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Abstract

We study the problem of learning a series of tasks in a fully online Meta-Learning
setting. The goal is to exploit similarities among the tasks to incrementally adapt
an inner online algorithm in order to incur a low averaged cumulative error over
the tasks. We focus on a family of inner algorithms based on a parametrized
variant of online Mirror Descent. The inner algorithm is incrementally adapted
by an online Mirror Descent meta-algorithm using the corresponding within-task
minimum regularized empirical risk as the meta-loss. In order to keep the process
fully online, we approximate the meta-subgradients by the online inner algorithm.
An upper bound on the approximation error allows us to derive a cumulative
error bound for the proposed method. Our analysis can also be converted to the
statistical setting by online-to-batch arguments. We instantiate two examples of the
framework in which the meta-parameter is either a common bias vector or feature
map. Finally, preliminary numerical experiments confirm our theoretical findings.

1 Introduction

Humans can quickly adapt knowledge gained when learning past tasks, in order to solve new tasks
from just a handful of examples. In contrast, learning systems are still rather limited when it comes to
transfer knowledge over a sequence of learning problems. Overcoming this limitation can have a broad
impact in artificial intelligence, as it can save the expensive preparation of large training samples,
often humanly annotated, needed by current machine learning methods. As a result, Meta-Learning
is receiving increasing attention, both from applied [15, 32] and theoretical perspective [5, 40, 17].

Until very recently, Meta-Learning was mainly studied in the batch statistical setting, where data are
assumed to be independently sampled from some distribution and they are processed in one batch, see
[6, 23, 24, 25, 26, 29]. Only recently, a lot of interest raised in investigating more efficient methods,
combining ideas from Online Learning and Meta-Learning, see [1, 12, 13, 30, 3, 21, 16, 8, 11, 30]. In
this setting, which is sometimes referred to as Lifelong Learning, the tasks are observed sequentially
– via corresponding sets of training examples – and the broad goal is to exploit similarities across the
tasks to incrementally adapt an inner (within-task) algorithm to such a sequence. There are different
ways to deal with Meta-Learning in an online framework: the so-called Online-Within-Batch (OWB)
framework, where the tasks are processed online but the data within each task are processed in one
batch, see [1, 12, 13, 16, 8, 3, 21], or the so-called Online-Within-Online (OWO) framework, where
data are processed sequentially both within and across the tasks, see [1, 3, 21, 16, 11]. Previous work
mainly analyzed specific settings, see the technical discussion in App. A. The main goal of this work
is to propose an OWO Meta-Learning approach that can be adapted to a broad family of algorithms.

We consider a general class of inner algorithms based on primal-dual Online Learning [37, 33, 38, 36,
35]. In particular, we discuss in detail the case of online Mirror Descent on a regularized variant of the
empirical risk. The regularizer belongs to a general family of strongly convex functions parametrized
by a meta-parameter. The inner algorithm is adapted by a meta-algorithm, which also consists in
applying online Mirror Descent on a meta-objective given by the within-task minimum regularized
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empirical risk. The interplay between the meta-algorithm and the inner algorithm plays a key role
in our analysis. The latter is used to compute a good approximation of the meta-subgradient which
is supplied to the former. A key novelty of our analysis is to show that, exploiting a closed form
expression of the error on the meta-subgradients, we can automatically derive a cumulative error
bound for the entire procedure. Our analysis holds also for more aggressive primal-dual online
updates and it can be adapted to the statistical setting by online-to-batch arguments.

Contributions. Our contribution is threefold. First, we derive an efficient and theoretically grounded
OWO Meta-Learning framework which is inspired by Multi-Task Learning (MTL). Our framework
applies to a wide class of within-task algorithms and tasks’ relationships. Second, we establish how
our analysis can be converted to the statistical setting. Finally, we show how our general analysis
can be directly applied to two important families of inner algorithms in which the meta-parameter is
either a bias vector or a feature map shared across the tasks.

