
A Proof of Theorem 1287

The full proof for Theorem 1 is presented in this section. Since α < β, we have p < n hold for large288

enough N . Then, the least square estimate θ̂P is given by
(
X>PXP

)−1
X>PXθ and the prediction289

error is given by290

Error = Ex,y[(y − x>θ̂)2] = Ex,y[(x>P (θP − θ̂P ) + x>P cθP c)
2]

= ‖Σ1/2
P (X>PXP )−1X>PXP cθP c‖2 + ‖Σ1/2

P c θP c‖2,
where ΣP ∈ Rp×p and ΣP c ∈ R(N−p)×(N−p) are the two diagonal matrices whose diagonal291

elements are the first p and last N − p diagonal elements of Σ respectively. By our assumption on θ,292

we have293

Eθ[Error] = tr(X>P cXP (X>PXP )−1ΣP (X>PXP )−1X>PXP c) + tr(ΣP c).

Our next step is to apply Markov inequality to show (4). Note that XP c is independent of XP .294

Hence, the expectation of Error givenXP is the following:295

E[Error |XP ] = tr(ΣP c) · (tr((X>PXP )−1ΣP ) + 1)

= tr(ΣP c) · (tr((X̄>P X̄P )−1) + 1), (26)

where X̄P = XPΣ
− 1

2

P . (The expectation only conditions on XP ; in particular, it averages over296

XP c .) Further, the variance of Error givenXP is the following: letting z ∼ N (0, I),297

var(Error |XP )

= tr(Σ2
P c) var(z>XP (X>PXP )−1ΣP (X>PXP )−1X>Pz |XP )

≤ 2 tr(Σ2
P c)‖XP (X>PXP )−1ΣP (X>PXP )−1X>P ‖2F

= 2 tr(Σ2
P c) tr((X>PXP )−1ΣP (X>PXP )−1ΣP )

= 2 tr(Σ2
P c) tr((X̄

>
P X̄P )−2).

Hence, by Markov’s inequality and the fact that tr(Σ2
P c) ≤ tr(ΣP c)

2, we have298

Eθ[Error] = E[Error |XP ] ·
(

1 +Op

(
tr((X̄

>
P X̄P )−2)1/2 ·

(
tr((X̄

>
P X̄P )−1) + 1

)−1))
. (27)

Our next step is to simplify (27). Note that X̄P is a standard Gaussian matrix. Hence, when α > 0,299

from (2.104) and (2.105) of [18], we know300

n

p
tr

((
X̄
>
P X̄P

)−1) a.s.→ β

β − α and
n2

p
· tr
((
X̄
>
P X̄P

)−2) a.s.→ β3

(β − α)3
.

When α = 0, i.e., p = o(n), from (2.110) and (2.111) of [18], we know301

n

p
tr

((
X̄
>
P X̄P

)−1) a.s.→ 1 and
n2

p
tr

((
X̄
>
P X̄P

)−2) a.s.→ 1.

Therefore, with (26) and (27), we have for all α < β,302

Eθ[Error] = E[Error |XP ] ·

1 +Op


√√√√ βα(β − α)−3

N
(

α
β−α + 1

)2



= E[Error |XP ] ·
(

1 +Op

(
1√
N

))
p→ tr (ΣP c) ·

(
tr

((
X̄
>
P X̄P

)−1)
+ 1

)
p→ tr (ΣP c) ·

β

β − α. (28)

Our final step is to analyze tr (ΣP c). Note that
∫ s+1

s
t−κ dt < 1

sκ <
∫ s
s−1 t

−κ dt. Hence, we have303 ∫ N

p+1

Nκ

tκ
dt/N <

Nκ

N

N∑
i=p+1

1

iκ
= Nκ−1 tr (ΣP c) <

∫ N

p

Nκ

tκ
dt/N. (29)

Therefore, we know tr (ΣP c)→ N1−κ ∫ 1

α
t−κ dt as p→∞ and thus (4) holds.304
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B Proof of Theorem 2305

B.1 Existence and positivity of m′κ(0)306

We already showed in Section 2.3 that mκ(0) is well-defined. We now show that mκ(z) is well-307

defined in a neighborhood of z = 0, which we can then use to establish the existence and positivity308

of m′κ(0). Note that, in fact, Lemma 1 in Appendix B.2 shows that mκ(z) is the Stieltjes transform309

of a distribution, specifically the limiting distribution of the empirical eigenvalue distribution of ΣP .310

This lemma, which is proved in Appendix B.4, establishes the existence of the Stieltjes transform for311

all z ≤ 0. Here, we just give the arguments needed to show the existence of m′κ(0).312

Define313

zκ(m) := − 1

m
+

1

β

∫ ∞
α−κ

1

κt1/κ(1 + t ·m)
dt.

Based on (6), we can consider zκ(m) to be the inverse of mκ(z) wherever mκ(z) exists. Then, note314

that315

dzκ(m)

dm
=

1

m2
− 1

β

∫ ∞
α−κ

t2

κt1+1/κ(1 + t ·m)2
dt.

Hence, we have316

dzκ(m)

dm
R 0 ⇔ 1 R

1

β

∫ ∞
α−κ

t2

κt1+1/κ(m−1 + t)2
dt.

Note that 1
β

∫∞
α−κ

t2

κt1+1/κ(m−1+t)2
dt is a increasing function of m with317

1

β

∫ ∞
α−κ

t2

κt1+1/κ(m−1 + t)2
dt → 0 as m→ 0;

1

β

∫ ∞
α−κ

t2

κt1+1/κ(m−1 + t)2
dt → 1

β
> 1 as m→∞.

Hence, there exists a constant mc such that for all 0 < m < mc, the function zκ(m) is increasing on318

the interval (0,mc) and decreasing on (mc,∞). Furthermore, note that319

m · zκ(m) =
1

β

∫ ∞
α−κ

1

κt1/κ(m−1 + t)
dt− 1. (30)

Evaluating this integral as m→ 0+ and as m→ +∞ shows that320

m · zκ(m) →
{
−1 as m→ 0+,
1
β − 1 > 0 as m→ +∞, (31)

which in turn implies321

zκ(m) →
{
−∞ as m→ 0+,

0 as m→ +∞. (32)

Therefore, zκ(m) is strictly increasing on z ≤ 0. Further, for z ∈ [0, zκ(mc)], there are two only322

solutions of m satisfying (6). Therefore, since mκ(z) is defined to be the smallest positive solution323

of (6), the mapping between z ∈ (−∞, zκ(mc)] and m ∈ (0,mc] defined by zκ(m) and mκ(z) is324

continuous, one-to-one, and zκ(mc) > 0. This shows that mκ(z) is well-defined and continuous at325

z = 0. Then, by continuity of the defining expression, we conclude that m′κ(0) exists.326

Next, we use the chain rule to calculate the value of m′κ(0). From the definition of mκ in (6), the327

change-of-variable in (12), and the definition of qκ in (13), we have328

−z =
1

βα ·mκ(z)1−1/κ
· qκ

(
mκ(z)1/κ

α
, α

)
(33)
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for z in a neighborhood of z = 0. Also, from the analysis in Section 2.3, we have mκ(0) = (s∗κα)κ329

and qκ(s∗κ, α) = 0. Then, taking the derivative with respect to z on both sides of (33) and with the330

chain rule, we have331

−1 =

(
1

κ
− 1

)
· mκ(z)1/κ−2

βα
· qκ

(
mκ(z)1/κ

α
, α

)

+
1

βαmκ(z)1−1/κ
· ∂qκ (s, α)

∂s

∣∣∣
s=

mκ(z)1/κ

α

· mκ(z)1/κ−1

κα
·m′κ(z).

