖2 6 R for all i ∈ [n], the matrix K satisfies Kij = e−η‖xi−xj‖
2
2 > e−4ηR2

for all i, j ∈ [n]. Hence K̃ij > ε′

2 e
−4ηR2

for all i, j ∈ [n] and thus by Lemma K,

| logKij − log K̃ij | 6
|Kij − K̃ij |

min{K̃ij ,Kij}
6 ε′ .

Lemma M. Let n ∈ N, ε ∈ (0, 1), ‖C‖∞ > 1, and η ∈ [1, n]. Then for any δ 6
ηε

50(‖C‖∞η+log
n
ηε )

, the bound δ(2‖C‖∞ + 3η−1) + 2η−1δ log 2n
δ 6 ε

2 holds.

Proof. We write

δ(2‖C‖∞ + 3η−1) + 2η−1δ log 2n
δ = δ(2‖C‖∞ + 3η−1) + 2η−1δ log 2n

ηε + 2η−1δ log ηε
δ

and bound the three terms separately. First, the assumptions imply that ηε 6 n and
2‖C‖∞ + 3η−1 6 5‖C‖∞. We therefore have

δ(2‖C‖∞ + 3η−1) 6
5‖C‖∞ηε

50(‖C‖∞η + log n
ηε)

6
1

10
ε .

Since ‖C‖∞η > 1, we likewise obtain

2η−1δ log
2n

ηε
6

2ε log 2n
ηε

50(1 + log n
ηε)

=
2(log 2 + log n

ηε)

50(1 + log n
ηε)

ε 6
1

25
ε .

Finally, the fact that η−1δ
ε 6 1

50 and x log 1
x 6 1

10 for x 6 1
50 yields

2η−1δ log ηε
δ = 2

(
η−1δ
ε log ε

η−1δ

)
ε 6

1

5
ε .

B.5 Supplemental results for Section 3

B.5.1 Full proof of Theorem 3

Define φα(x) := (2η)
∑d
j=1 αj/2

∏d
j=1[(αj !)

−1/2x
αj
j e
−ηx2

j ], for x ∈ Rd and α ∈ (N ∪ {0})d,
and define ψT (x) := (φα(x))α1+···+αd6T . Note that ψT : Rd → RM , with M =

(
d+T
T

)
. By

Cotter et al. (2011, equation 11), we have

sup
x,x′∈BdR

|kη(x, x′)− ψT (x)>ψT (x′)| 6 (2ηR2)T+1

(T + 1)!
=: ε(T ).

Now denote by ΨT ∈ RM×n the matrix ΨT := (ψT (x1), . . . , ψT (xn)). By Lemma J, we
have

‖K −Ψ>T ΨT ‖op 6 n sup
i,j
|kη(xi, xj)− ψT (xi)

>ψT (xj)| 6 nε(T ).

By the Eckart-Young-Mirsky Theorem, we have

λM+1 = inf
K̄T∈Rn×n, rank(K̄T )6M

‖K − K̄T ‖op.

Therefore by combining the above two displays, we conclude that

λM+1 6 ‖K −Ψ>T ΨT ‖op 6 nε(T ).
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Point 1. We recall that for any d, q ∈ N, the inequality
(
d+q
q

)
6 ed(1 + q/d)d holds.

Therefore, given t > (2e)d, choosing T = bdt1/d/(2e)c yields
(
T+d
d

)
6 ed(1 + T/d)d 6 t.

We therefore have λt+1 6 nε(T ) for this choice of T . Now, by Stirling’s approximation of

(T + 1)!, we have that ε(T ) 6 e
−(T+1) log T+1

2eηR2 . If T > 2eηR2, then (T + 1) log T+1
2eηR2 >

dt1/d

2e log dt1/d

4e2ηR2 , which yields the desired bound. On the other hand, when T < 2eηR2, we

use the trivial bound λt(K) 6 Tr(K) 6 n. The claim follows.

Point 2. We have that λMT+1(K) 6 nε(T ), for MT =
(
d+T
T

)
and T ∈ N. Since the

eigenvalues are in decreasing order we have that λMT+1+1 6 λt(K) 6 λMT+1(K) for
MT + 1 6 t 6MT+1 + 1. Since x/(x+ τ) is increasing in x, for x > 0, we have

n∑
t=1

λj(K)

λj(K) + nτ
6
∞∑
T=0

(MT+1 −MT )
λMT+1(K)

λMT+1(K) + nτ
6
∞∑
T=0

(MT+1 −MT )
ε(T )

ε(T ) + τ
.