Paper organization. We start by introducing in Sec. 2 our OWO Meta-Learning setting. In Sec. 3
we recall some background material from primal-dual Online Learning. In Sec. 4 we outline the
proposed method and we give a cumulative error bound for it. In Sec. 5 we show how the above
analysis can be used to derive guarantees for our method in the statistical setting. In Sec. 6 we specify
our framework to two important examples in which the tasks share a common bias vector or feature
map. Finally, in Sec. 7 we report preliminary experiments with our method and in Sec. 8 we draw
conclusions. Technical proofs are postponed to the appendix.

2 Setting

In this section we introduce the OWO Meta-Learning problem. We consider that the learner is facing
a sequence of online tasks. Corresponding to each task, there is an input space X , an output space
Y and a dataset Z = (zi)

n
i=1 = (xi, yi)

n
i=1 ∈ (X × Y)n, which is observed sequentially. Online

Learning aims to design an algorithm that makes predictions through time from past information.
More precisely, at each step i ∈ {1, . . . , n}: (a) a datapoint zi = (xi, yi) is observed, (b) the
algorithm outputs a label ŷi, (c) the learner incurs the error `i(ŷi), where `i(·) = `(·, yi) for a loss
function `. To simplify our presentation, throughout we let X ⊆ Rd, Y ⊆ R and we consider
algorithms that perform linear predictions of the form ŷi = 〈xi, wi〉, where (wi)

n
i=1 is a sequence of

weight vectors updated by the algorithm and 〈·, ·〉 denotes the standard inner product in Rd. The goal
is to bound the cumulative error of the algorithm, i.e. Einner(Z) =

∑n
i=1 `i(〈xi, wi〉), with respect

to (w.r.t.) the same quantity incurred by a vector ŵ ∈ Rd fixed in hindsight, i.e.
∑n
i=1 `i(〈xi, ŵ〉).

In the OWO Meta-Learning setting, we have a family of inner online algorithms identified by a
meta-parameter θ belonging to a prescribed set Θ and the goal is to adapt θ to a sequence of learning
tasks, in online fashion. Throughout this work, Θ will be a closed, convex, non-empty subset of
an Euclidean spaceM. The broad goal is to “transfer information” gained when learning previous
tasks, in order to help learning future tasks. For this purpose, we propose a Meta-Learning procedure,
acting across the tasks, which modifies the inner algorithm one task after another. More precisely,
we let T be the number of tasks and, for each task t ∈ {1, . . . , T} we let Zt = (xt,i, yt,i)

n
i=1

1 be
the corresponding data sequence. At each time t: (a) the meta-learner incrementally receives a task
dataset Zt, (b) it runs the inner online algorithm with meta-parameter θt on Zt, returning the predictor
vectors (wθt,i)

n
i=1, (c) it incrementally incurs the errors `t,i(〈xt,i, wθt,i〉), where `t,i(·) = `(·, yt,i),

(d) the meta-parameter (and consequently, the inner algorithm) is updated in θt+1. Denoting by
Einner(Zt, θt) the cumulative error of the inner algorithm with meta-parameter θt on the dataset Zt,
the goal is to bound the error accumulated across the tasks, i.e.

Emeta

(
(Zt)

T
t=1

)
=

T∑
t=1

Einner(Zt, θt) =

T∑
t=1

n∑
i=1

`t,i(〈xt,i, wθt,i〉), (1)

w.r.t. the same quantity incurred by a sequence of tasks’ vectors (ŵt)
T
t=1 fixed in hindsight, i.e.∑T

t=1

∑n
i=1 `t,i(〈xt,i, ŵt〉).

