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Abstract

This paper studies Learning from Observations (LfO) for imitation learning with
access to state-only demonstrations. In contrast to Learning from Demonstration
(LfD) that involves both action and state supervision, LfO is more practical in
leveraging previously inapplicable resources (e.g. videos), yet more challenging
due to the incomplete expert guidance. In this paper, we investigate LfO and its
difference with LfD in both theoretical and practical perspectives. We first prove
that the gap between LfD and LfO actually lies in the disagreement of inverse
dynamics models between the imitator and the expert, if following the modeling
approach of GAIL [15]. More importantly, the upper bound of this gap is revealed
by a negative causal entropy which can be minimized in a model-free way. We
term our method as Inverse-Dynamics-Disagreement-Minimization (IDDM) which
enhances the conventional LfO method through further bridging the gap to LfD.
Considerable empirical results on challenging benchmarks indicate that our method
attains consistent improvements over other LfO counterparts.

1 Introduction

A crucial aspect of intelligent robots is their ability to perform a task of interest by imitating
expert behaviors from raw sensory observations [5]. Towards this goal, GAIL [15] is one of the
most successful imitation learning methods, which adversarially minimizes the discrepancy of the
occupancy measure between the agent and the expert for policy optimization. However, along with
many other methods [31, 3, 29, 30, 1, 23, 6, 9, 13, 2], GAIL adopts a heavily supervised training
mechanism, which demands not only the expert’s state (e.g. observable spatial locations), but also its
accurate action (e.g. controllable motor commands) performed at each time step.

Whereas providing expert action indeed enriches the information and hence facilitates the imitation
learning process, collecting them could be difficult and sometimes infeasible for some certain practical
cases, particularly when we would like to learn skills from a large number of internet videos. Besides,
imitation learning under action guidance is not biologically reasonable [39], as our human can imitate
skills through adjusting the action to match the demonstrators’ state, without knowing what exact
action the demonstrator has performed. To address these concerns, several methods have been
proposed [35, 39, 5, 21, 36], including the one named GAIfO [40] that extends the idea of GAIL to
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the case with the absence of action guidance. Joining the previous denotations, this paper will define
the original problem as Learning from Demonstrations (LfD), and the new action agnostic setting as
Learning from Observations (LfO).

Undoubtedly, conducting LfO is non-trivial. For many tasks (e.g. robotic manipulation, locomotion
and video-game playing), the reward function depends on both action and state. It remains chal-
lenging to determine the optimal action corresponding to the best reward purely from experts’ state
observations, since there could be multiple choices of action corresponding to the same sequence of
state in a demonstration—when, for example, manipulating redundant-degree robotic hands, there
exist countless force controls of joints giving rise to the same pose change. Yet, realizing LfO is still
possible, especially if the expert and the agent share the same dynamics system (namely, the same
robot). In this condition and what this paper has assumed, the correlation between action and state
can be learned by the self-playing of the agent (see for example in [39]).

In this paper, we approach LfO by leveraging the concept of inverse dynamics disagreement mini-
mization. As its name implies, inverse dynamics disagreement is defined as the discrepancy between
the inverse dynamics models of the expert and the agent. Minimizing such disagreement becomes the
task of inverse dynamics prediction, a well-known problem that has been studied in robotics [24].
Interestingly, as we will draw in this paper, the inverse dynamics disagreement is closely related
to LfD and LfO. To be more specific, we prove that the inverse dynamics disagreement actually
accounts for the optimization gap between LfD and naive LfO, if we model LfD by using GAIL [15]
and consider naive LfO as GAIfO [40]. This result is crucial, not only for it tells the quantitative
difference between LfD and naive LfO but also for it enables us to solve LfO more elegantly by
minimizing the inverse dynamics disagreement as well.

To mitigate the issue of inverse dynamics disagreement, here we propose a model-free solution
for the consideration of efficiency. In detail, we derive an upper bound of the gap, which turns
out to be a negative entropy of the state-action occupancy measure. Under the assumption of
deterministic system, such entropy contains a mutual information term that can be optimized with the
popularly-used tool (i.e. MINE [4]). For convenience, we term our method as the Inverse-Dynamics-
Disagreement-Minimization (IDDM) based LfO in what follows. To verify the effectiveness of our
IDDM, we perform experimental comparisons on seven challenging control tasks, ranging from
traditional control to locomotion [8]. The experimental results demonstrate that our proposed method
attains consistent improvements over other LfO counterparts.

