
8 Appendix for "Certifiable Robustness to Graph Perturbations"

8.1 Certificates for Label Propagation and Feature Propagation

Label propagation is a classic method for semi-supervised node classification, and there have been
many variants proposed over the year [54, 55, 53]. The general idea is to find a classification function
F such that the training nodes are predicted correctly and the predicted labels change smoothly over
the graph. We can express this formally via the following optimization problem [39]:

min
F

� N�

i=1

N�

j=1

Aij

��dσ−1
i Fi∗ − dσ−1

j Fj∗
��2 + µ

N�

i=1

d2σ−1
i �Fi∗ −Hi∗�2

�
(6)

where, di is the node degree, µ is a regularization parameter trading off smoothness and predicting
the labeled nodes correctly, σ is a hyper-parameter, and H is a matrix where the rows are one-hot
vectors for the training nodes and zero vectors otherwise (i.e. Hvc = 1 if {v ∈ VL ∧ yv = c} and
Hvc = 0 otherwise). The resulting matrix F ∈ RN×K is the learned classification function, i.e. the
value Fvc gives us the (unnormalized) probability that node v belongs to a class c, and we can make
predictions by taking the argmax. The problem can be solved in closed form (even though in practice
one would use power iteration) and the solution is: F = (1− α)

�
IN − αD−σADσ−1

�−1
H for

α = 2/(2 + µ). We can see that setting σ = 1, i.e. the standard Laplacian variant [53] we obtain:

F = (1− α)
�
IN − αD−1A

�−1
H = ΠH (7)

From Eq. 7 we have that Label Propagation is very similar to our π-PPNP: instead of diffusing logits
which come from a neural network it propagates the one-hot vectors of the labeled nodes instead.
From here onwards we apply our proposed method without any modifications by simply providing a
different H matrix in Problem 1.

We can also certify the feature propagation (FP) approach of which there are several variants: e.g.
the normalized Laplacian FP [7], or a recently proposed equivalent model termed simple graph
convolution (SGC) [47]. Feature propagation is carried out in two steps: (i) the node features are
diffused to incorporate the graph structure Xdiff = ΠX , and (ii) a simple logistic regression model
is trained using the diffused features Xdiff and subset of labelled nodes. Now, let the W ∈ RD×K be
the weights corresponding to a trained logistic regression model. The predictions for all nodes are
calculated as Y = softmax = (XdiffW) = softmax(ΠXW) = softmax(ΠH) with H = XW .
Thus, again by simply providing a different matrix H in Problem 1 we can certify feature propagation.

8.2 Further experiments

In Fig. 5a we show the percent of certifiable robust nodes for different local budgets on the Pubmed
graph (N = 19, 717, |E| = 44, 324, D = 500,K = 3) [37] demonstrating that our method scales
to large graphs. Similar to before (Fig. 3a), the models are more robust to attackers that can only
remove edges. In Fig. 5b we analyze the robustness of Citeseer w.r.t. increasing global budget. The
global budget constraints are again able to successfully restrict the attacker. The global budget makes
a larger difference when the attacker has a larger local attack strength (s = 10). In Fig. 5c we show

1 2 3 4 5 6 7 8 9 10
local attack strength s

0.00

0.25

0.50

0.75

%
ce

rt
ifi

ed
ro

bu
st

F1: 0.78 0.72 0.70

π-PPNP both
F-Prop. both
L-Prop. both

rem.
rem.
rem.

(a) Pubmed, local budget

0 100 200

global budget

0.8

0.9

1.0

%
ce

rt
ifi

ed
ro

bu
st

s = 10, local+global
s = 06, local+global

local
local

(b) Citeseer, global budget

1 2 3 4 5 6 7 8 9 10
local attack strength s

0.7

0.8

0.9

%
ce

rt
ifi

ed
ro

bu
st

F1: 0.70 0.73 0.72

LCE

LCEM

LRCE

(c) Citeseer, robust training

Figure 5: (a,b) The local and global budget successfully restrict the attacker. Models are more
robust to removing edges than both removing and adding edges. (c) Our robust training successfully
increases the percentage of certifiably robust nodes.

13

0 100 200

global budget

0.60

0.65

0.70

ce
rt

ifi
ed

ac
cu

ra
cy

local attack strength s = 10

local attack strength s = 06

(a) Citeseer, certifiable accuracy.

2500 5000 7500 10000

number of nodes

0

2

4

ru
nt

im
e

(s
ec

on
ds

)

(b) Runtime: SBM, local (VI).

