
A Kronecker-factored Approximate Curvature (K-FAC)

Kronecker-factored approximate curvature (K-FAC) [Martens and Grosse, 2015] uses a Kronecker-
factored approximation to the curvature matrix to perform efficient approximate natural gradient
updates. Considering the l-th layer in a neural network whose input activations are a 2 Rn, weight
matrix W 2 Rn⇥m, and outputs s 2 Rm, we have s = W

>
a. Therefore, the weight gradient

is rWL = a(rsL)>. With this formula, K-FAC decouples this layer’s Fisher matrix F using an
independence assumption:

F = E[vec{rWL}vec{rWL}>] = E[{rsL}{rsL}> ⌦ aa
>]

⇡ E[{rsL}{rsL}>]⌦ E[aa>] = S⌦A
(13)

where A = E[aa>] and S = E[{rsL}{rsL}>]. Decomposing F into A and S not only avoids the
quadratic storage cost of the exact Fisher, but also enables tractable computation of the approximate
natural gradient:

F
�1vec{rWL} = (S�1 ⌦A

�1) vec{rWL}
= vec[A�1rWLS�1]

(14)

As shown by eqn. (14), computing natural gradient using K-FAC only consists of matrix transforma-
tions comparable to size of W, making it very efficient.

Later, Grosse and Martens [2016] further extended K-FAC to convolutional layers under additional
assumptions of spatial homogeneity (SH) and spatially uncorrelated derivatives (SUD). Suppose
the input a 2 Rcin⇥h⇥w and the output s 2 Rcout⇥h⇥w, then the gradient of the reshaped weight
W 2 Rcout⇥cink

2

is rWL =
P

airsiL>, and the corresponding Fisher matrix is:

F ⇡
X

E
⇥
{rsiL}{rsi0L}

>⇤⌦ E
⇥
aia

>
i0
⇤

⇡
✓

1

|I|
X

E
⇥
{rsiL}{rsiL}>

⇤◆

| {z }
S,size=(cout)2

⌦
⇣X

E
⇥
aia

>
i

⇤⌘

| {z }
A,size=(cin⇥k2)2

(15)

where I = [h] ⇥ [w] is the set of spatial locations, ai 2 Rcink
2

is the patch extracted from a,
rsiL 2 Rcout is the gradient to each spatial location in s and i, i0 2 I.

A.1 K-FAC for Transformer

K-FAC has been implemented on the autoencoder [Martens and Grosse, 2015] and various convolu-
tional networks [Grosse and Martens, 2016, Ba et al., 2017] before. To our knowledge, this is the
first time K-FAC is implemented on the Transformer model. What is different from the previous
models is the shared weight matrix between the embedding layer and the pre-softmax linear transfor-
mation [Vaswani et al., 2017]. In particular, the weight matrix is transposed at the pre-softmax layer:
s = Wa and rWL = (rsL)a>. With the same assumptions as the non-transposed case, we get

F ⇡ E[aa> ⌦ {rsL}{rsL}>] = A⌦ S (16)

i.e. the positions of the two Kronecker factors are swapped. If we name the two Kronecker factors
"input factor" and "output factor" respectively, i.e. F ⇡ input_factor ⌦ output_factor, then for the
weight matrix that is shared between the embedding layer and the pre-softmax layer, the input_factor
has contributions from both the embedding inputs and the gradients of pre-softmax layer outputs;
and the output_factor has contributions from both the pre-softmax layer inputs and the gradients of
the embedding outputs. In practice, when computing a Kronecker factor, we treat contribution from
multiple sources as an equivalent situation as contribution from multiple training examples from a
mini-batch. Also note that because of the high dimensionality of the embedding weight matrix (with
a vocabulary size of 32,768), the dense input factor would have size [32768, 32768]. In order to save
memory, we use a diagonal matrix to estimate the input_factor. The output_factor is still estimated
with a dense matrix.