The rest of the paper is organized as follows. In Sec. 2, we will first review some necessary notations
and preliminaries. Then our proposed method will be detailed in Sec. 3 with theoretical analysis and
efficient implementation, and the discussions with existing LfD and LfO methods will be included in
Sec. 4. Finally, experimental evaluations and ablation studies will be demonstrated in Sec. 5.

2 Preliminaries

Notations. To model the action decision procedure in our context, we consider a standard Markov
decision process (MDP) [37] as (S,A, r, T , µ, γ), where S and A are the sets of feasible state and
action, respectively; r(s, a) : S × A → R denotes the reward function on state s and action a;
T (s′|s, a) : S × A × S → [0, 1] characterizes the dynamics of the environment and defines the
transition probability to next-step state s′ if the agent takes action a at current state s; µ(s) : S →
[0, 1] is the distribution of initial state and γ ∈ (0, 1) is the discount factor. A stationary policy
π(a|s) : S ×A → [0, 1] defines the probability of choosing action a at state s. A temporal sequence
of state-action pairs {(s0, a0), (s1, a1), · · · } is called a trajectory denoted by ζ.

Occupancy measure. To characterize the statistical properties of an MDP, the concept of occupancy
measure [28, 38, 15, 17] is proposed to describe the distribution of state and action under a given
policy π. Below, we introduce its simplest form, i.e., State Occupancy Measure.

Definition 1 (State Occupancy Measure). Given a stationary policy π, state occupancy measure
ρπ(s) : S → R denotes the discounted state appearance frequency under policy π

ρπ(s) =

∞∑
t=0

γtP (st = s|π). (1)
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With the use of state occupancy measure, we can define other kinds of occupancy measures under
different supports, including state-action occupancy measure, station transition occupancy measure,
and joint occupancy measure. We list their definitions in Tab. 1 for reader’s reference.

Inverse dynamics model. We present the inverse dynamics model [34, 33] in Definition 2, which
infers the action inversely given state transition (s, s′).

Table 1: Different occupancy measures for MDP

State-Action
Occupancy Measure

State Transition
Occupancy Measure

Joint
Occupancy Measure

Denotation ρπ(s, a) ρπ(s, s′) ρπ(s, a, s′)

Support S ×A S × S S ×A× S
Definition ρπ(s)π(a|s)

∫
A ρπ(s, a)T (s′|s, a)da ρπ(s, a)T (s′|s, a)

Definition 2 (Inverse Dynamics Model). Let ρπ(a|s, s′) denotes the density function of the inverse
dynamics model under the policy π, whose relation with T and π can be shown as follows.

ρπ(a|s, s′) :=
T (s′|s, a)π(a|s)∫
A T (s′|s, ā)π(ā|s)dā

. (2)

3 Methodology

In this section, we first introduce the concepts of LfD, naive LfO, and inverse dynamics disagreement.
Then, we prove that the optimization gap between LfD and naive LfO actually leads to the inverse
dynamics disagreement. As such, we enhance naive LfO by further minimizing the inverse dynamics
disagreement. We also demonstrate that such disagreement can be bounded by an entropy term and
can be minimized by a model-free method. Finally, we provide a practical implementation for our
proposed method.

3.1 Inverse Dynamics Disagreement: the Gap between LfD and LfO

LfD. In Sec. 1, we have mentioned that GAIL and many other LfD methods [15, 18, 16, 27] exploit
the discrepancy of the occupancy measure between the agent and expert as a reward for policy
optimization. Without loss of generality, we will consider GAIL as the representative LfD framework
and build our analysis on this description. This LfD framework requires to compute the discrepancy
over the state-action occupancy measure, leading to

min
π

DKL (ρπ(s, a)||ρE(s, a)) , (3)

where ρE(s, a) denotes the occupancy measure under the expert policy, and DKL(·) computes the
Kullback-Leibler (KL) divergence2. We have omitted the policy entropy term in GAIL, but our
following derivations will find that the policy entropy term is naturally contained in the gap between
LfD and LfO.