Let Tτ be such that ε(Tτ ) 6 τ . We can then bound ε(T )/(ε(T ) + τ) above by 1 for
T 6 Tτ − 1 and by ε(T )/τ for T > Tτ , obtaining

∞∑
T=0

(MT+1 −MT )
ε(T )

ε(T ) + τ
6

Tτ−1∑
T=0

(MT+1 −MT ) +

∞∑
T=Tτ

(MT+1 −MT )
ε(T )

τ

= MTτ +
1

τ

∞∑
T=Tτ

(MT+1 −MT )ε(T ).

In particular, we can choose Tτ = d + 2e2ηR2 + log(1/τ). Since log Tτ
2eηR2 > 1, for any

T > Tτ , then ε(T ) 6 e
−T log T

2eηR2 6 e−T . Moreover since MT+1 −MT = dMT /(T + 1),
and MT 6 ed(1 + T/d)d, we have

∞∑
T=Tτ

(MT+1 −MT )ε(T ) 6
d

Tτ

∞∑
T=Tτ

MT e
−T 6

ded

Tτ

∞∑
T=Tτ

(
1 +

T

d

)d
e−T

6
ded

Tτ

∫ ∞
Tτ

(
1 +

x

d

)d
e−xdx.

Finally, by changing variables, x = u+ Tτ and u = (d+ Tτ )z,∫ ∞
Tτ

(
1 +

x

d

)d
e−xdx =

∫ ∞
0

(
1 +

Tτ
d

+
u

d

)d
e−u−Tτdu

=

(
1 +

Tτ
d

)d
e−Tτ

∫ ∞
0

(
1 +

u

d+ Tτ

)d
e−udu

=

(
1 +

Tτ
d

)d
e−Tτ (d+ Tτ )

∫ ∞
0

(1 + z)d e−(d+Tτ )zdz

= d−dedΓ(d+ 1, d+ Tτ ),

where for the last equality we used the characterization of the incomplete gamma function
Γ(a, z) = z−ae−z

∫∞
0 (1 + t)a−1e−ztdt (see Eq. 8.6.5 of Olver et al., 2010). To complete

28



the proof note that by Lemma P we have Γ(a, z) 6 z/(z − a)za−1e−z, for any z > a > 0.
Since log(1/τ) > 0 for τ ∈ (0, 1], we have (d+Tτ )/(Tτ − 1) 6 2 and (de−Tτ )/(τTτ ) 6 1, so

deff(τ) 6MTτ +
ded

τTτ
d−dedΓ(d+ 1, d+ Tτ )

6 ed(1 + Tτ/d)d
(

1 +
de−Tτ

τTτ

d+ Tτ
Tτ − 1

)
6 3ed

(
2 +

2e2

d
ηR2 +

1

d
log

1

τ

)d
.

B.5.2 Full proof of Theorem 4

The proof of Points 2 and 3 here is completely analogous to the proof of Points 1 and 2,
respectively, in Theorem 3.

Point 2. Let X̄ = {x̄1, . . . , x̄p} ⊂ Ω be a minimal ε net of Ω. Since Ω is a smooth
manifold of dimension k, then there exists C0 > 0 for which p 6 C0ε

−k. Now let
K̄ ∈ Rp×p be given by K̄i,j = kη(x̄i, x̄j) and define Φ(x) = K̄−1/2v(x), with v(x) =

(kη(x, x̄1), . . . , kη(x, x̄p)). Then when f(x′) := kη(x
′, x), then f̂X̄ = Φ(x′)>Φ(x). By

applying Point 1 to f(x) = kη(x
′, x), we have

|kη(x′, x)− Φ(x′)Φ(x)| 6 e−cε
−2/5

, ∀x, x′ ∈ Ω.

If we let B ∈ Rp×n = (Φ(x1), . . .Φ(xn)), then

‖K −B>B‖op 6 nmax
ij
|kη(x′, x)− Φ(x′)Φ(x)| 6 ne−cε

−2/5
.