13

B Dynamics of momentum SGD on noisy quadratic model

Similar to plain SGD, by treating ✓i as a random variable, we can explicitly write down the dynamics
of its expectation and variance. But due to the use of momentum, we need to take into account mi and
its correlation with ✓i. Because each dimension evolves independently, we drop the the dimension
subscripts. We first calculate the expectation of the parameter and velocity:

E [✓(t+ 1)] = (1� ↵h)E [✓(t)]� ↵�E [m(t)]

E [m(t+ 1)] = �E [m(t)] + hE [✓(t)]
(17)

We then calculate the variance:

V [✓(t+ 1)] = (1� ↵h)2V [✓(t)] + (↵�)2E [m(t)]� 2(1� ↵h)↵�Cov(t) +
↵2c

B

V [m(t+ 1)] = �2V [m(t)] + h2V [✓(t)] + 2�hCov(t) +
c

B

(18)

where Cov(t) = Cov(✓(t),m(t)) evolves as

Cov(t+ 1) = (1� ↵h)hV [✓(t)]� ↵�2V [m(t)] + (1� 2↵h)�Cov(t)� ↵c

B
(19)

Because the expected risk is totally decided by E [✓]2 + V [✓], we define A(·) = E [·]2 + V [·] and
C(t) = E[✓(t)]E[m(t)] + Cov(✓(t),m(t)). We can then simplify the dynamics as follows

A(✓(t+ 1)) = (1� ↵h)2A(✓(t)) + (↵�)2A(m(t))� 2(1� ↵h)↵�C(t) +
↵2c

B

A(m(t+ 1)) = �2A(m(t)) + h2A(✓(t)) + 2�hC(t) +
c

B

C(t+ 1) = (1� ↵h)hA(✓(t))� ↵�2A(m(t)) + (1� 2↵h)�C(t)� ↵c

B

(20)

or equivalently
2

4
A(✓(t+ 1))

↵2A(m(t+ 1))
�↵C(t+ 1)

3

5

| {z }
v(t+1)

=

2

4
(1� ↵h)2 �2 2(1� ↵h)�
(↵h)2 �2 �2�↵h

�(1� ↵h)↵h �2 (1� 2↵h)�

3

5

| {z }
transition matrix T

2

4
A(✓(t))

↵2A(m(t))
�↵C(t)

3

5

| {z }
v(t)

+

2

64

↵2c
B
↵2c
B
↵2c
B

3

75

| {z }
n

(21)

The convergence rate is determined by the transition matrix T which has the characteristic polynomial

|T� �I| = �(�� �)(�2 � (�2 � 2↵h� + (1� ↵h)2)�+ �2) (22)

With the momentum value � = (1�
p
↵h)2, all eigenvalues of the transition matrix are equal to each

other with the value �, giving the fastest convergence.

C Proof of Theorem 1

For a linear dynamical system like eqn. (21), we can get v(t) in the following form:

v(t) = T
t
v(0) +

t+1X

p=1

T
p�1

n  T
t
v(0) +

1X

p=1

T
p�1

n (23)

We first analyze the stochastic term
P1

p=1 T
p�1

n. For notational convenience, we define
1X

p=1

T
p�1

n ,
1X

p=0

[xp, yp, zp]
> (24)

In eqn. (24), we append zero vector [x0, y0, z0]> for convenience. To compute the infinite sum, we
first focus on a single term. We have the following update:

p
xp+1 = (1� ↵h)

p
xp + �

p
yp

p
yp+1 = �↵h

p
xp + �

p
yp

(25)

14

Since we only care xp which totally decide the loss, so we get rid of yp by merging two updates,
which yields a second-order difference equation:

p
xp+1 = (1� ↵h+ �)

p
xp � �

p
xp�1 (26)

with initial conditions
p
x0 = 0 and

p
x1 =

q
↵2c
B . To solve the second-order difference equation, we

leverage the Z-transform to get the analytical form. Based on basic manipulation of the Z-transform,
we have the Z-domain function

X(Z) =

q
↵2c
B Z

Z2 � (1� ↵h+ �)Z + �
=

q
↵2c
B

r1 � r2

✓
1

1� Z�1r1
� 1

1� Z�1r2

◆
(27)

where r1 and r2 are two roots of equation z2 � (1 � ↵h + �)z + �. Then, we use the inverse
Z-transform to get pxp:

p
xp =

r
↵2c

B

rp1 � rp2
r1 � r2

(28)

and therefore

xp =
↵2c

B

r2p1 + r2p2 � 2(r1r2)p

(r1 � r2)2
(29)

Now, we are ready to compute the infinite sum
P1

p=0 xp:

1X

p=0

xp =
↵2c
B

(r1 � r2)2

✓
1

1� r21
+

1

1� r22
� 2

1� r1r2

◆

=
↵2c

B

1 + r1r2
(1� r21)(1� r22)(1� r1r2)

(30)