Hence, plugging in z = 0 and solving for m′κ(0) gives332

m′κ(0) =
κβα2(mκ(0))2−2/κ

−∂qκ(s,α)∂s

∣∣
s=s∗κ

Then, using the formula for the derivative of qκ in (14), we have333

m′κ(0) = κβm2
κ(0) · 1 + (s∗κ)κ

β − (α− β)(s∗κ)κ
. (34)

Since (s∗κ)κ < β/(α − β) (recall the argument in Section 2.3 following Equation (14)), it follows334

that m′κ(0) > 0.335

B.2 Analysis of part 1336

In this section, we will prove that337

tr
(
ΣP

(
I −ΠXP

)) p→ N1−κβ

mκ(0)
. (35)

(The existence and uniqueness of m∗κ := mκ(0) is proved in the beginning of Section 2.3.) Let338

Σ̃P = NκΣP and X̃P = Nκ/2XP , then we have, for all µ > 0,339

tr
(
ΣP

(
I −ΠXP

))
=

n

Nκ

(
1

n
tr
(
Σ̃P

)
− 1

n
tr

(
Σ̃P X̃

>
P

(
X̃P X̃

>
P

)−1
X̃P

))

=
n

Nκ

(
1

n
tr
(
Σ̃P

)
− 1

n
tr

(
Σ̃P

(
X̃
>
P X̃P + µnI

)−1
X̃
>
P X̃P

)
+ εµn

)

=
n

Nκ

µ · 1

n
tr

(
Σ̃P

(
1

n
X̃
>
P X̃P + µI

)−1)
+ εµn

 , (36)

where εµn is given by340

εµn :=
1

n
tr

(
Σ̃P

(
X̃
>
P X̃P + nµI

)−1
X̃
>
P X̃P

)
− 1

n
tr

(
Σ̃P X̃

>
P

(
X̃P X̃

>
P

)−1
X̃P

)
.

Since n/Nκ → N1−κβ, the claim in (35) is implied by341

µ · 1

n
tr

(
Σ̃P

(
1

n
X̃
>
P X̃P + µI

)−1)
+ εµn =

1

mκ(0)
+ op(1).

Hence, our task is reduced to finding a suitable positive sequence (µn)n≥1 such that the following342

hold:343

|εµn | = op(1), (37)

and344

µn ·
1

n
tr

(
Σ̃P

(
1

n
X̃
>
P X̃P + µnI

)−1)
p→ 1

mκ(0)
. (38)

With foresight, we shall assume that345

µn < min

{
1√
N
, o(N−κ)

}
.
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B.2.1 Proof of Equation (37)346

Let us first show (37). Towards this end, we bound |εµn | as follows:347

|εµn | =
1

n

∣∣∣∣∣∣tr
(

Σ̃P

((
X̃
>
P X̃P + µnnI

)−1
X̃
>
P X̃P − X̃

>
P

(
X̃P X̃

>
P

)−1
X̃P

))∣∣∣∣∣∣
(i)
≤ 1

n
‖Σ̃P ‖2 tr

(
X̃
>
P

(
X̃P X̃

>
P

)−1
X̃P −

(
X̃
>
P X̃P + µnnI

)−1
X̃
>
P X̃P

)
≤ Nκ

n
·
n∑
i=1

µn

λ̃i + µn
= Nκ · µn ·mn(−µn) ≤ Nκ · µn

mini(λ̃i)
, (39)

where λ̃i is the i-th eigenvalue of 1
nX̃P X̃

>
P and mn(z) is the Stieltjes transform of the empirical348

eigenvalue distribution of 1
nX̃X̃

>
. Inequality (i) holds because349

X̃
>
P

(
X̃P X̃

>
P

)−1
X̃P −

(
X̃
>
P X̃P + µnnI

)−1
X̃
>
P X̃P

is positive semi-definite. Hence, the proof of (37) only require us to lower bound mini(λ̃i) and the350

following lemma will help us complete this task.351

Lemma 1. Suppose the empirical eigenvalue distribution of the diagonal matrix H converges to352

a limiting distribution H with probability density function fh. Assume that the support of fh is a353

subset of the interval [η1,∞) for some positive constant η1. Let X̄ ∈ Rn×p be a standard Gaussian354

matrix and suppose p/n→ γ > 1. Let mn(z) be the Stieltjes transform of the empirical eigenvalue355

distribution Fn of 1
nX̄HX̄

>. Then Fn converges to a limit F whose Stieltjes transform, denoted by356

m(z), satisfies357

m(z) = −
(
z − γ

∫ ∞
η1

tfh(t) dt

1 + t ·m(z)

)−1
, ∀z ∈ supp(F)c. (40)

Further, there exists a constant cε > 0 such that the minimum eigenvalue of 1
nX̄HX̄

> is lower-358

bounded by cε in probability. Finally, for any increasing sequence zn → 0−, we have359

mn(zn)
p→ m(0) and m′n(zn)

p→ m′(0). (41)

The proof of Lemma 1 is shown in Appendix B.4. Hence to apply Lemma 1, we need the empirical360

distribution of the eigenvalues of the covariance matrix ΣP converges to a limiting distribution and361

thus we need to scale ΣP properly. The following lemma confirms that the correct scaling is pκ.362

Lemma 2. Let S = {i}p1<i≤p2 with 0 ≤ p1 < p2 ≤ N . Suppose p1
N → α1 and p2

N → α2363

with 0 ≤ α1 < α2 ≤ 1. Then, the empirical eigenvalue distribution of NκΣS converges to a364

(non-random) distribution F with probability density function f given by365

f(s) =


1

κ(α2 − α1)
s−1−

1
κ · 1{s∈[α−κ2 ,α−κ1 ]}, α1 > 0

1

κα2
s−1−

1
κ · 1{s∈[α−κ2 ,∞)}, α1 = 0

. (42)

The proof of Lemma 2 is shown in Appendix B.5. Using Lemma 1, Lemma 2, and (39), we see that366

since µn = o(N−κ), we have367

|εµn | = op(1),

which establishes Equation (37).368

B.2.2 Proof of Equation (38)369

Our next goal is to prove (38), i.e.,370

µn
n

tr(Σ̃P S̃n)
p→ 1

mκ(0)
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where371

S̃n :=

(
1

n
X̃
>
P X̃P + µnI

)−1
.

The same result has been proved in Lemma 2.2 of [11] with additional assumption that the empirical372

eigenvalue distribution of Σ̃ converges to a limiting distribution with bounded support. However,373

this assumption does not hold in our case. We employ a similar proof strategy with more involved374

arguments based on leave-one-out estimates [19].375

Let x̃i be the i-th row of X̃P . Then using the identity376

S̃
−1
n − µnI =

1

n

n∑
i=1

x̃ix̃
>
i ,

we have377

1

n

n∑
i=1

x̃>i S̃nx̃i =
1

n
tr

 n∑
i=1

S̃nx̃ix̃
>
i


= tr

(
S̃n(S̃

−1
n − µnI)

)
= tr

(
I − µnS̃n

)
. (43)

For each i = 1, . . . , n, define378

S̃
\i
n :=

(
1

n
X̃
>
P X̃P −

1

n
x̃ix̃

>
i + µnI

)−1
=
(
S̃
−1
n − n−1x̃ix̃>i

)−1
.

By the Sherman-Morrison formula, we have379

S̃n = S̃
\i
n −

1

n
· S̃

\i
n x̃ix̃

>
i S̃
\i
n

1 + 1
n x̃
>
i S̃
\i
n x̃i

. (44)

Hence, with (43), we have380

tr(I − µnS̃n) =
1

n

n∑
i=1

x̃>i S̃nx̃i =
1

n

n∑
i=1

x̃>i

S̃\in − 1

n
· S̃

\i
n x̃ix̃

>
i S̃
\i
n

1 + 1
n x̃
>
i S̃
\i
n xi

 x̃i
=

1

n

n∑
i=1

x̃>i S̃
\i
n x̃i

1 + 1
n x̃
>
i S̃
\i
n x̃i

= n−
n∑
i=1

1

1 + 1
n x̃
>
i S̃
\i
n x̃i

.