Naive LfO. In LfO, the expert action is absent, thus directly working on DKL(ρπ(s, a)||ρE(s, a))
is infeasible. An alternative objective could be minimizing the discrepancy on the state transition
occupancy measure ρπ(s, s′), as mentioned in GAIfO [40]. The objective function in (3) becomes

min
π

DKL (ρπ(s, s′)||ρE(s, s′)) . (4)

2 The original GAIL method applies Jensen-Shannon (JS) divergence rather than KL divergence for measure-
ment. Here, we will use KL divergence for the consistency throughout our derivations. Indeed, our method is
also compatible with JS divergence, with the details provided in the supplementary material.
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We will refer this as naive LfO in the following context. Compared to LfD, the key challenge in
LfO comes from the absence of action information, which prevents it from applying typical action-
involved imitation learning approaches like behavior cloning [31, 3, 11, 29, 30] or apprenticeship
learning [23, 1, 38]. Actually, action information can be implicitly encoded in the state transition
(s, s′). We have assumed the expert and the agent share the same dynamics system T (s′|s, a). It is
thus possible for us to learn the action-state relation by exploring the difference between their inverse
dynamics models.

We define the inverse dynamics disagreement between the expert and the agent as follows.
Definition 3 (Inverse Dynamics Disagreement). Given expert policy πE and agent policy π, the
inverse dynamics disagreement is defined as the KL divergence between the inverse dynamics models
of the expert and the agent.

Inverse Dynamics Disagreement := DKL (ρπ(a|s, s′)||ρE(a|s, s′)) . (5)
Given a state transition (s, s′), minimizing the inverse dynamics disagreement is learning an optimal
policy to fit the expert/ground-truth action labels. This is a typical robotic task [24], and it can be
solved by using a mixture method of combining machine learning model and control model.

Here, we contend another role of the inverse dynamics disagreement in the context of imitation
learning. Joining the denotations in (3), (4) and Definition 3, we provide the following result.
Theorem 1. If the agent and the expert share the same dynamics system, the relation between LfD,
naive LfO, and inverse dynamics disagreement can be characterized as

DKL (ρπ(a|s, s′)||ρE(a|s, s′)) = DKL (ρπ(s, a)||ρE(s, a))− DKL (ρπ(s, s′)||ρE(s, s′)) . (6)
Theorem 1 states that the inverse dynamics disagreement essentially captures the optimization gap
between LfD and naive LfO. As (5) is non-negative by nature, optimizing the objective of LfD implies
minimizing the objective of LfO but not vice versa. One interesting observation is that when the
action corresponding to a given state transition is unique (or equivalently, the dynamics T (s′|s, a) is
injective w.r.t a), the inverse dynamics is invariant to different conducted policies, hence the inverse
dynamics disagreement between the expert and the agent reduces to zero. We summarize this by the
following corollary.
Corollary 1. If the dynamics T (s′|s, a) is injective w.r.t a, LfD is equivalent to naive LfO.

DKL (ρπ(s, a)||ρE(s, a)) = DKL (ρπ(s, s′)||ρE(s, s′)) . (7)
However, since most of the real world tasks are performed in rather complex environments, (5) is
usually not equal to zero and the gap between LfD and LfO should not be overlooked, which makes
minimizing the inverse dynamics disagreement become unavoidable.

3.2 Bridging the Gap with Entropy Maximization

We have shown that the inverse dynamics disagreement amounts to the optimization gap between
LfD and naive LfO. Therefore, the key to improving naive LfO mainly lies in inverse dynamics
disagreement minimization. Nevertheless, accurately computing the disagreement is difficult, as it
relies on the environment dynamics T and the expert policy (see (2)), both of which are assumed to
be unknown. In this section, we try a smarter way and propose an upper bound for the gap, without the
access of the dynamics model and expert guidance. This upper bound is tractable to be minimized if
assuming the dynamics to be deterministic. We introduce the upper bound by the following theorem.
Theorem 2. LetHπ(s, a) andHE(s, a) denote the causal entropies over the state-action occupancy
measure of the agent and expert, respectively. When DKL [ρπ(s, s′)||ρE(s, s′)] is minimized, we have