Because r1 and r2 are two roots with r1r2 = �, r1 + r2 = 1� ↵h+ �, we have
1X

p=0

xp =
↵c(1 + �)

Bh(2� + 2� ↵h)(1� �)
(31)

Now, we analyze the deterministic term. Similar to the analysis of stochastic term, we have the same
second-order difference equation

q
x0
p+1 = (1� ↵h+ �)

q
x0
p � �

q
x0
p�1 (32)

except the initial conditions become
p

x0
0 =

p
x0
1 =

p
A(✓(0)). According to Z-transform, we have

x0
t =

✓
rt+1
1 � rt+1

2 � �(rt1 � rt2)

r1 � r2

◆2

A(✓(0)) (33)

Along with eqn. (31), we have

A(✓(t)) 
✓
rt+1
1 � rt+1

2 � �(rt1 � rt2)

r1 � r2

◆2

A(✓(0)) +
↵c(1 + �)

Bh(2� + 2� ↵h)(1� �)
(34)

D Proof of Theorem 2

Similar to plain SGD, by treating ✓i as a random variable, we can explicitly write down the dynamics
of its expectation and variance. But due to the use of moving averaging, we need to take into account
✓̃i and its correlation with ✓i. Because each dimension evolves independently, we drop the the
dimension subscripts. We first calculate the expectation of the parameter and the average:

E [✓(t+ 1)] = (1� ↵h)E [✓(t)]

E[✓̃(t+ 1)] = �E[✓̃(t)] + (1� �)(1� ↵h)E [✓(t)]
(35)

15

We then calculate the variance:

V [✓(t+ 1)] = (1� ↵h)2V [✓(t)] +
↵2c

B

V[✓̃(t+ 1)] = �2V[✓̃(t)] + (1� �)2(1� ↵h)2V [✓(t)]

+ 2�(1� �)(1� ↵h)Cov(t) +
(1� �)2↵2c

B

(36)

where Cov(t) = Cov(✓(t), ✓̃(t)) evolves as

Cov(t+ 1) = (1� �)(1� ↵h)2V [✓(t)] + (1� ↵�)Cov(t) +
(1� �)↵2c

B
(37)

Because the expected risk is totally decided by E[✓̃]2 + V[✓̃], we define A(·) = E [·]2 + V [·] and
C(t) = E[✓(t)]E[✓̃(t)] + Cov(✓(t), ✓̃(t)). We can then simplify the dynamics as follows

2

64

A(✓(t+ 1))
A(✓̃(t+1))
(1��)2
C(t+1)
(1��)

3

75

| {z }
v(t+1)

=

2

4
(1� ↵h)2 0 0
(1� ↵h)2 �2 2�(1� ↵h)
(1� ↵h)2 0 �(1� ↵h)

3

5

| {z }
transition matrix T

2

64

A(✓(t))
A(✓̃(t))
(1��)2
C(t)
(1��)

3

75

| {z }
v(t)

+

2

64

↵2c
B
↵2c
B
↵2c
B

3

75

| {z }
n

(38)

For such a linear dynamical system, we can easily get the v(t) in the following form:

v(t) = T
t
v(0) +

t+1X

p=1

T
p�1

n  T
t
v(0) +

1X

p=1

T
p�1

n (39)

Now, to get the closed-form of v(t), we first analyze the second term which involves the infinite sum.
For notational convenience, we introduce the following notations:

1X

p=1

T
p�1

n ,
1X

p=0

[xp, yp, zp]
> (40)

In eqn. (40), we append zero vector [x0, y0, z0]> for convenience. To compute the infinite sum, we
first focus on a single term. We have the following update:

p
xp+1 = (1� ↵h)

p
xp

p
yp+1 = (1� ↵h)

p
xp + �

p
yp

(41)

Since we only care yp which totally decide the loss, so we get rid of xp by merging two updates,
which yields a second-order difference equation:

p
yp+1 = (1� ↵h+ �)

p
yp � (1� ↵h)�

p
yp�1 (42)

with initial conditions py0 = 0 and p
y1 =

q
↵2c
B . To solve the second-order difference equation, we

leverage the Z-transform to get the analytical form. Based on basic manipulation of the Z-transform,
we have the Z-domain function