Since tr(I − µnS̃n) = n− nµn ·mn(−µn), we have381

mn(−µn) =
1

n

n∑
i=1

1

µn + µn
n x̃

>
i S̃
\i
n x̃i

. (45)

Note that |mn(−µn)−mn(0)| ≤ µn
min(λ̃2

i )
where λ̃i is the ith eigenvalue of 1

nX̃P X̃
>
P . By Lemma 1,382

we have383

mn(−µn) = mn(0) +Op(µn)
p→ mκ(0). (46)

Therefore, the LHS of (45) converges to mκ(0) in probability. Then we just need to show the RHS of384

(45) converges to385 (
µn
n

tr
(
Σ̃P S̃n

))−1
in probability. Let386

∆i :=
µn
n

tr
(
Σ̃P S̃n

)
− µn

n
x̃>i S̃

\i
n x̃i − µn,
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then note that387 ∣∣∣∣∣
(
µn
n

tr
(
Σ̃P S̃n

))−1
−mn(−µn)

∣∣∣∣∣ =

∣∣∣∣∣∣
(
µn
n

tr
(
Σ̃P S̃n

))−1
− 1

n

n∑
i=1

1

µn + µn
n x̃

>
i S̃
\i
n x̃i

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1

n

n∑
i=1

∆i

µn
n tr

(
Σ̃P S̃n

)
·
(
µn
n tr

(
Σ̃P S̃n

)
−∆i

)
∣∣∣∣∣∣∣∣∣

≤ sup
i

|∆i|
µn
n tr

(
Σ̃P S̃n

)
·
∣∣∣∣µnn tr

(
Σ̃P S̃n

)
− |∆i|

∣∣∣∣ .
We claim that388

µn
n

tr
(
Σ̃P S̃n

)
= Θp(1);

sup
i
|∆i| = Op

(
lnN√
N

)
(Proposition 1 and Proposition 2 below). Then with (46), we have389 (

µn
n

tr
(
Σ̃P S̃n

))−1
p→ mκ(0).

This in turn implies Equation (38) as desired.390

B.2.3 Supporting propositions391

Proposition 1.
µn
n

tr
(
Σ̃P S̃n

)
= Θp(1).

Proof. Note that392

µn
n

tr
(
Σ̃P S̃n

) (i)

≥ µn
n

tr
(
S̃n

)
=

µn
n

tr

((
1

n
X̃
>
P X̃P + µnI

)−1)
(ii)

≥ µn
n
· p− n
µn

→ α− β
β

> 0,

where inequality (i) holds due to the fact that Σ̃P is a diagonal matrix with diagonal elements lower393

bounded by 1, and inequality (ii) holds due to the fact that
(

1
nX̃

>
P X̃P + µnI

)−1
has at least p− n394

number of eigenvalues 1
µn

. Hence, we have µn
n tr(Σ̃P S̃n) = Ωp(1). To show µn

n tr
(
Σ̃P S̃n

)
=395

Op(1) as well, let us introduce S̄n = Σ̃
1/2

P SnΣ̃
1/2

P , then we have396

µn
n

tr
(
Σ̃P S̃n

)
=

µn
n

tr
(
S̄n
)
≤ µn

p

n
‖S̄n‖2.

Therefore, as p/n → α/β, we just need to upper bound ‖S̄n‖2. To do this, we use the following397

lemma.398

Lemma 3. Let Σ ∈ Rp×p be a diagonal matrix. Let X̄ ∈ Rn×p be a standard Gaussian matrix399

with p > n. Suppose p
n → γ > 1 as n, p → ∞. Suppose the n

2 th smallest diagonal element of400

Σ can be lower bounded by a constant ν with probability 1− δ. Then the minimum eigenvalue of401
1
nX̄

>
X̄ + µΣ is lower bounded by402

min (c1, c2µ)

with probability 1−cn2 ·exp(−c′n)−δ for some positive constants c1, c2, c, c′ > 0 that only depend403

on γ.404
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The proof of Lemma 3 is shown in Appendix B.6. Note that405

S̄n =

(
1

n
X̄
>
P X̄P + µnΣ̃

−1
P

)−1
where X̄P = X̃P Σ̃

−1/2
P is a standard Gaussian matrix. Further, the n

2 smallest eigenvalue of Σ̃
−1
P is406

nκ

(2p)κ which converges to a constant ( β2α )κ. Hence, by Lemma 3, we know ‖S̄n‖2 is upper bounded407

by Op( 1
µn

) and thus, µnn tr
(
Σ̃P S̃n

)
= Op(1). This completes the proof of Proposition 1.408

Proposition 2.

sup
i
|∆i| = Op

(
lnN√
N

)
.

Proof. Let us introduce S̄\in = Σ̃
1/2

P S\in Σ̃
1/2

P and x̄i = Σ̃
−1/2
P x̃i. Then,409

S̄
\i
n =

(
1

n
X̄
>
P X̄P −

1

n
x̄ix̄

>
i + µnΣ̃

−1
P

)−1
, (47)

where x̄i is the ith row of X̄P . Further, we have410

∆i =
µn
n

tr
(
S̄n
)
− µn

n
x̄>i S̄

\i
n x̄i − µn.

To bound |∆i|, we can decompose ∆i into three parts:411

∆i =

(
µn
n

tr
(
S̄n
)
− µn

n
tr
(
S̄
\i
n

))
+

(
µn
n

tr
(
S̄
\i
n

)
− µn

n
x̄>i S̄

\i
n x̄i

)
− µn

Intuitively, the first part should be small since S̄n and S̄\in only differ at one sample. For the second412

part, since x̄i is independent of S̄\in , the law of large numbers implies that it should be small as well.413

Finally, we have µn → 0. We now make these arguments rigorous. By Lemma 3 again, we have414

max

(
‖S̄n‖2,max

i
‖S̄\in ‖2

)
≤ Op

(
1

µn

)
. (48)

Then, we can show that the difference between µn
n tr

(
S̄n
)

and µn
n tr

(
S̄
\i
n

)
is small. Note that, by415

the Sherman-Morrison formula,416

sup
i

∣∣∣∣µnn tr
(
S̄n
)
− µn

n
tr
(
S̄
\i
n

)∣∣∣∣ = sup
i

∣∣∣∣∣∣µnn tr

 S̄
\i
n x̄ix̄

>
i S̄
\i
n

n+ x̄>i S̄
\i
n x̄i

∣∣∣∣∣∣ = sup
i

1

n

µnx̄
>
i

(
S̄
\i
n

)2
x̄i

n+ x̄>i S̄
\i
n x̄i

< sup
i

1

n

µnx̄
>
i

(
S̄
\i
n

)2
x̄i

x̄>i S̄
\i
n x̄i

≤ sup
i

µn
n
·Op

(
1

µn

)
· x̄
>
i S̄
\i
n x̄i

x̄>i S̄
\i
n x̄i

= Op

(
1

n

)
.

Then we want to show the difference between µn
n tr

(
S̄
\i
n

)
and µn

n x̄
>
i S̄
\i
n x̄i is small. Note that x̄>i417

is a standard Gaussian vector and it is independent of S̄\in . Hence, the expectation of µnn x̄
>
i S̄
\i
n x̄i is418

given by µn
n tr

(
S̄
\i
n

)
. Further, by standard χ2 tail bounds [10], we have419

P

(
max
i

∣∣∣∣µnn x̄>i S̄\in x̄i − µn
n

tr
(
S̄
\i
n

)∣∣∣∣ ≥ 2µnp

n
(ε+ ε2)‖S̄\in ‖

)
≤ e−ε

2p. (49)

Choose ε = logn√
p , we know420

sup
i

∣∣∣∣µnn x̄>i S̄\in x̄i − µn
n

tr
(
S̄
\i
n

)∣∣∣∣ = Op

(
lnN√
N

)
. (50)

Hence, we have421

|∆i| ≤ sup
i

∣∣∣∣µnn tr
(
S̄n
)
− µn

n
tr
(
S̄
\i
n

)∣∣∣∣+sup
i

∣∣∣∣µnn x̄>i S̄\in x̄i − µn
n

tr
(
S̄
\i
n

)∣∣∣∣+|µn| = Op

(
lnN√
N

)
.

422

16



B.3 Analysis of part 2423

In this section, we will prove that424

part 2
p→ N1−κ · m

′
κ(0)

m2
κ(0)

·
∫ 1

α

tκ−2 dt+ op(N1−κ).