DKL [ρπ(a|s, s′)||ρE(a|s, s′)] 6 −Hπ(s, a) + Const. (8)
Now we take a closer look atHπ(s, a). Following the definition in Tab. 1, the entropy of state-action
occupancy measure can be decomposed as the sum of the policy entropy and the state entropy by

Hπ(s, a) = Eρπ(s,a) [− log ρπ(s, a)] = Eρπ(s,a) [− log π(a|s)] + Eρπ(s) [− log ρπ(s)]

= Hπ(a|s) +Hπ(s).
(9)

For the first term, the policy entropy Hπ(a|s) can be estimated via sampling similar to previous
studies [15]. For the second term, we leverage the mutual information (MI) between s and (s′, a) to
obtain an unbiased estimator of the entropy over the state occupancy measure, namely,
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Algorithm 1 Inverse-Dynamics-Disagreement-Minimization (IDDM)

Input: State-only expert demonstrations DE = {ζEi } where ζi = {sE0 , sE1 , ...}, policy πθ, discrimi-
nator Dφ, MI estimator I, entropy weights λp, λs, maximum iterations M .
for 1 to M do

Sample agent rollouts DA = {ζi}, ζi ∼ πθ and update the MI estimator I with DA.
Update the discriminator Dφ with the gradient

ÊDA [∇φ logDφ(s, s′)] + ÊDE [∇φ log(1−Dφ(s, s′))] .

Update policy πθ using the following gradient (can be integrated into methods like PPO [32])

ÊDA [∇θ log πθ(a|s)Q(s, a)]− λp∇θHπθ (a|s)− λs∇θIπθ (s; (s′, a)),

where Q(s̄, ā) = ÊDA [logDφ(s, s′)|s0 = s̄, a0 = ā] .

end for

Hπ(s) = Iπ(s; (s′, a)) +Hπ(s|s′, a)︸ ︷︷ ︸
=0

= Iπ(s; (s′, a)),
(10)

where we have Hπ(s|s′, a) = 0 as we have assumed (s, a) → s′ is a deterministic function3. In
our implementation, the MI Iπ(s; (s′, a)) is computed via maximizing the lower bound of KL
divergence between the product of marginals and the joint distribution following the formulation
of [25]. Specifically, we adopt MINE [4, 14] which implements the score function with a neural
network to achieve a low-variance MI estimator.

Overall loss. By combining the results in Theorem 1, Theorem 2, (9) and (10), we enhance naive
LfO by further minimizing the upper bound of its gap to LfD. The eventual objective is

Lπ = DKL(ρπ(s, s′)||ρE(s, s′))− λpHπ(a|s)− λsIπ(s; (s′, a)), (11)

where the first term is from naive LfO, and the last two terms are to minimize the gap between LfD
and naive LfO. We also add trade-off weights λp and λs to the last two terms for more flexibility.

Implementation. As our above derivations can be generalized to JS-divergence (see Sec. A.3-4
in the supplementary material), we can utilize the GAN-like [25] method to minimize the first term
in (11). In detail, we introduce a parameterized discriminator network Dφ and a policy network πθ
(serves as a generator) to realize the first term in (11). The term logDφ(s, s′) could be interpreted as
an immediate cost since we minimize its expectation over the current occupancy measure. A similar
training method can also be found in GAIL [15], but it relies on state-action input instead. We defer
the derivations for the gradients of the causal entropy∇Hπ(a|s) and MI∇Iπ(s; (s′, a)) with respect
to the policy in Sec. A.5 of the supplementary material. Note that the objective (11) can be optimized
by any policy gradient method, like A3C [22] or PPO [32], and we apply PPO in our experiments.
The algorithm details are summarized in Alg. 1.