Y (Z) =

q
↵2c
B Z

Z2 � (1� ↵h+ �)Z + �
=

q
↵2c
B

r1 � r2

✓
1

1� Z�1r1
� 1

1� Z�1r2

◆
(43)

where r1 and r2 are two roots of equation z2� (1�↵h+ �)z+(1�↵h)�. Then, we use the inverse
Z-transform to get pyp:

p
yp =

r
↵2c

B

rp1 � rp2
r1 � r2

(44)

and therefore

yp =
↵2c

B

r2p1 + r2p2 � 2(r1r2)p

(r1 � r2)2
(45)

16

Now, we are ready to compute the infinite sum
P1

p=0 yp:

1X

p=0

yp =
↵2c
B

(r1 � r2)2

✓
1

1� r21
+

1

1� r22
� 2

1� r1r2

◆

=
↵2c

B

1 + r1r2
(1� r21)(1� r22)(1� r1r2)

(46)

It is easy to see that r1 = 1� ↵h and r2 = �, we then plug them back into eqn. (46) and get
1X

p=0

yp =
↵c(1 + (1� ↵h)�)

Bh(2� ↵h)(1� �2)(1� (1� ↵h)�)
(47)

For the other term T
t
v(0), we can reuse the same second-order difference equation (42) except with

initial conditions py0 =
p
y1 = 1

1��

p
A(✓(0)). According to Z-transform, we have

yt =
1

(1� �)2

✓
(rt+1

1 � rt+1
2)� �(1� ↵h)(rt1 � rt2)

r1 � r2

◆2

A(✓(0)) (48)

Therefore, we have the following upper bound:

A(✓̃(t)) 
✓
rt+1
1 � rt+1

2 � �(1� ↵h)(rt1 � rt2)

r1 � r2

◆2

A(✓(0))+
↵c(1� �)(1 + (1� ↵h)�)

Bh(2� ↵h)(1 + �)(1� (1� ↵h)�)
(49)

E More results on the NQM

E.1 Eigenspectra of Neural Networks

0 1e4 2e4 3e4 4e4 5e4 6e4 7e4 8e4
Index

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

E
ig

e
n

v
a
lu

e
 i
n

 l
o
g

-s
ca

le

iter 100

iter 200

iter 400

iter 600

iter 1000

Figure 9: Eigenspectra of the K-FAC approx-
imate Fisher matrix of ResNet8 at different
training iterations. The model is trained on
CIFAR-10 with batch size 3000.

The main objective of this section is to examine the loss
surface of modern neural networks in different stages of
training in order to justify the assumptions made in NQM.
Nevertheless, it is hard to visualize such a high dimen-
sional space. Following recent work [Sagun et al., 2016,
Ghorbani et al., 2019], we instead focus on analyzing
the eigenspectrum of the Hessian/Fisher matrices. The
Hessian/Fisher of the training loss (with respect to the
parameters) is crucial in determining many behaviors of
neural networks. The eigenvalues of the Hessian/Fisher
characterize the local curvature of the loss surface which
determines many training behaviors, including first-order
methods optimization rates (at least for convex problems.)

It has been noted that the true Fisher matrix is equivalent
to the generalized Gauss-Newton Hessian matrix [Martens, 2014], so we take it as a proxy of the
Hessian. To construct the eigenspectrum of the true Fisher matrix, we first leverage the Kronecker-
factored approximation of the Fisher to get an estimation of the eigenspectrum, which may shed
light upon the true eigenspectrum. Specifically, we train the network with K-FAC and then perform
eigen-decomposition on saved Kronecker factors of the Fisher to calculate the eigenvalues.

The eigenspectra are plotted in Figure 9. One interesting observation is that there are only a few large
eigenvalues and a few small eigenvalues in the approximate Fisher matrices; the bulk of eigenvalues
are in the middle of the spectrum. We also note that after 200 iterations of training the eigenspectrum
remains mostly unchanged.