0 100000 200000

number of edges

0

25

50

ru
nt

im
e

(s
ec

on
ds

)

(c) Runtime: SBM, global (RLT).

Figure 6: Further experiments on certifiable accuracy (a) and runtime (b-c).

that the robust training increases the percent of certifiably robust nodes. Comparing to Fig. 4c we
conclude that training with a larger local attack strength (s = 10 as opposed to s = 6) makes the
model more robust overall while the predictive performance (F1 score) is the same in both cases.

We also investigate certifiable accuracy. The ratio of nodes that are both certifiably robust and at the
same time have a correct prediction is a lower bound on the overall worst-case classification accuracy
since the worst-case perturbation can be different for each node. We plot this ratio in Fig. 6a for
Citeseer and see that the certifiable accuracy is relatively close to the clean accuracy when the budget
is restrictive, and it decreases gracefully as we in increase the budget.

To show how the runtime scales with number of nodes and number of edges we randomly generate
SBM graphs of increasing size, and we set all edges in the generated graphs as fragile (F = E). In
Fig. 6b we see the mean runtime across five runs for local budget (VI algorithm). Even for graphs
with more than 10K nodes the certificate runs in a few seconds. Similarly, Fig. 6c shows the runtime
for global budget (RLT relaxation). We see that the runtime scales linearly with the number of edges.
Furthermore, the overall runtime can be easily reduced by: (i) stopping early whenever the worst-case
margin becomes negative, (ii) using Gurobi’s distributed optimization capabilities to reduce solve
times, and (iii) having a single shared preprocessing step for all nodes.

8.3 Proofs

Proof. Proposition 1. Problem 2 can be formulated as an average cost infinite horizon Markov
decision problem, where at each node v we decide which subset of Fv edges are active, i.e. Av =
P(Fv) where P(Fv) is the power set of Fv and the reward depends only on the starting state but
not on the action and the ending state r(v, a) = rv, ∀a ∈ Av . From the average cost infinite horizon
optimality criterion as shown by Fercoq et al. [18] we have:

lim
T→∞

1

T
E
� T−1�

t=0

r
�
Xt, νt

��
= lim

T→∞
1

T
E
� T−1�

t=0

rXt,jνj
�
Xt

��
=

�

i,j∈[n]

πiPi,jri,j (8)

where Xt ∈ S is a random variable denoting the state of the system at the discrete time t ≥ 0, and
ν(ht) is deterministic control strategy determining a sequence of actions and is a function of the
history ht = (X0, ν0, . . . , Xt−1, νt−1, Xt). For this problem there exists a stationary (feedback)
strategy ν(Xt) that does not depend on the history such that for all t ≥ 0, νt(ht) = ν(Xt). Eq. 8
follows from the ergodic theorem for Markov chains. Here the reward is more general and can
be set depending on the edge (i, j). Letting rij = ri, ∀j and plugging it in Eq. 8 we get that the
optimality criterion equals rTπ since the transion matrix P = D−1A is row-stochastic. As shown
by Hollanders et al. [25] policy iteration is well suited to optimize PageRank and our Algorithm 1
corresponds to policy iteration with local budget for the above MDP. For a fixed damping factor α
(which is our case) policy iteration always converges in less iterations than value iteration [34] and
does so in weakly polynomial time that depends on the number of fragile edges [25].

Proof. Proposition 2. Eqs. 4b and 4c correspond to the LP of the unconstrained MDP on the auxiliary
graph. Intuitively, the variable xv maps to the PageRank score of node v, and from the variables
x0
ij/x

1
ij we can recover the optimal policy: if the variable x0

ij (respectively x1
ij) is non-zero then in the

14

optimal policy the fragile edge (i, j) is turned off (respectively on). Since there exists a deterministic
optimal policy, only one of them is non-zero but never both. Eq. 4d corresponds to the local budget.
Remarkably, despite the variables x0

ij/x
1
ij not being integral, since they share the factor xi

di
from

Eq. 4c we can exactly count the number of edges that are turned off or on using only linear constraints.
Eqs. 4e and 4f enforce the global budget. From Eq. 4e we have that whenever x0

ij is nonzero it
follows that β1

ij = 0 and β0
ij = 1 since that is the only configuration that satisfies the constraints

(similarly for x1
ij). Intuitively, this effectively makes the β0

ij/β
1
ij variables "counters" and thus, we

can utilize them in Eq. 4f to enforce the total number of perturbed edges to not exceed B.