4 Related Work

4.1 Learning from Demonstrations

Modern dominant approaches on LfD mainly fall into two categories: Behavior Cloning (BC) [31,
3, 29, 30], which seeks the best policy that can minimize the action prediction error in demonstration,
and Inverse Reinforcement Learning (IRL) [23, 1], which infers the reward used by expert to guide
the agent policy learning procedure. A notable implementation of the latter is GAIL [15], which
reformulates IRL as an occupancy measure matching problem [28], and utilizes the GAN [12] method

3In this paper, the tasks in our experiments indeed reveal deterministic dynamics. The mapping (s, a) → s′

is deterministic also underlying that (s′, a) → s is deterministic. Referring to [20], when s, s′, a are continuous,
H(s|s′, a) can be negative; but since these variables are actually quantified as finite-bit precision numbers (e.g.
stored as 32-bit discrete numbers in computer), it is still true that conditional entropy is zero in practice.
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along with a forward RL to minimize the discrepancy of occupancy measures between imitator and
demonstrator. There are also several follow-up works that attempt to enhance the effectiveness of
discrepancy computation [19, 16, 10, 27], whereas all these methods require exact action guidance at
each time step.

4.2 Learning from Observations

There have already been some researches on exploring LfO. These approaches exploit either a
complex hand-crafted reward function or an inverse dynamics model that predicts the exact action
given state transitions. Here is a summary to show how they are connected to our method.

LfO with Hand-crafted Reward and Forward RL. Recently, Peng et al. propose DeepMimic,
a method that can imitate locomotion behaviors from motion clips without action labeling. They
design a reward to encourage the agent to directly match the expert’s physical proprieties, such as
joint angles and velocities, and run a forward RL to learn the imitation policy. However, as the
hand-crafted reward function does not take expert action (or implicitly state transition) into account,
it is hard to be generalized to tasks whose reward depends on actions.

Model-Based LfO. BCO [39] is another LfO approach. The authors infer the exact action from
state transition with a learned inverse dynamics model (2). The state demonstrations augmented with
the predicted actions deliver common state-action pairs that enable imitation learning via BC [31]. At
its heart, the inverse dynamics model is trained in parallel by collecting rollouts in the environment.
However, as showed in (2), the inverse dynamics model depends on the current policy, underlying
that an optimal inverse dynamics model would be infeasible to obtain before the optimal policy is
learned. The performance of BCO would thus be not theoretically guaranteed.

LfO with GAIL. GAIfO [40, 41] is the closest work to our method. The authors follow the
formulation of GAIL [15] but replace the state-action definition (s, a) with state transition (s, s′),
which gives the same objective in Eq. (4) if replacing KL with JS divergence. As we have discussed
in Sec. 3.1, there is a gap between Eq. (4) and the objective of original LfD in Eq. (3), and this gap
is induced by inverse dynamics disagreement. Unlike our method, the solution by GAIfO never
minimizes the gap and is thereby no better than ours in principal.

5 Experiments

For the experiments below, we investigate the following questions:

1. Does inverse dynamics disagreement really account for the gap between LfD and LfO?
2. With state-only guidance, can our method achieve better performance than other counterparts

that do not consider inverse dynamics disagreement minimization?
3. What are the key ingredients of our method that contribute to performance improvement?

To answer the first question, we conduct toy experiments with the Gridworld environment [37]. We
test and contrast the performance of our method (refer to Eq. (11)) against GAIL (refer to Eq. (3))
and GAIfO (refer to Eq. (4)) on the tasks under different levels of inverse dynamics disagreement.
Regarding the second question, we evaluate our method against several baselines on six physics-
based control benchmarks [8], ranging from low-dimension control to challenging high-dimension
continuous control. Finally, we explore the ablation analysis of two major components in our method
(the policy entropy term and the MI term) to address the last question. Due to the space limit, we
defer more detailed specifications of all the evaluated tasks into the supplementary material.

5.1 Understanding the Effect of Inverse Dynamics Disagreement

This collection of experiments is mainly to demonstrate how inverse dynamics disagreement influ-
ences the LfO approaches. We first observe that inverse dynamics disagreement will increase when
the number of possible action choices grows. This is justified in Fig. 1a, and more details about
the relation between inverse dynamics disagreement and the number of action choices are provided
in Sec. B.2 of the supplementary material. Hence, we can utilize different action scales to reflect
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different levels of inverse dynamics disagreement in our experiments. Controlling the action scale in
Gridworld is straightforward. For example in Fig. 1b, agent block (in red) may take various kinds of
actions (walk, jump or others) for moving to a neighbor position towards the target (in green), and we
can specify different numbers of action choices.