Since B is of rank p, the the Eckart-Young-Mirsky Theorem again implies λp+1(K) 6

ne−cε
−2/5

. We conclude by recalling that ε 6 (p/C0)−1/k.

Point 3. Let Mτ be such that λMτ+1 6 nτ . By Point 2, this holds if we take Mτ =
(c0 log 1

τ )5k/2 for a sufficiently large constant c. By definition of deff(τ) and the fact that
x/(x+ λ) 6 min(1, x/λ) for any x > 0, λ > 0, we have

deff(τ) =

n∑
j=1

λj(K)

λj(K) + nτ
=

Mτ+1∑
j=1

λj(K)

λj(K) + nτ
+

n∑
j=Mτ+2

λj(K)

λj(K) + nτ

6Mτ + 1 +
1

τ

n∑
j=Mτ+2

λj(K)

n
6 (c0 log 1

τ )5k/2 + 1 +
1

τ

∞∑
j=Mτ+1

e−cj
2
5k
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Denoting β := 2
5k for shorthand, we can upper bound the sum as follows:

∞∑
j=Mτ+1

e−cj
2
5k 6

∫ ∞
Mτ

e−cx
β
dx

=
1

βc1/β

∫ ∞
0

u
1−β
β 1(u > cMβ

τ )e−udu

6
1

βc1/β

(∫ ∞
0

u
2(

1−β
β )

e−udu

)1/2(∫ ∞
cMβ

τ

e−udu

)1/2

= cke
− 1

2
cMβ

τ 6 ckτ,

where above the second step was by the change of variables u := cxβ, the third step was
by Cauchy-Schwartz with respect to the inner product 〈f, g〉 :=

∫∞
0 f(u)g(u)e−udu, and

the final line was for some constant ck only depending on k, whenever c0 is taken to be at
least 2

c . This proves the claim.

B.5.3 Additional bounds

Lemma N. Let A : B → U , be a smooth map, with B ⊆ Rd, U ⊆ Rm, d,m ∈ N, such
that there exists Q > 0, for which

‖DαA‖L∞(B) 6 Q|α|, ∀α ∈ Nd,

then, for ν ∈ Nd0, p > 1,

‖Dν(f ◦A)‖Lp(B) 6 (2|ν|mQ)|ν| max
|λ|6|ν|

‖(Dλf) ◦A‖Lp(B).

Proof. First we study Dν(f ◦A). Let n := |ν| and A = (a1, . . . , am) with aj : Rd → R. By
the multivariate Faa di Bruno formula (Constantine and Savits, 1996), we have that

Dν(f ◦A) = ν!
∑

16|λ|6n

(Dλf) ◦A
∑

(
k1 . . . , kn
l1, . . . , ln

)
∈p(λ,ν)

n∏
j=1

m∏
i=1

[Dljai]
[kj ]i

[kj ]i!lj !
,

where the set p(λ, ν) is defined in Constantine and Savits (1996, Eq. 2.4), with l1, . . . , ln ∈
Nd0, k1, . . . , kn ∈ Nm0 and satisfying

∑n
j=1 |kj |lj = ν. Now by assumption ‖Dljai‖ 6 Q|lj |

for 1 6 i 6 m. Then∥∥∥∥∥∥
n∏
j=1

m∏
i=1

[Dljai]
[kj ]i

[kj ]i!lj !

∥∥∥∥∥∥
L∞(B)

6 Q
∑n
j=1 |lj ||kj |

n∏
j=1

1

kj !lj !|kj |
.

Now note that by the properties of lj , kj , we have that |ν| = |
∑

j |kj |lj | =
∑

j |kj ||lj |, then

‖Dν(f ◦A)‖Lp(B) 6 Q|ν| max
|λ|6|ν|

‖(Dλf) ◦A‖Lp(B) × ν!
∑

16|λ|6n

∑
k1 . . . , kn
l1, . . . , ln

∈p(λ,ν)

n∏
j=1

1

kj !lj !|kj |
.
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To conclude, denote by Snk the Stirling numbers of the second kind. By Constantine and
Savits (1996, Corollary 2.9) and Rennie and Dobson (1969) we have

ν!
∑

16|λ|6n

∑
k1 . . . , kn
l1, . . . , ln

∈p(λ,ν)

n∏
j=1

1

kj !lj !|kj |
=

n∑
i=1

mkSnk 6 mn
n∑
i=1

(
n

k

)
kn−k 6 mn(2n)n.