The setting we consider in the paper is inspired by previous work on Multi-Task Learning, such as
[2, 10, 18]. To describe it, we use extended real-valued functions and, for any data sequence Z and

1Throughout the paper we use the double subscript notation “t,i”, to denote the {outer, inner} task index.
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meta-parameter θ ∈ Θ, we define the within-task minimum regularized empirical risk

LZ(θ) = min
w∈Rd

RZ(w) + λf(w, θ) RZ(w) =
1

n

n∑
i=1

`i(〈xi, w〉), (2)

where λ > 0 is a regularization parameter and f is an appropriate complexity term ensuring the
existence and the uniqueness of the above minimizer ŵθ. Assuming the entire sequence (Zt)

T
t=1

available in hindsight, introducing the notation Lt = LZt , many MTL methods read as follows

min
θ∈M

T∑
t=1

Lt(θ) + ηF (θ), (3)

where η > 0 is a meta-regularization parameter and F is an appropriate meta-regularizer ensuring
that the above minimum is attained. We stress that in our OWO Meta-Learning setting, the data
are received sequentially, both within and across the tasks. The above formulation inspires us to
take a within-task online algorithm that mimics well the (batch) objective in Eq. (2) and to define
as meta-objectives for the online meta-algorithm the functions (Lt)Tt=1. Obviously, in this setting,
the meta-objectives (and consequently their subgradients used by the meta-algorithm) are computed
only up to an approximation error, depending on the specific properties of the inner algorithm we are
using. We will show how to control and exploit this approximation error in the analysis.

In the sequel, for an Euclidean space V , we let Γ0(V) to be the set of proper, closed and convex
functions over V and, for any f ∈ Γ0(V), we denote by Domf its domain (we refer to App. B and
[31] for notions on convex analysis). In this work, we make the following standard assumptions in
which we introduce two norms ‖ · ‖θ and |||·||| that will be specified in two applications below.
Assumption 1 (Loss and regularizer). Let `(·, y) be a convex and closed real-valued function for
any y ∈ Y and let f ∈ Γ0(Rd ×M) be such that, for any θ ∈ Θ, f(·, θ) is 1-strongly convex w.r.t. a
norm ‖ · ‖θ over Rd, infw∈Rd f(w, θ) = 0 and, for any θ /∈ Θ, Domf(·, θ) = ∅.

Assumption 2 (Meta-regularizer). Let F be a closed and 1-strongly convex function w.r.t. a norm
|||·||| overM such that infθ∈M F (θ) = 0 and DomF = Θ.

Notice that the norm w.r.t. which the function f(·, θ) is assumed to be strongly convex may vary
with θ. Moreover, under Asm. 1, DomLZ = Θ and, since LZ is defined as the partial minimum of a
function in Γ0(Rd ×M), LZ ∈ Γ0(M). This property supports the choice of this function as the
meta-objective for our meta-algorithm. Finally, by Lemma 29 in App. B, Asm. 1 and Asm. 2 ensure
the existence and the uniqueness of the minimizers in Eq. (2) and Eq. (3).

We conclude this section by giving two examples included in the framework above. The first one
is inspired by the MTL variance regularizer in [14], while the second example, which can be easily
extended to more general MTL regularizers such as in [2, 10, 27, 28], relates to the MTL trace norm
regularizer. As we will see in the following, in the first example the tasks’ predictors are encouraged
to stay close to a common bias vector, in the second example they are encouraged to lie in the range
of a low-rank feature map. In order to describe these examples we require some additional notation.
We let ‖ · ‖2, ‖ · ‖F , ‖ · ‖Tr, ‖ · ‖∞, be the Euclidean, Frobenius, trace, and operator norm, respectively.
We also let “·†” be the pseudo-inverse, Tr(·) be the trace, Ran(·) be the range and Sd (resp. Sd+) be
the set of symmetric (resp. positive semi-definite) matrices in Rd×d. Finally, ιS denotes the indicator
function of the set S, taking value 0 when the argument belongs to S and +∞ otherwise.
Example 1 (Bias). We chooseM = Θ = Rd, F (·) = 1

2‖ · ‖
2
2, satisfying Asm. 2 with |||·||| = ‖ · ‖2,

and f(·, θ) = 1
2‖ · −θ‖

2
2, satisfying Asm. 1 with ‖ · ‖θ = ‖ · ‖2 for every θ ∈ Rd.

