
Table 1: Test accuracy on CIFAR-10 and CIFAR-100 of different MW-Nets.

architcture Imbalance (factor 100) Uniform noise (40%) Flip noise (40%)
CIFAR10 CIFAR100 CIFAR10 CIFAR100 CIFAR10 CIFAR100

1-50-1 73.50 41.87 89.01 67.63 87.38 57.83
1-100-1 75.21 42.09 89.27 67.73 87.54 58.64
1-200-1 74.70 41.72 89.58 67.84 87.74 58.41
1-100-100-1 75.01 41.97 89.09 66.48 87.28 57.39
1-10-10-1 74.71 41.94 89.10 66.53 87.58 57.11
1-10-10-10-1 74.96 42.31 88.82 66.67 87.36 57.29

To Reviewer #1:1

Q1.1: MLP architecture of Meta-Weight-Net. We actually2

have tried different MLP architecture settings in experiments.3

The right table depicts some representative results under 6 dif-4

ferent structures, with different depths and widths. It can be5

seen that varying MLP settings have unsubstantial effects to the6

final result. We thus prefer to use the simple and shallow one.7

To Reviewer #2:8

Q2.1: How the choices of weight function influence the results? Succeeded from the understanding of conventional sample9

reweighting approaches, this explicit weighting function is set as mapping from loss to weight, and thus MLP is suitable. Instead,10

since LSTM is functioned on temporal feature input, it is not proper to be used here. As introduced in Q1.1, we have also tested11

different structures for MW-Net (with different depths and widths), which have only unsubstantial influence to the final result.12

Q2.2: Experiment results with more training epochs. In our experiments, we have tried to specifically set the epoch number for13

each compared method to guarantee possibly the optimal performance. Actually, we have shown in Fig. 1(a) of SM the performance14

tendency of our method with more than 100 epochs. It is easy to see the convergence of our method after about 40 epochs. Similar15

phenomena have been observed from all our experiments. Comparatively, most of other methods could get the best performance16

before 100 epochs, while the state-of-the-art L2RW needs more than 100 epochs, as shown in Fig. 1(a) of SM as well as Fig. 6 of the17

paper. This supports us to say that our method converges relatively faster. We’ll add more results in revision for more clarification.18

To Reviewer #3:19

Q3.1: Definition of Lmeta(Θ) and the proof of the inequality after line 47 (supp). We sincerely thank the reviewer for pointing20

this out. The function L(meta) does depend on w, and thus it should be inappropriate to neglect the symbol w. Specifically, in21

our algorithm (Algorithm 1), we use one step gradient descend result ŵ(t)(Θ) as the variable in Lmeta function, and Θ(t+1) and Θ(t)22

appearing between Line 47-48 of SM do be evaluated with different ws, which should be under ŵ(t+1) and ŵ(t) , respectively, just as23

the reviewer properly indicates. The deduction under line 47 thus should be rectified as follows:24
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(t)

(Θ
(t+1)

))}+{Lmeta(ŵ
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The deduction below line 47 in SM actually deduces the upper bound of the above second term (difference of L(meta) under the same25
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This is almost similar to (14), with only Lmeta(Θ(1))−Lmeta(Θ∗) replaced by Lmeta(ŵ(1)(Θ(1)))−Lmeta(ŵ(2)(Θ(1))). So do the following29

inequalities (15)(16). We’ll revise the proof accordingly to avoid possible confusions of readers.30

Q3.2: Prove that L(meta) is Lipshitz smooth in lemma 1. Many thanks to the reviewer for carefully checking our proof. To31

guarantee that Eq.(9) holds based on the proof already being presented, we do need to additionally prove ∇2
Θ2L

meta
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bounded, which needs another two mild conditions: the meta loss function is Lipschitz smooth with constant L, and V(·) is a twice33

differential with its Hessian bounded by B. The proof is then presented as follows: Let Vj(Θ) = V(Ltrainj (w(t)); Θ) and Gij being34

defined in line 18 of SM, taking gradient of Θ in both sides of (6), we have35
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For the first term in the right hand side, we have that
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∂ŵ

∣∣∣∣T
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equalities, we have
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Q3.3: The proof of theorem 2 at line 71 in the SM. We have skipped several steps, and the detailed proof is as follows: Taking41

expectation of both sides of (21) and since E[ψ(t)] = 0 (line 66-68 of SM), we have42
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Summing up the above inequalities over t = 1, ...,∞ in both sides, we obtain (There exists a typo at line 71, ‖ · ‖ should be ‖ · ‖22)43
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where tr is short for train to save space, since E[‖∇Ltrain(w(t); Θ(t+1))‖22 ≤ ρ
2, E[‖ψ(t)‖22] ≤ σ2.44

Q3.4: Some typos and a different bound for L(meta) instead of ρ. Yes, there is a L2 norm in the sixth line of Eq. (24), and we’ll45

modify this and other typos in revision. We assume the gradients with respect to training/meta data are both ρ-bounded for avoiding46

the abuse of symbols.47