Lemma O. Let Ψj : Uj → Bk
rj such that there exists Q > 0 for which ‖DαΨ−1

j ‖L∞(Bkrj ) 6

Q|α| for α ∈ Nk. Then for any q > k, we have

‖f ◦Ψ−1
j ‖W q

2 (Bkrj ) 6 Cd,k,R,rjq
k(2qdQ)q‖f‖

W
q+(d+1)/2
2 (BdR)

.

Proof. First note that ‖ · ‖L∞(BdR) 6 Cd,R‖ · ‖W (d+1)/2
2 (BdR)

(Adams and Fournier, 2003) for

a constant Cd,R depending only on d and R. Therefore

‖(Dαf) ◦Ψ−1
j ‖L2(Bkrj ) 6 vol(Bk

rj )
1/2‖(Dαf) ◦Ψ−1

j ‖L∞(Bkrj )

= vol(Bk
rj )

1/2‖Dαf‖L∞(Uj) 6 vol(Bk
rj )

1/2‖Dαf‖L∞(BdR)

6 Cd,Rvol(Bk
rj )

1/2‖Dαf‖
W

(d+1)/2
2 (BdR)

.

Moreover note that ‖Dαf‖
W

(d+1)/2
2 (BdR)

6 ‖f‖
W
|α|+(d+1)/2
2 (BdR)

. By Lemma N we have that

‖Dα(f ◦Ψ−1
j )‖L2(Bkrj ) 6 (2|α|dQ)|α| max

|λ|6|α|
‖(Dλf) ◦Ψ−1

j ‖L2(Bkrj ).

By definition of Sobolev space W q
2 (Bk

rj ), we have

‖f ◦Ψ−1
j ‖W q

2 (Bkrj ) 6
∑
|α|6q

‖Dα(f ◦Ψ−1
j )‖L2(Bkrj )

6
∑
|α|6q

(2|α|dQ)|α| max
|λ|6|α|

‖(Dλf) ◦Ψ−1
j ‖L2(Bkrj )

6 Cq max
|λ|6q

‖(Dλf) ◦Ψ−1
j ‖

2
L2(Bkrj ),

where Cq :=
∑
|α|6q(2|α|dQ)|α|. Then,

‖f ◦Ψ−1
j ‖

2
W q

2 (Bkrj ) 6 CqCd,Rvol(Bk
rj )

1/2‖f‖
W
q+(d+1)/2
2 (BdR)

.

The final result is obtained via the bound Cq 6 (2qdQ)q
(
k+q
k

)
6 (2ek)k(2qdQ)qqk for

q > k.

Lemma P (Bounds for the incomplete gamma function). Denote by Γ(a, x) the function
defined as

Γ(a, x) =

∫ ∞
x

za−1e−zdz,
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for a ∈ R and x > 0. When x > (a− 1)+ ∧ x > 0, the following holds

Γ(a, x) 6
x

x− (a− 1)+
xa−1e−x,

In particular Γ(a, x) 6 2xa−1e−x, for x > 2(a− 1)+ ∧ x > 0.

Proof. Assume x > 0. When a 6 1, the function za−1e−z is decreasing and in particular
za−1e−z 6 xa−1e−z for z > x, so when z > x we have

Γ(a, x) =

∫ ∞
x

za−1e−zdz 6 xa−1

∫ ∞
x

e−zdz = xa−1e−x.

When a > 1, for any τ ∈ (0, 1), we have

Γ(a, x) =

∫ ∞
x

za−1e−zdz =

∫ ∞
x

(za−1e−τz)(e−(1−τ)z)dz

6 sup
z>x

(za−1e−τz)

∫ ∞
x

e−(1−τ)zdz =
e−(1−τ)x

1− τ
sup
z>x

(za−1e−τz).

Now note that the maximum of za−1e−τz is reached when z = (a−1)/τ . When x > a−1,
we can set τ = (a − 1)/x, so the maximum of za−1e−τz is exactly in z = x. In that case
supz>x(za−1e−τz) = xa−1e−τx and

Γ(a, x) 6
x

x− (a− 1)
xa−1e−x.