Example 2 (Feature Map). We chooseM = Sd and Θ = S, where S = {θ ∈ Sd+ : Tr(θ) ≤ 1}.
For a fixed θ0 ∈ S, we set F (·) = 1

2‖ · −θ0‖2F + ιS(·), satisfying Asm. 2 with |||·||| = ‖ · ‖F , and
f(·, θ) = 1

2 〈·, θ
†·〉+ ιRan(θ)(·) + ιS(θ), satisfying Asm. 1 with ‖ · ‖θ =

√
〈·, θ†·〉 for any θ ∈ S.

We will return to these examples in Sec. 6, specializing our method and our analysis to these settings.

3 Preliminaries: primal-dual Online Learning

Our OWO Meta-Learning method consists in the application of two nested primal-dual online
algorithms, one operating within the tasks and another across the tasks. In particular, even though our
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Algorithm 1 Primal-dual online algorithm – online Mirror Descent

Input (gm)Mm=1, (Am)Mm=1, (cm)Mm=1, (εm)Mm=1, r as described in the text
Initialization α1 = (), v1 = ∇r∗(0) ∈ Dom r

For m = 1 to M
Receive gm, Am, cm+1, εm
Suffer gm(Amvm) and compute α′m ∈ ∂εmgm(Amvm)

Update αm+1 = (αm, α
′
m)

Define vm+1 = ∇r∗
(
− 1/cm+1

∑m
j=1A

∗
jαm+1,j

)
∈ Dom r

Return (αm)M+1
m=1 , (vm)M+1

m=1

analysis holds also for more aggressive schemes, in this work, we consider online Mirror Descent
algorithm. In this section we briefly recall some material from the primal-dual interpretation of this
algorithm that will be used in our subsequent analysis. The material of this section is an adaptation
from [37, 33, 38, 36, 35]; we refer to App. C for a more detailed presentation.

Online Mirror Descent algorithm on a (primal) problem can be derived from the following primal-
dual framework in which we introduce an appropriate dual algorithm. Specifically, at each iteration
m ∈ {1, . . . ,M}, we consider the following instantaneous primal optimization problem

P̂m+1 = inf
v∈V

Pm+1(v) Pm+1(v) =

m∑
j=1

gj(Ajv) + cmr(v) (4)

where V is an Euclidean space, cm > 0, r ∈ Γ0(V) is a 1-strongly convex function w.r.t. a norm
‖ · ‖ over V (with dual norm ‖ · ‖∗) such that infv∈V r(v) = 0, for any j ∈ {1, . . . ,M}, letting Vj an
Euclidean space, gj ∈ Γ0(Vj) and Aj : V → Vj is a linear operator with adjoint A∗j . As explained in
App. C, the corresponding dual problem is given by

D̂m+1 = inf
α∈V1×···×Vm

Dm+1(α) Dm+1(α) =

m∑
j=1

g∗j (αj) + cmr
∗
(
− 1

cm

m∑
j=1

A∗jαj

)
, (5)

where g∗j and r∗ are respectively the conjugate functions of gj and r. After this, we define the dual
scheme in which the dual variable αm+1 is updated by a greedy coordinate descent approach on the
dual, setting αm+1 = (αm, α

′
m), where α′m ∈ ∂εmgm(Amvm) is an εm-subgradient of gm at Amvm

and vm is the current primal iteration. The primal variable is then updated from the dual one by a
variant of the Karush–Kuhn–Tucker (KKT) conditions, providing its belonging to Dom r, see Alg. 1.
In this paper, following [36], we refer to such a scheme as lazy online Mirror Descent. However, the
term linearized Follow-The-Regularized-Leader is historically more accurate. We recall also that
such a scheme includes many well-known algorithms, when one properly specifies the complexity
term r. The behavior of Alg. 1 is analyzed in the next result which will be a key tool for our analysis.
Theorem 1 (Dual optimality gap for Alg. 1). Let (vm)Mm=1 be the primal iterates returned by Alg. 1
when applied to the generic problem in Eq. (4) and let ∆Dual = DM+1(αM+1) − D̂M+1 be the
corresponding (non-negative) dual optimality gap at the last dual iterate αM+1 of the algorithm.