E.2 Gradient Covariance in the Kronecker-Factored Eigenbasis

To verify the assumption in Section 3.5 that H and C are codiagonalizable, we test it on practical
neural networks by comparing the gradient variance to the curvature. This assumption is motivated by
theoretical considerations that suggest H ⇡ C for neural network training [Martens, 2014]. Ideally,

17

10-20 10-15 10-10 10-5 100 105

GraGient variance

10-20

10-15

10-10

10-5

100

105

C
u

rv
a
tu

re

SteS 100

10-20 10-15 10-10 10-5 100 105

GraGient variance

SteS 500

10-20 10-15 10-10 10-5 100 105

GraGient variance

SteS 1000

(a) ResNet8

10-20 10-15 10-10 10-5 100 105

GraGient variance

10-20

10-15

10-10

10-5

100

105

C
u

rv
a
tu

re

SteS 500

10-20 10-15 10-10 10-5 100 105

GraGient variance

SteS 2000

10-20 10-15 10-10 10-5 100 105

GraGient variance

SteS 10000

(b) Transformer

Figure 10: Scatter plots of second moment v.s. variance of gradients. The gradients are projected onto the
Kronecker-factored eigenbasis, which approximates the eigenbasis of the true Fisher. Each point compares
the gradient variance and the second moment of the gradient in the direction of an eigenvector of the K-FAC
approximated Fisher.

we would like to compare the gradient variance and the curvature of the Fisher in the directions of
the eigenvectors of the true Fisher. However, it is typically infeasible to get all these eigenvectors,
especially for low curvature directions. To resolve this we instead use the Kronecker-factored
eigenbasis [George et al., 2018, Bae et al., 2018, Wang et al., 2019], which is obtained from the
K-FAC approximation. For this experiment, we are not relying on this basis being an accurate
approximation to the eigendecomposition of the true Fisher; rather, we use the eigenbasis only as a
way to obtain a diverse set of directions with both high and low curvature. For a given eigenvector
v, we project the gradients g of each training example onto v and compute the gradient variance
Cov(v>

g), as well as the curvature v
>
Fv. (The latter quantity can be obtained using matrix-vector

products [Schraudolph, 2002].) As shown in Figure 10, the gradient variances closely match the
curvature (especially for the ResNet8 model on CIFAR10), validating our assumption that H ⇡ C.

E.3 Plots for the Evolution of the First Term in Eqn. (6)

0.0

0.2

0.4

0.6

0.8

1.0

1
or

m
al

iz
ed

 fi
rs

t t
er

m

6teS: 50
true dynamics
dynamics with effective learning rate

6teS: 100 6teS: 200 6teS: 500

2-5 2-4 2-3 2-2 2-1 20

1− β
0.0

0.2

0.4

0.6

0.8

1.0

1
or

m
al

iz
ed

 fi
rs

t t
er

m

6teS: 1000

2-5 2-4 2-3 2-2 2-1 20

1− β

6teS: 2000

2-5 2-4 2-3 2-2 2-1 20

1− β

6teS: 4000

2-5 2-4 2-3 2-2 2-1 20

1− β

6teS: 5000

Figure 11: Comparison in convergence between momentum SGD and SGD with adjusted learning rate.
This plot shows values for the first term in eqn. (6) as a function of (1� �), which is the scaling between the
“effective learning rate” and the true learning rate for momentum SGD. The red curves show the first term when
using momentum, while the blue curves show the first term when using plain SGD with the learning rate set to
the effective learning rate of momentum.

In Section 3.2, we claim that the convergence of momentum SGD for a single dimension is very close
to that of plain SGD with an adjusted learning rate (note that we already verified that the steady state
risk of momentum SGD matches plain SGD using effective learning rate in Figure 2). Here we verify
this argument by comparing them in the NQM. The total risk consists of two terms (eqn. (6)): the

18

first term determines convergence, while the second term (steady state risk) stays constant throughout
training. Given that the second stays unchanged, we only plot the first term of eqn. (6) in Figure 11.
Note that the values are normalized in the figures. We observe that the convergence dynamics of the
two update rules closely match each other. For this experiment we set ↵h = 0.0005, but the results
are not sensitive to this value.

E.4 Verification of Eigenspectrum

In Section 3.7, we assume the diagonal entries of H are { 1
i }

d
i=1. To justify this choice, we compare

the K-FAC eigenspectra of ResNet8 to this distribution in Figure 12. The distribution of eigenvalues
we chose for H in the NQM very closely matches the eigenspectra of the real neural network,
validating the assumption that the diagonal entries of H are { 1

i }
d
i=1 in Section 3.5.

100 101 102 103 104 105

Log oI IQdex

10-4

10-3

10-2

10-1

100

101

102

E
Lg

e
Q

v
a
lu

e
 L
Q

 l
o
g

-s
Fa

le

SteS 100
K-FAC ELgeQsSeFtrum

ELgeQsSeFtrum LQ 140 1/i

100 101 102 103 104 105

Log oI IQdex

SteS 500

100 101 102 103 104 105

Log oI IQdex

SteS 1000

Figure 12: Comparison between K-FAC Fisher eigenspectra and the 1
i distribution used in the NQM.