We apply a proof similar to that of Theorem 1 in Appendix A. The conditional expectation of part 2425

givenXP is426

E[part 2 |XP ] = tr (ΣP c) ·
(

tr
(
ΣPX

>
P

(
XPX

>
P

)−2
XP

)
+ 1

)
. (51)

(This expectation only conditions onXP ; in particular, it averages overXP c .) The variance of part427

2 givenXP is428

var (part 2 |XP ) ≤ 2 · tr
(
Σ2
P c

)
·
∥∥∥(XPX

>
P

)−1
XPΣPX

>
P

(
XPX

>
P

)−1∥∥∥2
F

= 2 · tr
(
Σ2
P c

)
· tr
((

ΣPX
>
P

(
XPX

>
P

)−2
XP

)2)
. (52)

Let429

ψ := tr
(
ΣPX

>
P

(
XPX

>
P

)−2
XP

)
.

Then by Markov’s inequality, we have430

part 2 = tr (ΣP c) · (ψ + 1) +Op

(√
N − p
Nκ

· ψ
)
. (53)

By (29), we have431

tr (ΣP c) → N1−κ
∫ 1

α

t−κ dt.

Hence, we just need to show432

ψ + 1
p→ m′κ(0)

m2
κ(0)

, (54)

as this will imply433

part 2
p→ N1−κ · m

′
κ(0)

m2
κ(0)

·
∫ 1

α

t−κ dt+ op(N1−κ)

as required.434

To prove (54), let us first rescale Σ to Σ̃ and introduce the positive sequence (µn)n≥1 just like what435

we did for part 1, and with foresight, we pick the sequence such that436

µn = o(N−κ).

Then we have437

ψ + 1 = tr

(
Σ̃P X̃

>
P

(
X̃P X̃

>
P

)−2
X̃P

)
+ 1

=
1

n
tr

(
Σ̃P

(
1

n
X̃
>
P X̃P + µnI

)−1(
1

n
X̃
>
P X̃P

)(
1

n
X̃
>
P X̃P + µnI

)−1)
+ ε′µn + 1

=
1

n
tr
(
Σ̃P S̃n

)
− µn

n
tr
(
Σ̃P S̃

2

n

)
+ 1 + ε′µn ,

where ε′µn is given by438

ε′µn =
1

n
tr

(
Σ̃P

1√
n
X̃
>
P

(
1

n
X̃P X̃

>
P

)−2
1√
n
X̃P

)

− 1

n
tr

(
Σ̃P

(
1

n
X̃
>
P X̃P + µnI

)−1(
1

n
X̃
>
P X̃P

)(
1

n
X̃
>
P X̃P + µnI

)−1)
.
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We shall prove the following:439

|ε′µn | = op(1), (55)

and440

1

n
tr
(
Σ̃P S̃n

)
− µn

n
tr
(
Σ̃P S̃

2

n

)
+ 1

p→ m′κ(0)

m2
κ(0)

, (56)

which suffices to establish (54).441

B.3.1 Proof of Equation (55)442

To bound |ε′µn |, note that443

|ε′µn |
(i)
≤ 1

n
‖Σ̃P ‖2

tr

(
1√
n
X̃
>
P

(
1

n
X̃P X̃

>
P

)−2
1√
n
X̃P

)

− tr

((
1

n
X̃
>
P X̃P + µnI

)−1(
1

n
X̃
>
P X̃P

)(
1

n
X̃
>
P X̃P + µnI

)−1)
≤ Nκ

n
·
n∑
i=1

µn(2λ̃i + µn)

(λ̃i + µn)2λ̃i
≤ 2Nκ · µn

mini(λ̃2i )
, (57)

where λ̃i is the i-th eigenvalue of 1
nX̃P X̃

>
P and inequality (i) holds due to the fact that444

1√
n
X̃
>
P

(
1

n
X̃P X̃

>
P

)−2
1√
n
X̃P−

(
1

n
X̃
>
P X̃P + µnI

)−1(
1

n
X̃
>
P X̃P

)(
1

n
X̃
>
P X̃P + µnI

)−1
is positive semi-definite. By Lemma 1, Lemma 2, and (57), since µn = o(N−κ), we have445

|ε′µn | = op(1).

B.3.2 Proof of Equation (56)446

We now prove447

1

n
tr
(
Σ̃P S̃n

)
− µn

n
tr
(
Σ̃P S̃

2

n

)
+ 1

p→ m′κ(0)

m2
κ(0)

.

Towards this goal, we employ a strategy similar to the proof of (38). Using the identity S̃
−1
n −µnI =448

1
n

∑n
i=1 x̃ix̃

>
i , we have449

1

n

n∑
i=1

x̃>i S̃
2

nx̃i =
1

n
tr

 n∑
i=1

S̃
2

nx̃ix̃
>
i


= tr

(
S̃

2

n(S̃
−1
n − µnI)

)
= tr

(
S̃n − µnS̃

2

n

)
.

With (44), we have450

tr
(
S̃n − µnS̃

2

n

)
=

1

n

n∑
i=1

x̃>i S̃
2

nx̃i

=
1

n

n∑
i=1

x̃>i

S̃\in − 1

n
· S̃

\i
n x̃ix̃

>
i S̃
\i
n

1 + 1
n x̃
>
i S̃
\i
n x̃i

2

x̃i

=

n∑
i=1

1
n x̃
>
i

(
S̃
\i
n

)2
x̃i(

1 + 1
n x̃
>
i S̃
\i
n x̃i

)2 . (58)
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Note that 1
n tr

(
S̃n − µnS̃

2

n

)
= mn(−µn)− µnm′n(−µn). With (45) and (58), we have451

−µnm′n(−µn) =
1

n

n∑
i=1

1
n x̃
>
i

(
S̃
\i
n

)2

x̃i(
1 + 1

n x̃
>
i S̃
\i
n x̃i

)2 −mn(−µn)

=
1

n

n∑
i=1

1
n x̃
>
i

(
S̃
\i
n

)2

x̃i(
1 + 1

n x̃
>
i S̃
\i
n x̃i

)2 −
1

n

n∑
i=1

1

µn + µn
n x̃

>
i S̃
\i
n x̃i

= µn ·
1

n

n∑
i=1

µn
n x̃

>
i

(
S̃
\i
n

)2

x̃i − 1− 1
n x̃
>
i S̃
\i
n x̃i(

µn + µn
n x̃

>
i S̃
\i
n x̃i

)2 .

Hence, we have452

m′n(−µn) =
1

n

n∑
i=1

1 + 1
n x̃
>
i

(
S̃
\i
n − µn

(
S̃
\i
n

)2
)
x̃i(

µn + µn
n x̃

>
i S̃
\i
n x̃i

)2 . (59)

Note that453

|m′n(−µn)−m′n(0)| ≤ 2µn

min(λ̃3i )
,

where λ̃1, . . . , λ̃n are the eigenvalues of 1
nX̃P X̃

>
P . Therefore, by Lemma 1, we have454

m′n(−µn) = m′n(0) +Op(µn)
p→ m′κ(0).

From (38), Proposition 1, and Proposition 2, we know that455 (
µn +

µn
n
x̃>i S̃

\i
n x̃i

)2
p→ 1

m2
κ(0)

> 0. (60)

We claim that456

1

n
tr
(
Σ̃P S̃n − µnΣ̃P S̃

2

n

)
= Op(1), (61)

1

n
x̃>i

(
S̃
\i
n − µn

(
S̃
\i
n

)2
)
x̃i =

1

n
tr
(
Σ̃P S̃n − µnΣ̃P S̃

2

n

)
+Op

(
lnN√
N

)
(62)

(Proposition 3 and Proposition 4 below). So, we obtain from (59)457

m′n(−µn) =
1

n

n∑
i=1

1 + 1
n x̃
>
i

(
S̃
\i
n − µn

(
S̃
\i
n

)2
)
x̃i(

µn + µn
n x̃

>
i S̃
\i
n x̃i

)2

p→
1 + 1

n tr
(
Σ̃P S̃n − µnΣ̃P S̃

2

n

)
1/mκ(0)2

,

i.e.,458

m′n(−µn)

mκ(0)2
p→ 1 +

1

n
tr
(
Σ̃P S̃n − µnΣ̃P S̃

2

n

)
.