We simulate the expert demonstrations by collecting the trajectories of the policy trained by PPO [32].
Then we conduct GAIL, GAIfO, and our method, and evaluate the pre-defined reward values for
the policies they learn. It should be noted that all imitation learning methods have no access to the
reward function during training. As we can see in Fig. 1c, the gap between GAIL and GAIfO is
growing as the number of action choices (equivalently the level of inverse dynamics disagreement)
increases, which is consistent with our conclusion in Theorem 1. We also find that the rewards
of GAIL and GAIfO are the same when the number of action choice is 1 (i.e. the dynamics is
injective), which follows the statement in Corollary 1. Our method lies between GAIL and GAIfO,
indicating that the gap between GAIL and GAIfO can be somehow mitigated by explicitly minimizing
inverse dynamics disagreement. Note that, GAIL also encounters performance drop when inverse
dynamics disagreement becomes large. This is mainly because the imitation learning problem itself
also becomes more difficult when the dynamics is complicated and beyond injective.
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Figure 1: Toy examples on illustrating the effect of inverse dynamics disagreement.

5.2 Comparative Evaluations

For comparative evaluations, we carry out several LfO baselines, including DeepMimic [26],
BCO [39], and GAIfO [40]. In particular, we introduce a modified version of GAIfO that only
takes a single state as input to illustrate the necessity of leveraging state transition; we denote this
method as GAIfO-s. We also run GAIL [15] to provide oracle reference. All experiments are
evaluated within fixed steps. On each task, we run each algorithm over five times with different
random seeds. In Fig. 2, the solid curves correspond to the mean returns, and the shaded regions
represent the variance over the five runs. The eventual results are summarized in Tab. 2, which is
averaged over 50 trials of the learned policies. Due to the space limit, we defer more details to the
supplementary material.

Table 2: Summary of quantitative results. All results correspond to the original exact reward defined
in [7]. CartPole is excluded from DeepMimic because no crafting reward is available.

CartPole Pendulum DoublePendulum Hopper HalfCheetah Ant

DeepMimic - 731.0±19.0 454.4±154.0 2292.6±1068.9 202.6±4.4 -985.3±13.6
BCO 200.0±0.0 24.9±0.8 80.3±13.1 1266.2±1062.8 4557.2±90.0 562.5±384.1

GAIfO 197.5±7.3 980.2±3.0 4240.6±4525.6 1021.4±0.6 3955.1±22.1 -1415.0±161.1
GAIfO-s∗ 200.0±0.0 952.1±23.0 1089.2±51.4 1022.5±0.40 2896.5±53.8 -5062.3±56.9

Ours 200.0±0.0 1000.0±0.0 9359.7±0.2 3300.9±52.1 5699.3±51.8 2800.4±14.0
GAIL 200.0±0.0 1000.0±0.0 9174.8±1292.5 3249.9±34.0 6279.0±56.5 5508.8±791.5
Expert 200.0±0.0 1000.0±0.0 9318.8±8.5 3645.7±181.8 5988.7±61.8 5746.8±117.5

∗GAIfO with single state only.

The results read that our method achieves comparable performances with the baselines on the easy
tasks (such as CartPole) and outperforms them by a large margin on the difficult tasks (such as
Ant, Hopper). We also find that our algorithm exhibits more stable behaviors. For example, the
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Figure 2: Learning curves under challenging robotic control benchmarks. For each experiment, a step
represents one interaction with the environment. Detailed plots can be found in the supplementary.

performance of BCO on Ant and Hopper will unexpectedly drop down as the training continues.
We conjecture that BCO explicitly but not accurately learns the inverse dynamics model from data,
which yet is prone to over-fitting and leads to performance degradation. Conversely, our algorithm
is model-free and guarantees the training stability as well as the eventual performance, even for the
complex tasks including HalfCheetah, Ant and Hopper.

