
A Appendix

A.1 Proof of Theorem 8

In order to prove the theorem, we make use of the dual form of the restricted variational form of an
f -divergence:

Theorem 15 ([21], Theorem 3) Let f : R → (−∞,∞] denote a convex function with property
f(1) = 0 and suppose H is a convex subset of F (X,R) with the property that for any h ∈ H and
b ∈ R, we have h+ b ∈ H . Then for any P,Q ∈P(X) we have

sup
h∈H
{Ex∼P [h(x)]− Ex∼Q[f∗(h(x))]} = inf

P ′∈P(X)

{
Df (P ′, Q) + sup

h∈H
{EP [h(x)]− EP ′ [h(x)]}

}
The goal is now to set H = Hc however there are some conditions of the above that we require

Lemma 16 If c is a metric then Hc is convex and closed under addition.

Proof Let f ∈ Hc and consider define h = f + b for some b ∈ R, we then have

|h(x)− h(y)| = |f(x) + b− f(y)− b|
= |f(x)− f(y)|
≤ c(x, y)

Consider some λ ∈ [0, 1] and set h(x) = λ · f(x) + (1−λ) · g(x) for some f, g ∈ Hc. We then have

|h(x)− h(y)| = |λ · f(x) + (1− λ) · g(x)− λ · f(y)− (1− λ) · g(y)|
= |λ · (f(x)− f(y)) + (1− λ) · (g(x)− g(y))|
≤ λ · |f(x)− f(y)|+ (1− λ) · |g(x)− g(y)|
≤ λ · c(x, y) + (1− λ) · c(x, y)

= c(x, y)

for all x, y ∈ X.

We require a lemma regarding the decomposibility of G for f -divergences.

Lemma 17 Let G : Z→ X and let P,Q be two distributions over Z. We have that

Df (G#P,G#Q) ≤ Df (P,Q),

with equality if G is invertible. Furthermore, if f is differentiable then we have equality for a weaker
condition: for any z, z′ ∈ Z, G(z) = G(z′) =⇒ f ′( dPdQ (z)) = f ′( dPdQ (z′)).

Proof By writing the variational form from [15] (Lemma 1), we have

Df (G#P,G#Q) = sup
h∈F(X,R)

{Ex∼G#P [h(x)]− Ex∼G#Q[f∗(h(x))]}

= sup
h∈F(X,R)

{Ez∼P [h(G(z))]− Ez∼Q[f∗(h(G(z)))]}

= sup
h∈F(X,R)◦G

{Ez∼P [h(z)]− Ez∼Q[f∗(h(z))]}

≤ sup
h∈F(Z,R)

{Ez∼P [h(z)]− Ez∼Q[f∗(h(z))]}

= Df (P,Q),

where we used the fact that F (X,R) ◦G ⊆ F (Z,R). If G is invertible then we applying the above
with G← G−1, P ← G#P and Q← G#Q, we have

Df (G−1#(G#P ), G−1#(G#Q)) ≤ Df (G#P,G#Q),
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which is just the reverse direction Df (P,Q) ≤ Df (G#P,G#Q), and so equality holds. Suppose
now that f is differentiable then note that inequality holds when f ′(dP/dQ) ∈ F (X,R) ◦G (See
proof of Lemma 1 in [15]), which is equivalent to asking if there exists a function ϕf ∈ F (X,R)
such that

ϕf ◦G = f ′
(
dP

dQ

)
.

For any z ∈ Z, we can construct ϕf to map G(z) to f ′
(
dP
dQ

)
(z) and due to the condition in the

lemma, we can guarantee ϕf will indeed be a function and thus exists.

We need a Lemma that will allow us to upper bound the Wasserstein distance.

Lemma 18 For any E ∈ F (X,P(Z)), G ∈ F (Z,X) and c : X× X→ R, we have

Wc((G ◦ E)#PX , PX) ≤
∫
X

Ez∼E(x)[c(x,G(z))]dPX(x).

Proof We quote a reparametrization result from [6] Theorem 1 that if G is deterministic then the
Wasserstein distance can be reparametrized as

Wc(G#(E#PX), PX) = inf
Q∈F(X,P(Z)):Q#PX=E#PX

∫
X

Ez∼Q(x)[c(x,G(z))]dPX(x) (11)

≤
∫
X

Ez∼E(x)[c(x,G(z))]dPX(x).

We also need a Lemma regarding the relationship between W and WAE.

Lemma 19 Let f : R→ (−∞,∞] be a convex function with f(1) = 0, then we have

W c,λ·f (PX , G) ≤WAEc,λ·Df (PX , G).

Proof Consider the optimal encoder E∗ from the f -WAE objective. Let Q∗ = E∗#PX . We then
have that

W c,λ·f (PX , G) = Wc(PX , G#Q∗) + λ ·Df (Q∗, PZ).