This suffices to prove (56) as required.459

19



B.3.3 Supporting propositions460

Proposition 3.
1

n
tr
(
Σ̃P S̃n − µnΣ̃P S̃

2

n

)
= Op(1).

Proof. Recall that461

S̄n = Σ̃
1/2

P S̃nΣ̃
1/2

P =

(
1

n
X̄
>
P X̄P + µnΣ̃

−1
P

)−1
,

where X̄P = X̃P Σ̃
−1/2
P is a standard Gaussian matrix. Let 1

nX̄
>
P X̄P = UΛU> be the singular462

value decomposition of 1
nX̄

>
P X̄P , where UU> = I and Λ is a diagonal matrix with463

Λ1,1 ≥ Λ2,2 ≥ · · · ≥ Λn,n ≥ Λn+1,n+1 = · · · = Λp,p = 0.

Hence, we have464

Σ̃
1/2

P S̃nΣ̃
1/2

P − µnΣ̃
1/2

P S̃
2

nΣ̃
1/2

P = S̄n

(
1

n
X̄
>
P X̄P

)
S̄n

=
(
Λ + µnU

>Σ̃
−1
P U

)−1
Λ
(
Λ + µnU

>Σ̃
−1
P U

)−1
.

Our next step is to bound the maximum eigenvalue of465 (
Λ + µnU

>Σ̃
−1
P U

)−1
Λ
(
Λ + µnU

>Σ̃
−1
P U

)−1
.

Let φn be the smallest eigenvalue of Σ̃
−1
P . Define Λφ = Λ + µnφn

2 I and Σ−1φ = µn(Σ̃
−1
P − φn

2 I).466

Then Λφ and Σφ are two positive definite diagonal matrices. Intuitively, for µn small enough,467 (
Λ + µnU

>Σ̃
−1
P U

)−1
Λ
(
Λ + µnU

>Σ̃
−1
P U

)−1
≈ Λ−1φ ΛΛ−1φ ,

the latter having a maximum eigenvalue bounded by a constant. We now make this argument rigorous.468

By the Sherman-Morrision formula, we have469 (
Λ + µnU

>Σ̃
−1
P U

)−1
=

(
Λφ +U>Σ−1φ U

)−1
= Λ−1φ −Λ−1φ U

>
(
Σφ +U>Λ−1φ U

)−1
UΛ−1φ .

Hence, we know470 ∥∥∥∥(Λ + µnU
>Σ̃
−1
P U

)−1
Λ
(
Λ + µnU

>Σ̃
−1
P U

)−1∥∥∥∥
2

≤ 2
∥∥∥Λ−1φ ΛΛ−1φ

∥∥∥
2

+2

∥∥∥∥Λ−1φ U> (Σφ +U>Λ−1φ U
)−1

UΛ−1φ ΛΛ−1φ U
>
(
Σφ +U>Λ−1φ U

)−1
UΛ−1φ

∥∥∥∥
2

≤ 2
∥∥∥Λ−1φ ΛΛ−1φ

∥∥∥
2

(
1 +

∥∥∥∥Λ−1φ U> (Σφ +U>Λ−1φ U
)−1

UU>
(
Σφ +U>Λ−1φ U

)−1
UΛ−1φ

∥∥∥∥
2

)

= 2
∥∥∥Λ−1φ ΛΛ−1φ

∥∥∥
2

(
1 +

∥∥∥∥Λ−1φ (
UΣφU

> + Λ−1φ

)−2
Λ−1φ

∥∥∥∥
2

)

= 2
∥∥∥Λ−1φ ΛΛ−1φ

∥∥∥
2

1 +

∥∥∥∥∥
(

Λφ

(
UΣφU

> + Λ−1φ

)2
Λφ

)−1∥∥∥∥∥
2


= 2

∥∥∥Λ−1φ ΛΛ−1φ

∥∥∥
2

1 +

∥∥∥∥∥
(
I + Λφ

(
UΣφU

>Λ−1φ + Λ−1φ UΣφU
> + (UΣφU

>)2
)

Λφ

)−1∥∥∥∥∥
2


≤ 4

∥∥∥Λ−1φ ΛΛ−1φ

∥∥∥
2
.
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Note that Λφ and Λ are both diagonal. Hence, we have471

‖Λ−1φ ΛΛ−1φ ‖2 = max
1≤i≤n

Λi,i(
Λi,i + φnµn

2

)2 ≤ 1

Λn,n
.

To lower bound Λn,n, we use the following lemma.472

Lemma 4 (Lemma 10 of 19). Let X ∈ Rn×p be a standard Gaussian random matrix, and let xi473

be the i-th row of the matrix X . Let ρ = n/p > 1. There exist constants c, c′ > 0 such that for474

large enough n, with probability at least 1 − c′(p2 + n2)e−cn, the eigenvalues of 1
nX

>X and of475
1
n (X>X − xix>i ) for each i = 1, . . . , n are contained in the interval476 (

1

2
·min

{
(1− 1/

√
ρ)2, 1/ρ

}
, 9ρ2

)
.

Hence, by Lemma 4, we have Λn,n ≥ 1
2 min((1 −

√
β/α)2, β/α) > 0 hold with probability477

1− c · n2exp(−c′n) for some absolute constants c, c′ > 0. Hence, we have478 ∥∥∥∥∥S̄n
(

1

n
X̄
>
P X̄P

)
S̄n

∥∥∥∥∥
2

≤ Op(1) (63)

as required.479

Proposition 4.

1

n
x̃>i

(
S̃
\i
n − µn

(
S̃
\i
n

)2
)
x̃i =

1

n
tr
(
Σ̃P S̃n − µnΣ̃P S̃

2

n

)
+Op

(
lnN√
N

)
.

Proof. It is clear that we just need to prove the following two arguments480

sup
i

∣∣∣∣∣∣ 1n x̃>i
(
S̃
\i
n − µn

(
S̃
\i
n

)2
)
x̃i −

1

n
tr

(
Σ̃P S̃

\i
n − µnΣ̃P

(
S̃
\i
n

)2
)∣∣∣∣∣∣ = Op

(
lnN√
N

)
(64)

sup
i

∣∣∣∣∣∣ 1n tr

(
Σ̃P S̃n − µnΣ̃P

(
S̃n

)2)
− 1

n
tr

(
Σ̃P S̃

\i
n − µnΣ̃P

(
S̃
\i
n

)2
)∣∣∣∣∣∣ = Op

(
lnN√
N

)
.

(65)

To show (64), we use a proof similar to that of (63). By Lemma 4, we know481

max
i

∥∥∥∥∥S̄\in
(

1

n
X̄
>
P X̄P −

1

n
x̄ix̄

>
i

)
S̄
\i
n

∥∥∥∥∥
2

= Op(1). (66)

Note that482

x̃>i

(
S̃
\i
n − µn

(
S̃
\i
n

)2
)
x̃i = x̄>i Σ̃

1/2

P

(
S̃
\i
n − µn

(
S̃
\i
n

)2
)

Σ̃
1/2

P x̄i

= x̄>i

(
S̄
\i
n

(
1

n
X̄
>
P X̄P −

1

n
x̄ix̄

>
i

)
S̄
\i
n

)
x̄i.

Furthermore, x̃i is a standard Gaussian vector, and it is independent of the matrix483

S̄
\i
n

(
1

n
X̄
>
P X̄P −

1

n
x̄ix̄

>
i

)
S̄
\i
n .
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Hence, we apply the same proof of (50) with (66) and Lemma 1 of [10]; this gives484

sup
i

∣∣∣∣∣∣ 1n x̄>i Σ̃
1/2

P

(
S̃
\i
n − µn

(
S̃
\i
n

)2
)

Σ̃
1/2

P x̄i −
1

n
tr

Σ̃
1/2

P

(
S̃
\i
n − µn

(
S̃
\i
n

)2
)

Σ̃
1/2

P

∣∣∣∣∣∣
= Op

(
lnN√
N

)
.