We also have to show that solving the MDP on the auxiliary graph solves the same problem as the
MDP on the original graph. Recall that whenever we traverse any edge from node i we obtain reward
ri. On the other hand, whenever we traverse an edge from the auxiliary node vij corresponding
to a fragile edge (i, j) to the node i (action "off") we get negative reward −ri, and the transition
probability is 1. Intuitively, traversing back and forth between node i and node vij does not change
the overall reward obtained (since ri and −ri cancel out). That is, we have the same reward as in
the original graph with the edge (i, j) excluded. Similarly, when we traverse the edge from auxiliary
node vij to the node j (action "on") we obtain 0 reward, i.e. no additional reward is gained and the
transition happens with probability α. Therefore, the overall reward is the same as if the fragile edge
(i, j) would be present in the original graph.

More formally, for any given arbitrary policy for the unconstrained MDP on the auxiliary graph, let
kv be the current number of "off" fragile edges for node v and let Fv

+ be the current set of "on" fragile
edges. From Eqs.4b and Eqs.4c we have:

xv − α
�

(i,v)∈Ef∪Fv
+

xid
−1
i − kvd

−1
v = (1− α)zv (9a)

xv = α
�

(i,v)∈Ef∪Fv
+

xid
−1
i + (1− α)zv − kvd

−1
v =⇒ xv = π(zv)v − kvd

−1
v (9b)

where we can see that π(zv)v is the personalized PageRank for node v for a perturbed original graph
corresponding to the current policy, i.e. the graph where all (v, j) ∈ Fv

+ for all v ∈ V are turned "on".
Plugging in Eq. 9b into the objective from Eq. 4a we have

max
�

v∈V
xvrv −

�
(i,j)∈F

x0
ijri = max

�
v∈V

π(zv)rv

which exactly corresponds to the objective of Problem 2. Since the above analysis holds for any
policy it also holds for the optimal policy, and therefore solving the unconstrained MDP on the
auxiliary graph is equivalent to solving the unconstrained MDP on the original graph.

Combining everything together we have that solving the QCLP is equivalent to solving Problem 2.

Proof. Proposition 3. Using the reformulation-linearization technique (RLT) we relax the quadratic
constraints in Eq. 4e. In general, from RLT it follows that we add the following four linear constraints
for each pairwise quadratic constraint mimj = Mij

Mij −mimj −mjmi ≥ −mimj (10a)

Mij −mjmi −mimj ≤ −mjmi (10b)

Mij −mimj −mjmi ≤ −mimj (10c)
Mij −mimj −mjmi ≥ −mimj (10d)

where mi ≤ mi ≤ mi are lower and upper bounds for mi.

From Eq. 4e we see that our quadratic terms always equal to 0 (Mij = 0), and we have the following
upper β0

ij = β1
ij = 1, and x1

ij = x0
ij = xi

di
> 0, and lower bounds β0

ij = β1
ij = x1

ij = x0
ij = 0.

Plugging these upper/lower bounds into Eq. 10 for our quadratic terms x0
ijβ

1
ij = 0 and x1

ijβ
0
ij = 0

we see that the constraints arising from Eqs. 10a, 10b and 10c are always trivially fulfilled. Thus we
are left with the constraints arising from Eq. 10d which for our problem are:

x0
ij + x0

ijβ
1
ij ≤ x0

ij and x1
ij + x1

ijβ
0
ij ≤ x1

ij (11)

15

There are two cases to consider:

Case 1: The edge is turned "off". We have x0
ij = xid

−1
i and x1

ij = 0.

x0
ij + x0

ijβ
1
ij ≤ x0

ij =⇒ x0
ij(x

0
ij)

−1 + β1
ij ≤ 1 =⇒

=⇒ x0
ij(x

0
ij)

−1 ≤ β0
ij =⇒ x0

ij(xid
appproofs−1
i)−1 ≤ β0

ij

And trivially: x1
ij + x1

ijβ
0
ij ≤ x1

ij =⇒ x1
ijβ

0
ij ≤ x1

ij =⇒ β0
ij ≤ 1.

Case 2: The edge is turned "on". We have x1
ij = xid

−1
i and x0

ij = 0.

x1
ij + x1

ijβ
0
ij ≤ x1

ij =⇒ x1
ij(x

1
ij)

−1 + β0
ij ≤ 1 =⇒ x1

ij(xid
−1
i)−1 ≤ β1

ij

And trivially: x0
ij + x0

ijβ
1
ij ≤ x0

ij =⇒ x0
ijβ

1
ij ≤ x0

ij =⇒ β1
ij ≤ 1

The above two cases are disjoint and we can plug β0
ij and β1

ij into Eq. 4f to obtain Eq.5.