1. If, for any m ∈ {1, . . . ,M}, cm+1 ≥ cm, then,

∆Dual ≤ −
M∑
m=1

gm(Amvm) + P̂M+1 +
1

2

M∑
m=1

1

cm

∥∥A∗mα′m∥∥2

∗ +

M∑
m=1

εm.

2. If, for any m ∈ {1, . . . ,M}, cm =
∑m
j=1 λj for some λj > 0, then,

∆Dual ≤ −
M∑
m=1

{
gm(Amvm) + λmr(vm)

}
+ P̂M+1 +

1

2

M∑
m=1

1

cm

∥∥A∗mα′m∥∥2

∗ +

M∑
m=1

εm.

The first (resp. second) inequality in Thm. 1 links the dual optimality gap of the last dual iterate
generated by Alg. 1, with the (resp. regularized) cumulative error of the corresponding primal iterates.
Note that this result can be readily used to bound the cumulative error (resp. its regularized version)
of Alg. 1 by the batch regularized comparative P̂M+1 and additional terms. In the following section,
we will make use of the above theorem in order to analyze our OWO Meta-Learning method.

4



Algorithm 2 Within-task algorithm

Input λ > 0, θ ∈ Θ, Z = (zi)
n
i=1

Initialization sθ,1 = (), wθ,1 = ∇f(·, θ)∗(0)

For i = 1 to n
Receive the datapoint zi = (xi, yi)

Compute s′θ,i ∈ ∂`i(〈xi, wθ,i〉) ⊆ R
Define (sθ,i+1)i = s′θ,i, γi = λ(i+ 1)

Updatewθ,i+1=∇f(·, θ)∗
(
−1/γi

∑i
j=1 xjs

′
θ,j

)
Return (wθ,i)

n+1
i=1 , w̄θ =

1

n

n∑
i=1

wθ,i, sθ,n+1

Algorithm 3 Meta-algorithm

Input η > 0, (Zt)
T
t=1

Initialization θ1 = ∇F ∗(0)

For t = 1 to T
Receive incrementally the dataset Zt
Run Alg. 2 with θt over Zt
Compute sθt,n+1

Compute∇′θt as in Prop. 3 using sθt,n+1

Update θt+1 = ∇F ∗
(
− 1/η

∑t
j=1∇

′
θj

)
Return (θt)

T+1
t=1 , θ̄ =

1

T

T∑
t=1

θt

4 Method

In this section we present the proposed OWO Meta-Learning method and we establish a (regularized)
cumulative error bound for it. As anticipated in Sec. 2, the method consists in the application of
Alg. 1 both to the (non-normalized) within-task problem in Eq. (2) and to the across-tasks problem in
Eq. (3), corresponding, as we will show in the following, to Alg. 2 and Alg. 3, respectively. In order
to analyze our method, we start from studying the behavior of the inner Alg. 2.
Proposition 2 (Dual optimality gap for the inner Alg. 2). Let Asm. 1 hold. Then, Alg. 2 coincides with
Alg. 1 applied to the non-normalized within-task problem in Eq. (2). As a consequence, introducing
the regularized cumulative error of the iterates generated by Alg. 2,

Ereg
inner(Z, θ) =

n∑
i=1

{
`i(〈xi, wθ,i〉) + λf(wθ,i, θ)

}
, (6)

where wθ,i ∈ Domf(·, θ) for any i ∈ {1, . . . , n}, the following upper bound for the associated dual
optimality gap ∆Dual introduced in Thm. 1 holds

∆Dual ≤ εθ εθ = −
(
Ereg

inner(Z, θ)− nLZ(θ)
)

+
1

2λ

n∑
i=1

1

i

∥∥xis′θ,i∥∥2

θ,∗. (7)

Proof. The inner Alg. 2 coincides with Alg. 1 applied to the non-normalized within-task problem in
Eq. (2), once one makes the identifications α′m  s′θ,i for the (exact) subgradients and realizes that
the non-normalized within-task problem in Eq. (2) is of the form in Eq. (4) with

m M, j  i, M  n, v  w, V  Rd, gj  `i, Aj  x>i , cm  nλ, r(·) f(·, θ).
Now, the bound in the statement directly derives from the second point of Thm. 1.