Hence, (64) holds. Therefore, it remains to show (65), which is equivalent to485
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i

∣∣∣∣∣∣ 1n tr

(
S̄n

(
1

n
X̄
>
P X̄P

)
S̄n

)
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n
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\i
n

(
1

n
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>
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1
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x̄ix̄

>
i
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n
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(
lnN√
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(67)

By the Sherman-Morrison formula, we have486

S̄n = S̄
\i
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S̄
\i
n x̄ix̄

>
i S̄
\i
n

n+ x̄>i S̄
\i
n x̄i

,

and therefore487
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1
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>
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1
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>
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LetM i = S̄
\i
n
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1
nX̄

>
P X̄P − 1

n x̄ix̄
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i

)
S̄
\i
n . Let ρ = µn
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>
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n
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x̄i. Then,488

from (68), we have489
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∣∣∣∣∣∣∣
= sup

i

∣∣∣∣∣∣
(
(µn + ρ)2 − 2ρ(µn + ρ) + ρ2

)
τ

µ2
nn(µn + ρ)2

− 2

n
· tr

M i

µn
n x̄ix̄

>
i S̄
\i
n

µn + ρ

+
1

n

τ

(µn + ρ)2
· 1

n
x̄>iM ix̄i

∣∣∣∣∣∣
≤ sup

i

(
τ

n(µn + ρ)2
+

2

n(µn + ρ)
‖M i‖2 ·

µn
n
‖x̄ix̄>i S̄

\i
n ‖2 +

τ

n(µn + ρ)2
· 1

n
‖x̄i‖22‖M i‖2

)
≤ sup

i

(
τ

n(µn + ρ)2
+

2

n(µn + ρ)
‖M i‖2 ·

√
1

n
‖x̄i‖22 · τ +

τ

n(µn + ρ)2
· 1

n
‖x̄i‖22‖M i‖2

)
. (69)

Our next step is to bound ρ, τ, supi ‖x̄i‖2 and supi ‖M i‖2. Since the x̄i are standard Gaussian490

vectors, standard χ2 tail bounds [10] establish that supi
1
n‖xi‖22 = Op(lnN). Then, by (48), we491

know492

τ =
µ2
n

n
x̄>i

(
S̄
\i
n

)2
x̄i ≤ µ2

n ·Op(lnN) ·Op

(
1

µ2
n

)
= Op (lnN) .
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Using Proposition 1, Proposition 2, and (47), we also have ρ = Θp(1). Finally, by (63), we have493

supi ‖M i‖ = Op(1). Plug in these results in (69), we have494

sup
i

∣∣∣∣∣∣ 1n tr

(
S̄n

(
1

n
X̄
>
P X̄P

)
S̄n − S̄\in

(
1

n
X̄
>
P X̄P −

1

n
x̄ix̄

>
i

)
S̄
\i
n

)∣∣∣∣∣∣ = Op

(
ln2N

N

)
.

Hence (67) holds.495

B.4 Proof of Lemma 1496

The first part of the lemma, Equation (40), follows from Theorem 2.38 of [18].497

For the second part, to lower bound the minimum eigenvalue λmin of 1
nX̄HX̄

>, we need to find the498

support of F . From Section 4 of [16], we have499

z ∈ supp(F)c ⇔ m(z) ∈ B and
1

m(z)2
− γ

∫ ∞
η1

t2fh(t) dt

(1 + tm(z))2
> 0,

where B := {m : m 6= 0,−m−1 ∈ supp(H)c}.500

To show λmin > cε > 0 holds in probability for some small enough constant cε, we just need to show501

that for all 0 ≤ z ≤ cε,502

m(z) > 0 and
1

m(z)2
− γ

∫ ∞
η1

t2

(1 + t ·m(z))2
· fh(t) dt > 0. (70)

Note that the equation (40) defining m(z), i.e.,503

m(z) = −
(
z − γ

∫ ∞
η1

tfh(t) dt

1 + t ·m(z)

)−1
, ∀z ∈ supp(F)c

is equivalent to504

z = γ

∫ ∞
η1

t

1 + t ·m(z)
· fh(t) dt− 1

m(z)
, ∀z ∈ supp(F)c

Let us consider the “inverse” of m(z) defined by the following equation:505

z(m) := γ

∫ ∞
η1

t

1 + t ·m · fh(t) dt− 1

m
.

Note that506

inf
m<0

z(m) ≥ γ > 1.

Hence, for all z ≤ 1, if m(z) exists, we have m(z) > 0. Further, note that507

dz(m)

dm
> 0 ⇔ 1

m(z)2
− γ

∫ ∞
η1

t2

(1 + t ·m(z))2
· fh(t) dt > 0

⇔ γ

∫ ∞
η1

t2

(m−1 + t)2
· fh(t) dt < 1.

Moreover, γ
∫∞
η1

t2

(m−1+t)2 · fh(t) dt is a continuous increasing function of m with508

γ

∫ ∞
η1

t2

(m−1 + t)2
· fh(t) dt → 0 as m→ 0

γ

∫ ∞
η1

t2

(m−1 + t)2
· fh(t) dt → γ > 1 as m→∞.
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Therefore, we know there exists a constant mc such that for all 0 < m < mc, z(m) is a strictly509

increasing function on m ∈ (0,mc) and strictly decreasing function on m ∈ [mc,∞). Thus, the510

conditions in (70) (with m in place of m(z)) are met for all 0 < m < mc. Note that511

m · z(m) =

(
γ

∫ ∞
η1

t

1/m+ t
· fh(t) dt− 1

)
→
{
− 1, as m→ 0+

γ − 1 > 0, as m→ +∞ ,

Therefore, we have z(m) → −∞ as m → 0+ and z(m) → 0+ as m → ∞. Then, by continuity512

of the function z(m), we know for any non-positive value z, the mapping between z and m > 0513

defined by (40) is an one to one mapping. Moreover, since the function z(m) is increasing on514

(0,mc) and decreasing on [mc,∞), there exists an unique m∗ such that z(m∗) = 0 and z(m) is a515

continuous and increasing function on [0,m∗]. Hence, we have m∗ < mc. This implies m(z) is a516

continuous increasing function on z ≤ 0. Further, we can find a small enough constant ε > 0 such517

that m∗ + ε < mc and 0 < z(m∗) < 1 (z is a function here). With cε := z(m∗ + ε), we have that518

for all 0 ≤ z ≤ cε, the conditions in (70) are met. Hence λmin > cε > 0 holds in probability.519

Finally, by the dominated convergence theorem, we have520

lim
n→∞

mn(z) = m(z), a.s. and lim
n→∞

m′n(z) = m′(z), a.s. for ∀z < 0.

For an increasing sequence zn → 0−, note that for all ε′ > 0, we have |mn(zn)−mn(−ε′)| ≤ ε′−zn
c2ε

521

holds in probability. Further, mn(−ε′) → m(−ε′) almost surely and m(−ε′) → m(0) as ε′ → 0.522

Hence, for all ε′ > 0, we can choose a small enough ε′′ > 0 such that523

P(|mn(zn)−mn(−ε′′)| ≤ ε′

3
) → 1

P(|mn(−ε′′)−m(−ε′′)| ≤ ε′

3
) → 1

|m(−ε′′)−m(0)| ≤ ε′

3
.

Hence, we have mn(zn)
p→ m(0). Similarly, we have m′n(zn)

p→ m′(0).524

B.5 Proof of Lemma 2525

Let σn be the random variable that follows the empirical eigenvalue distribution of NκΣS . Since526

the minimum eigenvalue of NκΣS is Nκ

pκ2
and its maximum eigenvalue is Nκ

(p1+1)κ . Then for all527

t ∈ [N
κ

pκ2
, Nκ

(p1+1)κ ], we have528

P(σn > t) =
1

|S|

p2∑
i=1+p1

1{Nκiκ >t}

=
1

|S| max

(
0,

⌊
N

t1/κ

⌋
− p1

)

=
1

|S|

(⌊
N

t1/κ

⌋
− p1

)
,

where the last inequality is due to the fact that529 ⌊
N

t1/κ

⌋
≥
⌊
N(p1 + 1)

N

⌋
= bp1 + 1c ≥ p1.