E.5 Effect of Loss Threshold

21 23 25 27 29 211 213 215 217 219 221

Batch size
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

6t
eS

s
to

 th
re

sh
ol

d

0.1
0.03
0.01
0.003
0.001

Figure 13: Number of training steps re-
quired to reach a target loss as a function of
batch size for different loss threshold values.

Recall that a main objective of this work is to characterize
the effects of increasing the batch size on training time, as
measured in the number of steps necessary to reach a goal
target error/loss. Here we experiment with different loss
thresholds to study the relationship between batch size and
number of training steps. To obtain the minimal training
steps for a given batch size, we do grid search over constant
learning rates. Figure 13 shows that increasing the batch
size initially decreases the required number of training
steps proportionally, but eventually there are diminishing
returns, which matches the empirical findings [Golmant
et al., 2018, Shallue et al., 2018]. The shape of the curves
is characteristically the same for different loss thresholds, though the critical batch size seems to
increase for more difficult thresholds.

E.6 Results of Optimal Learning Rate on NQM

21 23 25 27 29 211 213 215 217 219 221 223

Batch sLze
2-14

2-12

2-10

2-8

2-6

2-4

2-2

20

22

24

26

2
pt

Lm
aO

 L
ea

rn
Ln

g
5a

te

(a) Without Momentum

21 23 25 27 29 211 213 215 217 219 221

Batch size
2-14

2-12

2-10

2-8

2-6

2-4

2-2

20

22

24

26

2
pt

im
aO

 Oe
ar

ni
ng

 ra
te

(b) Fixed Momentum 0.9

21 23 25 27 29 211 213 215 217 219 221

Batch size
2-14

2-12

2-10

2-8

2-6

2-4

2-2

20

22

24

26

Ef
fe

ct
iv

e
le

ar
ni

ng
 ra

te

pow 0
pow 0.25
pow 0.5
pow 0.75

(c) Tuned Momentum

Figure 14: Optimal learning rate v.s. batch size for different preconditioning powers. (a) When momentum
is not used, the learning rate increases with batch size until it is limited by the maximum stable learning rate.
Larger preconditioning powers reduce the optimal learning rate for the same batch size, thus extending the batch
size where the learning rate levels off. (b, c) Fixed (0.9) and tuned momentum values. In (b) and (c), we plot the
effective learning rate for momentum SGD, defined as ↵

1�� . The dashed lines are the same plots from (a) for
easier comparison.

19

E.7 Final Learning Rate of Different Batch Sizes for PWC Learning Rate Scheme

24 25 26 27 28 29 210 211 212

BatFh sLze
2-8

2-7

2-6

2-5

2-4

2-3

2-2

2-1

20

21

FL
na

l L
ea

rn
Ln

g
ra

te

Figure 15: Final learning rate of the
piecewise-constant learning rate scheme
v.s. batch size.

In Section 3.7.2, we study the piecewise constant learning
rate scheme. The optimal scheme starts with a high learning
rate which drops later in training (Figure 3c). Recall that for
fixed learning rates, we observed that the optimal learning
rate scaled linearly with the batch size for small batch sizes,
but it is unclear whether there is a similar phenomenon for
learning rate decay. In Figure 15, we plot the final learning
rate as a function of batch size and show that it also scales
linearly with batch size.

F More Details for Experiments

F.1 Data Sets

The data sets in Table 1 (MNIST, Fashion MNIST, CIFAR10, ImageNet and LM1B) are identical
to those of Shallue et al. [2018] (described in their Appendix A.1). For CIFAR10 we used data
augmentation (including horizontal flip and random crop), but they did not.

F.2 Model Details

This section provides details of models in Table 1. The models are very similar (and some identical)
to those used in Shallue et al. [2018] (described in their Appendix B). Any modifications from them
are highlighted in this section.

Simple CNN consists of 2 convolutional layers with max-pooling followed by 1 fully connected hid-
den layer. The convolutional layers use 5×5 filters with stride length 1, “same” padding [Goodfellow
et al., 2016], and ReLU activation function. Max pooling uses 2×2 windows with stride length 2.
Unlike in Shallue et al. [2018], we did not use any dropout regularization (while they used dropout
with probability 0.4 in the fully connected layer). We used 32 and 64 filters in the convolutional
layers and 1,024 units in the fully connected layer. This corresponds to the “base” configuration
in Shallue et al. [2018].