Let π ∈ Π(PX , E#Q∗) be the optimal coupling under the metric c. By the Gluing lemma [14], one
can construct a triple (X,Y, Z) where (X,Y ) ∼ π, Z ∼ Q∗ and Y = G(Z) almost surely. Let π′
be the distribution over (Y,Z) and consider the conditional distribution over Z given Y , associated
with Eπ′ ∈ F (X,P(Z)). We have Eπ′#PX = Q∗ and so we have

WAEc,λ·Df (PX , G) ≤
∫
X

Ez∼Eπ′ (y)[c(x,G(z))]dPX +Df (Eπ′#PX , PZ)

=

∫
X

Ez∼Eπ′ (y)[c(x,G(z))]dPX +Df (Q∗, PZ)

=

∫
X×X

[c(x, y)]dπ′(x, y) +Df (Q∗, PZ)

= Wc(PX , G#Q∗) + λ ·Df (Q∗, PZ).

= W c,λ·f (PX , G).

Finally, we need a lemma to justify reparametrizations.

Lemma 20 If G : Z → X is invertible then for any P ′ ∈ P(X) such that P ′ � PG, then there
exists an E ∈ F (X,P(Z)) such that P ′ = G#E#PX .
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Proof From the assumption, we have Supp(P ′) ⊆ Supp(PG) ⊆ Im(G) and so by invertibility of G,
we can set Q = G−1#P ′ and construct a conditional distribution E (between marginals Q and PX )
to get Q = E#PX , hence P ′ = G#E#PX .

We are now ready to prove the theorem. Set H = Hc (the set of 1-Lipschitz functions) and
note that λf is a convex function satisfying λf(1) = 0 and so substituting f ← λf , we get that
Dλf (·, ·) = λDf (·, ·). Hence, we have

GANλf (PX , G;Hc) = sup
h∈Hc

{Ex∼PX [h(x)]− Ex∼PG [(λf)?(h(x))]}

= inf
P ′∈P(X)

{λDf (P ′, PG) +Wc(P
′, PX)}

= inf
P ′∈P(X):P ′<<Pg

{λDf (P ′, PG) +Wc(P
′, PX)}

= inf
E∈F(X,P(Z))

{λDf ((G ◦ E)#PX , G#PZ) +Wc((G ◦ E)#PX , PX)}

(12)
(∗)
≤ inf

E∈F(X,P(Z))
{λDf (E#PX , PZ) +Wc((G ◦ E)#PX , PX)}

= W c,λ·f (PX , G)

≤ inf
E∈F(X,P(Z))

{∫
X

Ez∼E(x)[c(x,G(z))]dPX(x) + λDf (E#PX , PZ)

}
= WAEc,λ·Df (PX , G), (13)

where (12) is an equality when G is invertible from Lemma 20 and (∗) is = if G satisfies the
requirement of Lemma 17. To prove the final inequality, note that if E∗ satisfies the condition of the
Theorem then

W c,λ·f (PX , G) = Wc((G ◦ E∗)#PX , PX) + λDf (E∗#PX , PZ)

= Wc(G#(E∗#PX), PX)

= Wc(PG, PX). (14)

Next, notice that

WAEc,λ·Df (PX , G)

= inf
E∈F(X,P(Z))

{∫
X

Ez∼E(x)[c(x,G(z))]dPX(x) + λDf (E#PX , PZ)

}
≤ inf
E∈F(X,P(Z)):E#PX=PZ

{∫
X

Ez∼E(x)[c(x,G(z))]dPX(x) + λDf (E#PX , PZ)

}
≤ inf
E∈F(X,P(Z)):E#PX=PZ

{∫
X

Ez∼E(x)[c(x,G(z))]dPX(x)

}
= Wc(PX , PG) (15)

= W c,λ·f (PX , G), (16)

where (15) follows from the reparametrized Wasserstein distance from [6] (Theorem 1), which we
used in (11) and the final step follows from (14). Combining WAEc,λ·Df (PX , G) ≤W c,λ·f (PX , G)

with WAEc,λ·Df (PX , G) ≥W c,λ·f (PX , G) (from 13) yields equality and concludes the proof.

A.2 Proof of Theorem 13

We first prove a lemma that will apply to both cases. Recalling that for any metric space (X, c) and
P ∈P(X) we define ∆P,c = diamc(supp(P )).

Lemma 21 Let (X, c) be a metric space. For any P ∈P(X), suppose ∆P,c <∞ and let P̂ denote
the empirical distribution after drawing n i.i.d samples for some n ∈ N∗. If s > d∗(P ), then we have

IPMHc(P, P̂ ) ≤ O(n−1/s) +
∆P,c

2

√
2

n
ln

(
1

δ

)
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Proof We appeal to McDiarmind’s Inequality and use a standard method, as shown in [32], to bound
the quantity.