Hence, as N →∞, we have530

P(σn > t)→


1, t ≤ 1

ακ2

max

(
0,

1

α2 − α1
(

1

t1/κ
− α1)

)
, t >

1

ακ2

.

Hence, the probability density function for the limiting distribution of σn is indeed f(s) given by531

(42).532
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B.6 Proof of Lemma 3533

Without loss of generality, we assume that the diagonal elements of Σ are in a non-increasing order.534

We condition on the event where the n
2 smallest diagonal elements of Σ are lower-bounded by ν. The535

minimum eigenvalue of536

S =

(
1

n
X̄
>
X̄ + µΣ

)
,

is given by537

σmin(S) = min
‖v‖=1

v>
(

1

n
X̄
>
X̄ + µΣ

)
v.

Let v = (v1,v2) where v1 is the first p− n
2 number of components of v and v2 is the last n2 number538

of components of v. If ‖v1‖2 ≥ 1
400γ2 , then immediately, we have539

σmin(S) ≥ µ‖v1‖2ν ≥ µ
ν

400γ2
.

Otherwise, let X̄ = (X̄1, X̄2) where X̄1 is the first p − n
2 columns of X̄ and X̄2 is the last n2540

columns of X̄ . Then we have541

σmin(S) ≥ min
‖v‖=1,‖v1‖2< 1

400γ2

1

n
‖X̄2v2‖2 +

1

n
‖X̄1v1‖2 − 2

1

n
‖X̄1v1‖ · ‖X̄2v2‖

= min
‖v‖=1,‖v1‖2< 1

400γ2

(
1√
n
‖X̄2v2‖ −

1√
n
‖X̄1v1‖

)2

.

Note thatX2 is a n× n
2 standard Gaussian matrix and therefore the minimum eigenvalue of 1

nX
>
2X2542

can be lower bounded away from 0. Further X1 is a n × (p − n
2 ) standard Gaussian matrix with543

p−n2
n → γ − 1

2 as p, n→∞. Hence the maximum eigenvalue of 1
nX

>
1X1 can be upper bounded. In544

fact, from Lemma 4 (Lemma 10 of [19]), we have with probability 1− cn2exp(−c′n), we have545

min
‖v‖=1

1

n
‖X̄2v‖2 ≥

1

25
and max

‖v‖=1

1

n
‖X̄1v‖2 ≤ 9γ2.

Hence, we have546 √
σmin(S) ≥ min

‖v‖=1,‖v1‖2< 1
400γ2

1√
n
‖X̄2v2‖ −

1√
n
‖X̄1v1‖

≥ 1

5

√
1− 1

400γ2
− 3γ · 1

20γ

≥
√

399

100
− 3

20
> 0.

This completes the proof of this lemma.547

C Analysis under polynomial eigenvalue decay with noise σ > 0548

In this section, we consider analogues of Theorem 1–Theorem 3 that permit noisy independent549

observations550

yi = x>i θ + wi, i = 1, . . . , n,

where w = (w1, . . . , wn) ∼ N (0, σ2I), where we allow σ2 > 0.551

Theorem 5. Assume A.1 with constant κ and A.2 with constants α and β.552

(i) We have for all α < β,553

Ew,θ[Error]
p→
(
N1−κ

∫ 1

α

t−κ dt+ σ2

)
· β

β − α =: Rκ(α, σ), ∀α < β. (71)
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When κ > 1, the minimum ofRκ(α, σ) is achieved at α = 0 and the minimum risk is given554

by555

min
α<β

Rκ(α, σ) = σ2. (72)

When κ ≤ 1, we have nearly the same results as in Theorem 1, i.e., the minimum ofRκ(α, σ)556

is achieved at α∗ which is the unique solution of the equation hκ(α) = 0 on (0, β), where557

hκ(α) is given by558

hκ(α) :=
β

α
−
∫ 1

α

tκ−2 dt− 1− σ21{κ=1}. (73)

The minimum risk is therefore given by559

min
α<β

Rκ(α, σ) = N1−κ β

(α∗)κ
. (74)

(ii) We have for all α > β,560

Ew,θ[Error]
p→ N1−κ β

mκ(0)
+

(
N1−κ

∫ 1

α

t−κ dt+ σ2

)
m′κ(0)

m2
κ(0)

=: Rκ(α, σ). (75)

(iii) When κ > 1, the minimum risk for all α < 1 and α 6= β is achieved at α = 0, i.e.,561

p = o(n). When κ < 1, let α∗ be the minimizer ofRκ(α, σ) over the interval [0, β). Then562

lim supN Rκ(1, σ)/Rκ(α∗, σ) < 1.563

The proof of (i) can be easily derived from (28). The proof of (ii) can be easily derived as well from564

(15) and (54). For the proof of (iii), note that when κ < 1, the dominant part of the risk is the same565

as the noiseless case, so (iii) follows from the arguments in Theorem 3. When κ > 1, the dominant566

part of the risk is the noise, and therefore from (34), we have567

min
α>β

Rκ(α, σ) ≥ min
α>β

σ2 β(1 + (s∗κ)κ)

β + (β − α)(s∗κ)κ
> σ2 = Rκ(0, σ).

Further, for N large enough568

min
α<β

Rκ(α, σ) → min
α<β

β

β − ασ
2 ≥ σ2 = Rκ(0, σ)

This proves (iii) in the case κ > 1.569

D Proof of Theorem 4570

D.1 Proof of Part (i)571

Since p < n holds almost surely as N →∞, by excluding an additional zero probability event p ≥ n,572

we can apply the same calculation in Section 2.2 and conclude that the following equation holds573

under our new settings, i.e.,574

Ew,θ[Error]
p→
(

tr (ΣP c) + σ2
) β

β − α(ν)
.

Hence, to show (22), we just need to characterize tr (ΣP c). By Assumption B.1, we have575

tr (ΣP c) =

 N∑
i=1

σ2
i 1{cNσ2

i≤ν}

→ N

cN
· δ
∫ ν

η1

tf(t) dt.

Hence, we have576

Ew,θ[Error]
p→

(
N

cN
· δ
∫ ν

η1

tf(t) dt+ σ2

)
β

β − δ
∫∞
ν
f(t) dt

.
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Hence, (22) holds. Then our next step is to find the optimal ν∗ in (νb,∞) when σ = 0. Define577

gf (ν) :=

∫ ν
η1
tf(t) dt

β − δ
∫∞
ν
f(t) dt

.

To minimize Ew,θ[Error], we just need to minimize gf (ν) over ν ∈ (νb,∞)
⋂

supp(f). To do this,578

we analyze the first derivative of gf (ν). Note that579

dgf (ν)

dν
=

νf(ν)

β − δ
∫∞
ν
f(t) dt

−
δf(ν)

∫ ν
η1
tf(t) dt(

β − δ
∫∞
ν
f(t) dt

)2
=

f(ν)(
β − δ

∫∞
ν
f(t) dt

)2
(
νβ − νδ

∫ ∞
ν

f(t) dt− δ
∫ ν

η1

tf(t) dt

)

=
f(ν)(

β − δ
∫∞
ν
f(t) dt

)2hf (ν), ∀ν ∈ (νb,∞)
⋂

supp(f).

Therefore, the sign of dgf (ν)
dν is the same as the sign of hf (ν) on ν ∈ (νb,∞)

⋂
supp(f). Further,580

note that581

dhf (ν)

dν
= β − δ

∫ ∞
ν

f(t) dt > 0, ∀ν ∈ (νb,∞)
⋂

supp(f).

Hence hf (ν) is a strictly increasing function of ν in (νb,∞)
⋂

supp(f). Further, note that582

lim
ν→νb

hf (ν) = −δ
∫ νb

η1

tf(t) < 0.