The final result is obtained by gathering the cases a 6 1 and a > 0 in the same expression.

Corollary A. Let a ∈ R, A, q1, q2, b > 0. When q2A
b > 2

(
a+1
b − 1

)
+

, the following holds∫ ∞
A

q1x
ae−q2x

b
dx 6

2q1

bq2
Aa+1−1/be−q2A

b
.

Proof. By the change of variable x = (u/q2)1/b we have

∫ ∞
A

q1x
ae−q2x

b
dx =

q1q
−a+1

b
2

b

∫ ∞
q2Ab

u
a+1
b
−1e−udu

=
q1q
−a+1

b
2

b
Γ

(
a+ 1

b
, q2A

b

)
6

2q1

bq2
Aa+1−1/be−q2A

b
,

where for the last step we used Lemma P.
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C Lipschitz properties of the Sinkhorn projection

We give a simple construction illustrating that the Sinkhorn projection operator is not Lip-
schitz in the standard sense. This stands in contrast with Proposition 2, which illustrates
that this projection is Lipschitz on the logarithmic scale.

This non-Lipschitz result holds even for the following simple rescaling of the 2 × 2
Birkhoff polyope:

M :=

{
P ∈ R2×2

>0 : P1 = P T 1 =

[
1
2
1
2

]}
.

Proposition 4. The Sinkhorn projection operator onto M is not Lipschitz for any norm
on R2×2.

Proof. By the equivalence of finite-dimensional norms, it suffices to prove this for ‖ · ‖1,
for which we will show

sup
K,K′∈∆2,2∩R2×2

>0

∥∥ΠSM(K)−ΠSM(K ′)
∥∥

1

‖K −K ′‖1
=∞. (9)

The restriction to strictly positive matrices R2×2
>0 (rather than non-negative matrices) is

to ensure that there is no issue of existence of Sinkhorn projections (see, e.g., Linial et al.,
1998, Section 2).

For ε, δ ∈ (0, 1), define the matrix

Kε,δ :=

[
1− ε ε
1− δ δ

]
and let Pε,δ := ΠSM(Kε,δ) denote the Sinkhorn projection of Kε,δ onto M. The polytope
M is parameterizable by a single scalar as follows:

M = {Ma : a ∈ [0, 1/2]} , Ma :=

[
a 1

2 −a
1
2 −a a

]
.

By definition, Pε,δ is the unique matrix inM of the formD1Kε,δD2 for positive diagonal
matrices D1 and D2. Taking

D1 =

√ δ
ε 0

0
√

1−ε
1−δ

 , D2 =
1

βε,δ

√ ε
1−ε 0

0
√

1−δ
δ


for βε,δ = 2(

√
δ(1− ε) +

√
ε(1− δ)), we verify D1Kε,δD2 = Maε,δ , where aε,δ :=

√
δ(1−ε)
βε,δ

.

Therefore Pε,δ = Maε,δ for ε, δ ∈ (0, 1).
Now parameterize ε := cδ for some fixed constant c ∈ (0,∞) and consider taking

δ → 0+. Then acδ,δ =
√

1−cδ
2
[√

c(1−δ)+
√

1−cδ
] , which for fixed c becomes arbitrarily close to

g(c) :=
1

2(
√
c+ 1)
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as δ approaches 0. Thus ‖Pcδ,δ−Mg(c)‖1 = oδ(1) and similarly ‖Pδ/c,δ−Mg(1/c)‖1 = oδ(1).
We therefore conclude that for any constant c ∈ (0,∞) \ {1}, although

‖Kcδ,δ −Kδ/c,δ‖1 = 2δ |c− 1/c| = oδ(1),

vanishes as δ → 0+, the quantity∥∥ΠSM(Kcδ,δ)−ΠSM(Kδ/c,δ)
∥∥

1
=
∥∥Pcδ,c − Pδ/c,c∥∥1

=
∥∥Mg(c) −Mg(1/c)

∥∥
1

+ oδ(1)

= 4 |g(c)− g(1/c)|+ oδ(1)

does not vanish. Therefore combining the above two displays and taking, e.g., c = 2
proves (9).
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A. Genevay, M. Cuturi, G. Peyré, and F. Bach. Stochastic optimization for large-scale
optimal transport. In Adv. NIPS, pages 3440–3448. 2016.
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