Theorem 22 (McDiarmind’s Inequality) Let X1, . . . , Xn be n independent random variables and
consider a function Φ : Xn → R such that there exists constants ci > 0 (for i = 1, . . . , n) with

sup
x1,...,xn,x′i

|Φ(x1, . . . , xn)− Φ(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci.

Then for any t > 0, we have

Pr [Φ(X1, . . . , Xn)− E [Φ(X1, . . . , Xn)] ≥ t] ≤ exp

(
−2t2∑n
i=1 c

2
i

)
Let F = Hc then let

Φ(S) = IPMHc(P, P̂ ).

Noting that

|Φ(x1, . . . , xn)− Φ(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ 1

n
|f(xi)− f(x′i)|

≤ 1

n
· c(xi, x′i)

≤ ∆P,c

n
,

where the first inequality follows as each f is 1-Lipschitz and the second follows from the fact
that each x, x′ ∈ supp(P ). This allows us to set ci = ∆/n for all i = 1, . . . , n. Now applying

McDiarmind’s inequality with t = ∆P,c/2
√

2
n ln

(
1
δ

)
yields (for a sample S ∼ Pn)

Pr

[
Φ(S)− EΦ(S) ≥ ∆P,c

2

√
2

n
ln

(
1

δ

)]
≤ δ

Pr

[
Φ(S)− EΦ(S) ≤ ∆P,c

2

√
2

n
ln

(
1

δ

)]
≥ 1− δ,

and thus

Φ(S) ≤ EΦ(S) +
∆P,c

2

√
2

n
ln

(
1

δ

)
.

Noting that EΦ(S) = E[Wc(P, P̂ )] (from Lemma 4), we appeal to a case of Theorem 1 in [30] where
p = 1, which tells us that if s > d∗(P ) then E[Wc(P, P̂ )] = O(n−1/s). Since this is the requirement
in the lemma, the proof concludes.

We will make use of this lemma for both PX and PG and use ∆ for both cases since ∆ ≥ ∆PX ,c and
∆ ≥ ∆PG,c. For the general case of any f , let (abusing notation) G = GANλf (PX , G;Hc) and Ĝ
denote the empirical counterpart with n samples, and let h1, h2 ∈ Hc denote their witness functions.
We then have
G− Ĝ

= sup
h∈Hc

{Ex∼PX [h(x)]− Ex∼PG [(λf)?(h(x))]} − sup
h∈Hc

{
Ex∼P̂X [h(x)]− Ex∼PG [(λf)?(h(x))]

}
= Ex∼PX [h1(x)]− Ex∼PG [(λf)?(h1(x))]− Ex∼P̂X [h2(x)] + Ex∼PG [(λf)?(h2(x))]

≤ Ex∼PX [h1(x)]− Ex∼P̂X [h1(x)] + Ex∼PG [(λf)?(h1(x))]− Ex∼PG [(λf)?(h1(x))]

= Ex∼PX [h1(x)]− Ex∼P̂X [h1(x)]

≤ sup
h∈Hc

{
Ex∼PX [h(x)]− Ex∼P̂X [h(x)]

}
= IPMHc

(PX , P̂X)

≤ O(n−1/sX ) +
∆

2

√
2

n
ln

(
1

δ

)
,
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where the last step is an application of Lemma 21. Applying Theorem 8, we get Ĝ ≤ W c,λ·f
and rearrangement of the above shows the first bound. For the case of f(x) = |x− 1|, note that
if F ⊆ F (X,R) is such that −F = F, then IPMF is a pseudo-metric and satisfies the triangle
inequality, which allows us to have

IPMF(PX , PG) ≤ IPMF(PX , P̂X) + IPMF(P̂X , PG)

≤ IPMF(PX , P̂X) + IPMF(PG, P̂G) + IPMF(P̂X , P̂G). (17)

Next, we set F = Fc,λ, and noting that Fc,λ ⊆ Hc, we have

IPMFc,λ(PX , PG) ≤ IPMFc,λ(PX , P̂X) + IPMFc,λ(PG, P̂G) + IPMFc,λ(P̂X , P̂G)

≤ IPMHc(PX , P̂X) + IPMHc(PG, P̂G) + IPMHc(P̂X , P̂G)

≤ IPMHc
(P̂X , P̂G) +O(n−1/sX + n−1/sG) + ∆

√
2

n
ln

(
2

δ

)
, (18)

where the final inequality is an application of Lemma 21 like before. However since we use
McDiarmind’s inequality twice, we set δ ← δ/2 and use union bound to have the above inequality
with probability 1− δ. The final step is to note that when f(x) = |x− 1| then for any λ > 0,

(λf)?(x) =

{
x x ≤ λ
∞ x > λ

and so we have

GANλf (PX , G;Hc) = sup
h∈Hc

{Ex∼PX [h(x)]− Ex∼PG [(λf)?(h(x))]}

= sup
h∈Hc:|h|≤λ

{Ex∼PX [h(x)]− Ex∼PG [h(x)]}

= sup
h∈Fc,λ

{Ex∼PX [h(x)]− Ex∼PG [h(x)]}

= IPMFc,λ(PX , PG).