Hence, by continuity of hf (ν), either equation hf (ν) = 0 admits an unique solution denoted by583

ν∗ on (νb,∞)
⋂

supp(f) or hf (ν) < 0 holds for all ν ∈ (νb,∞)
⋂

supp(f). Hence, the minimum584

risk is achieved at ν = ν∗ if ν∗ exists. Otherwise, it is achieved at any ν ∈ R
⋃{+∞} such that585 ∫∞

ν
f(s) ds = 0. Hence, if ν∗ exists, the value of the minimum risk given by586

Ew,θ[Error]
p→ N

cN
· β

β − δ
∫∞
ν∗ f(t) dt

· δ
∫ ν∗

η1

tf(t) ds =
N

cN
· βν∗,

where the last equation is due to the fact that hf (ν∗) = 0. Otherwise, the value of the minimum risk587

given by588

Ew,θ[Error]
p→ N

cN
δ

∫ ∞
η1

tf(t) dt.

D.2 Proof of Part (ii)589

We apply the same strategy for the proof of Theorem 2. Since the proof is similar to the proof we590

have shown for Theorem 2 in Section 2.3 and Appendix B, we only address a few differences here.591

From Section 2.3, we should first show that equation qf (s, ν) = 0 admits an unique solution on592

(0,∞). Note that593

∂qf (s, ν)/s

∂s
= δ

∫ ∞
ν

tf(t)

(s+ t)2
dt > 0. (76)

Hence, qf (s, ν)/s is a strictly increasing function of s on s ∈ (0,∞). Further, since ν < νb, we have594

lim
s→0

qf (s, ν)

s
= β − δ

∫ ∞
ν

f(t) dt = < 0,

lim
s→∞

qf (s, ν)

s
= β − 0 > 0. (77)
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Hence, by continuity of function qf (s, ν)/s, we know qf (s, ν)/s = 0 admits a unique solution595

denoted by s∗f on (0,∞).596

Note that with the same proof shown in Section 2.3, we have597

Ew,θ[Error] =

tr

(
ΣP

(
I − P⊥XP

))
︸ ︷︷ ︸

part 1

+ tr
(
X>P c

(
XPX

>
P

)−1
XPΣPX

>
P

(
XPX

>
P

)−1
XP c

)
+ tr (ΣP c)︸ ︷︷ ︸

part 2


+σ2

(
tr
((
XPX

>
P

)−1
XPΣPX

>
P

(
XPX

>
P

)−1)
+ 1

)
︸ ︷︷ ︸

part 3

.

To calculate part 1, we employ the proof strategy shown in Appendix B.2 with the following remarks.598

First, the expression for α is now given by599

α(ν) =

∫ ∞
ν

f(t) dt.

Second, we should choose µn = min( 1√
N
, o(1/cN )) instead of µn = min( 1√

N
, o(N−κ)). Third,600

to directly apply Lemma 1, we require δ = 1 from Assumption B.1. Yet, since we restrict β < δ601

in Assumption B.2, it is straightforward to extend the results in Lemma 1 to handle the case where602

δ ∈ (0, 1) by following the proof presented in Appendix B.4. The results of Lemma 2 is directly603

assumed by Assumption B.1. Finally to apply Lemma 3, we require n
2 smallest eigenvalue of604

(cNΣP )−1 is lower bounded by a positive constant. This can be easily verified due to Assumption605

B.1 and the restriction on β < δ. Hence, follow the proof in Appendix B.2 with these remarks, we606

can conclude that607

part 1
p→ N

cN
· β

mf (0)
, (78)

where mf (−µ), the Stieltjes transform of the limiting spectral distribution of the matrix 1
nX̃X̃

>
, is608

given by609

µ =
1

mf (−µ)
− α(ν)

β
·
∫∞
ν

tf(t)
1+t·mf (−µ) dt∫∞
ν
f(t) dt

,

which is equivalent to610

µ =
1

mf (−µ)
− δ

β
·
∫ ∞
ν

tf(t)

1 + t ·mf (−µ)
dt. (79)

Therefore, we know m∗f = mf (0) > 0 is the solution of the following equation611

0 =
β

m∗f
− δ

m∗f

∫ ∞
ν

tf(t)

1/m∗f + t
dt = qf

(
1

m∗f
, ν

)
. (80)

Then s = 1
m∗f

should be the solution of equation qf (s, ν) = 0. By uniqueness of s∗f , we have612

s∗f = 1
m∗f

.613

For part 2 and part 3, we employ the proof strategy shown in Appendix B.3 with a few remarks. First,614

note that due to Assumption B.1, we have615

tr (cNΣP c)→ N · δ
∫ ν

η1

tf(t) dt and tr
(
c2NΣ2

P c

)
→ N · δ

∫ ν

η1

t2f(t) dt.

Hence, we have the following analogue of (53):616

part 2
p→ N

cN
· δ
∫ ν

η1

tf(t) dt · (ψ + 1) +Op

(√
N

cN
· ψ
∫ ν

η1

t2f(t) dt

)
,
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where ψ = tr
(
ΣPX

>
P

(
XPX

>
P

)−2
XP

)
. Finally, to show (54), we should choose µn =617

min( 1√
N
, o(1/cN )) instead of µn = min( 1√

N
, o(N−κ)). Thus, with these remarks and modifi-618

cations, we can show that619

part 2
p→ N

cN
· δ
∫ ν

η1

tf(t) dt ·
m′f (0)

m2
f (0)

,

and620

part 3
p→

m′f (0)

m2
f (0)

.

Hence, our last step is to characterize m′f (0) using the chain rule. Note that from (79) and (80), we621

have622

−βz = qf

(
1

mf (z)
, ν

)
Hence, taking the derivative with respect to z on both sides and with the chain rule, we have623

−β =
∂qf (s, ν)

∂s

∣∣∣
s= 1

mf (z)

·
(
−

m′f (z)

(mf (z))2

)
.

Hence, we have624

m′f (0)

m2
f (0)

=

(
∂qf (s, ν)

∂s

∣∣∣
s=s∗f

)−1
= β

(
qf (s∗f , ν)

s∗f
+ s∗fδ

∫ ∞
ν

tf(t)

(s∗f + t)2
dt

)−1

= β

(
s∗fδ

∫ ∞
ν

tf(t)

(s∗f + t)2
dt

)−1
,

where last equation is due to the fact that qf (s∗f , ν) = 0 and s∗f > 0. Hence, we have625

part 2
p→ N

cN
· β

∫ ν
η1
tf(t) dt

s∗f
∫∞
ν

tf(t)
(s∗f+t)

2 dt
,

and626

part 3
p→ β

(
s∗fδ

∫ ∞
ν

tf(t)

(s∗f + t)2
dt

)−1
.

This completes the proof of (ii) of the theorem.627

D.3 Proof of Part (iii)628

Suppose equation hf (ν) = 0 has a solution on (νb,∞)
⋂

supp(f). Then by comparing the two629

formula in (25) and (23), we just need to show s∗f = 1
m∗f

< ν∗. Then, from (76) and (77), we have630

∀ s0 ∈ (0,∞), if qf (s0) > 0, then s∗f < s0.

Hence, it is sufficient to show that qf (ν∗) > hf (ν∗) = 0. Note that ∀ν ≥ η1631

hf (ν)− qf (ν) = νδ

∫ ∞
η1

tf(t)

ν + t
dt− νδ

∫ ∞
ν

f(t) dt− δ
∫ ν

η1

tf(t) dt

= δν

(∫ ∞
ν

tf(t)

ν + t
dt−

∫ ∞
ν

f(t) dt

)
+ δ

(∫ ν

η1

ν

ν + t
tf(t) dt−

∫ ν

η1

tf(t) dt

)
< 0.

Then since ν∗ > νb > η1, we have qf (ν∗) > hf (ν∗) = 0.632

If equation hf (ν) = 0 does not have a solution on (νb,∞)
⋂

supp(f), then by comparing the two633

formula in (25) and (24), we just need to show634

βs∗f =
β

m∗f
< δ

∫ ∞
η1

tf(t) dt,
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which is true because, due to qf (s∗f ) = 0, we have635

βs∗f = s∗fδ

∫ ∞
η1

tf(t)

s∗f + t
dt < δ

∫ ∞
η1

tf(t) dt.

Putting everything together completes the proof of part (iii).636
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