8.4 SDP relaxation

In this section we show that the SDP-relaxation [43] based on semidefinite programming is not
suitable for our problem since the constraints are trivially fulfilled. For convinience, we rename
the variables that participate in the quadratic constraints (β0

ij , x
0
ij , . . .) to (y1, y2, . . .). The SDP

relaxation replaces the product terms yiyj (e.g. x0
ijβ

1
ij) by an element Yij of an n× n matrix Y and

adds the constraint Y − yyT � 0, where y is the vector of variables. Since in the original QCLP
there are no terms of the form yiyi corresponding to the elements on the diagonal, we can make the
diagonal elements Yii arbitrarily high to make the matrix Y −yyT positive semidefinite and trivially
satisfy the constraint.

8.5 Hardness of PageRank optimization with global budget

The Link Building problem [32, 33] aims at maximizing the PageRank of a single given node v by
selecting a set of k optimal edges that point to node v. We will use the fact that the Link Building
problem is a special case of Problem 2 to derive our hardness result.

Problem 3 (Link Building [32]). Given a graph G = (V , E), node v ∈ V , budget k ∈ Z, and any
fixed α ∈ (0, 1). Find a set S ⊆ V \ {v} with |S| = k maximizing πG̃,α(e/n)v in the perturbed
graph G̃ = (V, Ẽ := Ef ∪ (S × {v})), where e/n is the teleport vector for the uniform distribution.

Proposition 4. Problem 2 with global budget is W[1]-hard and allows no FPTAS.

Proof. Setting the teleport vector to the uniform distribution z = e/n, the reward vector to r = ev ,
the set of fragile edges to F = (V \ {v})× {v}, the set of fixed edges to Ef = E , and configuring
the budgets as bv = 1, ∀v and B = k we see that the Problem 3 is a special case of Problem 2. Note
that, since we can always increase πv by adding edges pointing to v, the x ≤ B global constraint is
equivalent to the x = B constraint where x is the expression on the left-hand side in Eq. 4f.

Olsen [32] shows that the Link Building problem is W[1]-hard and admits no FPTAS by reducing
it to the Regular Independent Set problem which is W[1]-complete [8]. Therefore, Problem 2 with
global budget is also W[1]-hard and allows no FPTAS since k is preserved in the reduction.

8.6 Alternative upper bound

As an alternative upper bound for xv we can use the following approach: Assume we have given
a fixed set of edges Ef where every node has at least one fixed edge. From Proposition 2 we have
xv = (1 − kvd

−1
v)−1πv. To maximize this value, we can simply set π(z)v = 1 (since this is the

maximal PageRank score achievable) and kv = |Fv|. Since every node has at least one fixed edge,
we have dv > kv , i.e. the inverse is always defined.

16

8.7 Further experimental details

We preprocess each graph and keep only the nodes that belong to largest connected component. The
resulting graph for Cora-ML has N = 2, 810, |E| = 10, 138, for Citeseer N = 2, 110, |E| = 7, 336
and for Pubmed N = 19, 717, |E| = 88, 648. Unless otherwise specified we set α = 0.85. We
compute the certificates with respect to the predicted class label, i.e. we set yt in m∗

yt,∗(t) to the
predicted class for node t using the clean graph. Experiments are run on Nvidia 1080Ti GPUs using
CUDA and TensorFlow and on Intel CPUs. We use the GUROBI solver to solve the linear programs.

We configure our π-PPNP model with one hidden layer and choose a latent dimensionality of 64.
We randomly select 20 nodes per class for the training/validation set, and use the rest for the testing.
The weights θ are regularized with the L2 norm with strength of 5e− 2. We train for a maximum of
10, 000 epoch with a fixed learning rate of 1e− 2 and patience of 100 epochs for early stopping. We
train the model for five different random splits and report the averaged results.

When reporting results for local budget (e.g. Figs. 3, 4c, 5a, 5c) we evaluate the certifiable robustness
for all test nodes, since as we discussed in Sec. 4.3 we only need to run Algorithm 1 K ×K times to
obtain certificates for all nodes. When reporting results for global budget (e.g. Figs. 4a and 5b) we
randomly select 150 test nodes for which we compute the certificate. For all results regarding runtime
(e.g. Figs. 4b, 6b, 6c) we report average time across five runs on a machine with 20 CPU cores.

17