ResNet8 [He et al., 2016] consists of 7 convolutional layers with residual connections followed by 1
fully connected hidden layer. We used the identical architecture as Shallue et al. [2018]. In particular,
we did not use batch normalization. The only difference is that we used data augmentation in our
experiments.

ResNet32 [He et al., 2016] consists of 31 convolutional layers with residual connections followed
by 1 fully connected hidden layer (see Section 4.2 of He et al. [2016]). We replaced batch nor-
malization [Ioffe and Szegedy, 2015] with ghost batch normalization to keep the training objective
fixed between batch sizes and to avoid possible negative effects from computing batch normalization
statistics over a large number of examples [Hoffer et al., 2017]. We used a ghost batch size of 32 for
all experiments. We also applied label smoothing [Szegedy et al., 2016] to regularize the model at
training time, which was helpful for larger batch sizes. We set the label smoothing parameter to 0.1
in all experiments. Instead of using weight decay, we applied channel-wise weight normalization by
constraining the Frobenius norm of each convolutional channel to be exactly 1, which controls the
effective learning rate [Zhang et al., 2019b, van Laarhoven, 2017].

VGG11 [Simonyan and Zisserman, 2015] consists of 8 convolutional layers followed by 1 fully
connected hidden layers. as in ResNet32, we used Ghost batch normalization, label smoothing, and
channel-wise weight normalization.

Transformer Vaswani et al. [2017] is a self-attention model. We chose the Transformer model
identical to the “base” model described in Vaswani et al. [2017], except with only two hidden layers
instead of six. This is identical to the “Transformer Shallow” model in Shallue et al. [2018].

20

F.3 Learning Rate Schedules

This section describes two learning rate schedules mentioned in Table 1: constant schedule and linear
decay schedule. Constant schedule simply keeps a fixed learning rate throughout training:

↵(t) = ↵0,

where t is the training step index. Linear decay schedule is

↵(t) = ↵0 � (1� �)
t

T
,

where ↵0 is the initial learning rate, � is the rate of decay, and T is the number of steps taken to reach
the final learning rate. Shallue et al. [2018] experimented with various learning rate schedules and
found that linear decay matched performance of the other schedules with fewer hyperparameters to
tune. Therefore, we also chose the linear decay schedule, for which we tuned ↵0, � and T .

F.4 Optimizer-Specific Hyperparamters

For momentum SGD, we tuned the momentum �. For Adam, we tuned �1, �2, and ✏ (see Kingma
and Ba [2014]). For K-FAC, we tuned damping and the trust region constraint (also known as the KL
clipping term) for Transformer, keeping momentum = 0.9 and the moving average parameter for
damping = 0.99; for all other models, we tuned all four parameters (see Martens and Grosse [2015]).

21

	Introduction
	Related Work
	Analysis of the Noisy Quadratic Model (NQM)
	Problem Setup
	Momentum Accelerates Training at Large Batch Sizes
	Preconditioning Further Extends Perfect Scaling to Larger Batch Sizes
	Exponential Moving Average Reduces Steady State Risk
	Choice of H and C
	Information Theoretic Lower Bound
	Noisy Quadratic Experiments
	Effect of Momentum, Preconditioning and Exponential Moving Average
	Optimal Learning Rate and Decay Scheme

	Neural Network Experiments
	Critical Batch Size Depends on the Optimizer
	Exponential Moving Average Improves Convergence with Minimal Computation Cost
	Optimal Learning Rate
	Steps to Target on the Training Set

	Conclusion
	Kronecker-factored Approximate Curvature (K-FAC)
	K-FAC for Transformer

	Dynamics of momentum SGD on noisy quadratic model
	Proof of Theorem 1
	Proof of Theorem 2
	More results on the NQM
	Eigenspectra of Neural Networks
	Gradient Covariance in the Kronecker-Factored Eigenbasis
	Plots for the Evolution of the First Term in Eqn. (6)
	Verification of Eigenspectrum
	Effect of Loss Threshold
	Results of Optimal Learning Rate on NQM
	Final Learning Rate of Different Batch Sizes for PWC Learning Rate Scheme

	More Details for Experiments
	Data Sets
	Model Details
	Learning Rate Schedules
	Optimizer-Specific Hyperparamters