Besides, GAIfO performs better than GAIfO-s in most of the evaluated tasks. This illustrates the
importance of taking state-transition into account to reflect action information in LfO. Compared
with GAIfO, our method clearly attains consistent and significant improvements on HalfCheetah
(+1744.2), Ant (+4215.0) and Hopper (+2279.5), thus convincingly verifying that minimizing the
optimization gap induced by inverse dynamics disagreement plays an essential role in LfO, and our
proposed approach can effectively bridge the gap. For the tasks that have relatively simple dynamics
(e.g. CartPole), GAIfO achieves satisfying performances, which is consistent with our conclusion in
Corollary 1.

DeepMimic that relies on hand-crafted reward struggles on most of the evaluated tasks. Our proposed
method does not depend on any manually-designed reward signal, thus it becomes more self-contained
and more practical in general applications.
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Figure 3: Comparative results of GAIL [15], GAIfO [40] and our method with different number of
trajectories in demonstrations. The performance is the averaged cumulative return over 5 trajectories
and has been scaled within [0, 1] (the random and the expert policies are fixed to be 0 and 1, respec-
tively). We also conduct experiments with demonstrations containing state-action/state-transition
pairs with the number less than that within one complete trajectory. We use 32′, 128′ and 256′ pairs
(denoted in the beginning of the x axes) for the first three tasks, respectively.

Finally, we compare the performances of GAIL, GAIfO and our method with different numbers
of demonstrations. The results are presented in Fig. 3. It reads that for simple tasks like CartPole
and Pendulum, there are no significant differences for all evaluated approaches, when the number of

8



demonstrations changes. While for the tasks with a higher dimension of state and action, our method
performs advantageously over GAIfO. Even compared with GAIL that involves action demonstrations,
our method still delivers comparable results. For all methods, more demonstrations facilitate better
performances especially when the tasks become more complicated (HalfCheetah and Ant).

5.3 Ablation Study

The results presented in the previous section suggest that our proposed method can outperform other
LfO approaches on several challenging tasks. Now we further perform a diverse set of analyses on
assessing the impact of the policy entropy term and the MI term in (11). As these two terms are
controlled by λp, λs, we will explore the sensitivity of our algorithm in terms of their values.
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p = 0.001
p = 0.01

Figure 4: Sensitivity to the policy
entropy weight λp.

Sensitivity to Policy Entropy. We design four groups of
parameters on HalfCheetah, where λp is selected from
{0, 0.0005, 0.001, 0.01} and λs is fixed at 0.01. The final re-
sults are plotted in Fig. 4, with the learning curves and detailed
quantitative results provided in the supplementary material. The
results suggest that we can always promote the performances by
adding policy entropy. Although different choices of λp induce
minor differences in their final performances, they are overall
better than GAIfO that does not include the policy entropy term
in its objective function.

3500

4000

4500

5000

5500

6000

Av
er

ag
ed

 re
tu

rn

GAIfO
s = 0
s = 0.001
s = 0.01
s = 0.1

Figure 5: Sensitivity to the MI
weight λs.

Sensitivity to Mutual Information. We conduct four groups
of experiments on HalfCheetah by ranging λs from 0.0 to 0.1
and fixing λp to be 0.001. The final results are shown in Fig. 5
(the learning curves and averaged return are also reported in
the supplementary material). It is observed that the imitation
performances could always benefit from adding the MI term,
and the improvements become more significant when the λs has
a relatively large magnitude. All of the variants of our method
consistently outperform GAIfO, thus indicating the importance
of the mutual information term in our optimization objective.

We also provide the results of performing a grid search on λs and λp in the supplementary material
to further illustrate how better performance could be potentially obtained.

6 Conclusion
In this paper, our goal is to perform imitation Learning from Observations (LfO). Based on the
theoretical analysis for the difference between LfO and Learning from Demonstrations (LfD), we
introduce inverse dynamics disagreement and demonstrate it amounts to the gap between LfD and
LfO. To minimize inverse dynamics disagreement in a principled and efficient way, we realize
its upper bound as a particular negative causal entropy and optimize it via a model-free method.
Our model, dubbed as Inverse-Dynamics-Disagreement-Minimization (IDDM), attains consistent
improvement over other LfO counterparts on various challenging benchmarks. While our paper
mainly focuses on control planning, further exploration on combining our work with representation
learning to enable imitation across different domains could be a new direction for future work.
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