By Theorem 8, we have IPMFc,λ(P̂X , P̂G) = GANλf (P̂X , G;Hc) ≤ W c,λ·f (P̂X , G) where
GANλf (P̂X , G;Hc) is the objective with P̂X and P̂G. Putting this together with (18), we get

GANλf (PX , G;Hc) = IPMFc,λ(PX , PG)

≤ IPMHc(P̂X , P̂G) +O(n−1/s) + ∆

√
2

n
ln

(
1

δ

)

= GANλf (P̂X , G;Hc) +O(n−1/s) + ∆

√
2

n
ln

(
1

δ

)

≤W c,λ·f (P̂X , G) +O(n−1/sX + n−1/sG) + ∆

√
2

n
ln

(
2

δ

)
.

A.3 Proof of Theorem 9

First, using Theorem 8 and the fact that the f -GAN objective is a lower bound to Df , we have that

W γ·c,f (PX , G) = GANf (PX , G,Hγc)

≤ Df .

It is known that f ′(dPX/dPG) is the maximizer of L(h) = Ex∼PX [h(x)]− Ex∼PG [f?(h(x))] [15],
and so the proof concludes by showing that f ′(dPX/dPG) ∈ Hγ∗·c. Note that h ∈ Hγ·c if and only
if for all x, x′ ∈ X, x 6= x′

|h(x)− h(x′)| ≤ γ · δx−x′(0)

= γ
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and so the 1-Lipschitz functions are those that are bounded by their maximum and minimum value
by γ. For any x, x′ ∈ X, x 6= x′ we have∣∣∣∣f ′(dPXdPG

)
(x)− f ′

(
dPX
dPG

)
(x′)

∣∣∣∣ = γ∗
∣∣∣∣f ′(dPXdPG

)
(x)− f ′ (0)

∣∣∣∣
≤ γ,

and thus f ′(dPX/dPG) ∈ Hγ·c.

A.4 Proof of Theorem 10

First note that

WAEc,λ·f (PX , PG) = inf
E∈F(X,P(Z))

{∫
X

Ez∼E(x)[c(x,G(z))]dPX(x) + λ ·Df (E#PX , PZ)

}
≤ inf
E∈F(X,P(Z)):E#PX=PZ

{∫
X

Ez∼E(x)[c(x,G(z))]dPX(x)

}
= Wc(PX , PG),

where the last equality holds from [6] Theorem 1. Thus we have the chain of inequalities for all λ
and f : R→ (−∞,∞] (convex with f(1) = 0)

GANλf (PX , G;Hc) ≤W c,λ·(PX , PG) ≤WAEc,λ·f (PX , PG) ≤Wc(PX , PG).

We now show the opposite direction, which will conclude the proof.

Lemma 23 For any metric c and f : R→ (−∞,∞] convex function with f(1) = 0, if
λ ≥ λ∗ = sup

P ′∈P(X)

(Wc(P
′, PG)/Df (P ′, PG)) ,

then we have
GANλf (PX , G;Hc) ≥Wc(PX , PG)

Proof First noting that λ ≥ supP ′∈P(X) (Wc(P
′, PG)/Df (P ′, PG)), for all P ′ ∈P(X), we have

λDf (P ′, PG)−Wc(P
′, PG) ≥ 0.

Let Z̃ = X,G̃ = Id, PZ̃ = PG and noting that G̃ is invertible, we can apply Theorem 8 to get

GANλf (PX , G;Hc) = W c,λ·f (PX , G̃#PZ̃)

= inf
E∈F(X,P(X))

{Wc(E#PX , PX) + λDf (E#PX , PG)}

≥ inf
E∈F(X,P(X))

{Wc(PX , PG)−Wc(E#PX , PG) + λDf (E#PX , PG)}

≥ inf
E∈F(X,P(X))

{Wc(PX , PG)}

= Wc(PX , PG).

A.5 Proof of Theorem 14

We have
W c,λ·f (PX , G) = inf

E∈F(X,P(Z))
{Wc(PX , (G ◦ E)#PX) + λDf (E#PX , PZ)}

≤ inf
E∈F(X,P(Z)):E#PX=PZ

{Wc(PX , (G ◦ E)#PX) + λDf (E#PX , PZ)}

= inf
E∈F(X,P(Z)):E#PX=PZ

{Wc(PX , (G ◦ E)#PX)}

= inf
E∈F(X,P(Z)):E#PX=PZ

{Wc(PX , PG)}

= Wc(PX , PG).
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