Since ∆Dual ≥ 0, by moving the terms and normalizing by the number of points n, the above
result tells us that, when the terms ‖xis′θ,i‖2θ,∗ are bounded, for an appropriate choice of λ, the inner
algorithm attempts to mimic the function LZ in Eq. (2), as the number of points n increases. The
method we propose in this work relies on the application of Alg. 1 also to the meta-problem in
Eq. (3) as the tasks are sequentially observed, using the functions (Lt)Tt=1 as meta-objectives. A key
difficulty here is that the meta-objective is defined via the inner batch problem in Eq. (2), hence it is
not available exactly but it is only approximately approached by the within-task online algorithm.
From a practical point of view, this means that in this case, differently from the inner algorithm, the
resulting meta-algorithm has to deal with an error on the meta-subgradients at each iteration. Our
next result describes how, leveraging on the dual optimality gap for the inner Alg. 2, we can compute
an ε-subgradient of the meta-objective, where ε is (up to normalization) the value stated in Prop. 2.
This will allow us to develop an efficient method which is computationally appealing and fully online.
Proposition 3 (Computation of an ε-subgradient of LZ ). Let Asm. 1 hold and let sθ,n+1 be the output
of Alg. 2 with θ ∈ Θ over the dataset Z. Let ∇θ ∈ ∂{−Dn+1(sθ,n+1, ·)}(θ), where

Dn+1(s, θ) =

n∑
i=1

`∗i (si) + λnf∗(·, θ)
(
− 1

λn

n∑
i=1

xisi

)
s ∈ Rn (8)
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is the dual of the non-normalized Eq. (2). Then, ∇′θ = ∇θ/n ∈ ∂εθ/nLZ(θ), with εθ as in Prop. 2.

The proof of the above statement is reported in App. D. It is based on rewriting the meta-objective
as LZ(θ) = 1/nmaxs∈Rn{−Dn+1(s, θ)} (by strong duality, see Lemma 34 in App. D) and it
essentially exploits Prop. 2, according to which, the last dual iteration sθ,n+1 returned by Alg. 2 is an
εθ-maximizer of the dual objective −Dn+1(·, θ). We remark that the procedure described above to
compute an ε-subgradient has been already used in our work [11] for the statistical setting in Ex. 1.
Here, with a different proof technique, we show that it can be extended also to more general inner
regularizers. Leveraging on the form of the error on the meta-subgradients in Prop. 3, we now show
how we can automatically deduce a (regularized) cumulative error bound for the entire procedure.
Theorem 4 (Cumulative error bound). Let Asm. 1 and Asm. 2 hold. Then, Alg. 3 coincides with
Alg. 1 applied to the outer-tasks problem in Eq. (3). As a consequence, introducing the regularized
cumulative error for the iterates generated by the combination of Alg. 2 and Alg. 3,

Ereg
meta

(
(Zt)

T
t=1

)
=

T∑
t=1

Ereg
inner(Zt, θt) =

T∑
t=1

n∑
i=1

{
`t,i(〈xt,i, wθt,i〉) + λf(wθt,i, θt)

}
, (9)

where θt ∈ Θ for any t ∈ {1, . . . , T}, for any sequence of vectors (ŵt)
T
t=1 in Rd and any θ ∈ Θ

such that f(ŵt, θ) < +∞ for any t ∈ {1, . . . , T}, the following upper bound holds

Ereg
meta

(
(Zt)

T
t=1

)
≤ nT

(
1

T

T∑
t=1

RZt(ŵt) +
λ

T

T∑
t=1

f(ŵt, θ) +
1

2λnT

T∑
t=1

n∑
i=1

1

i

∥∥xt,is′θt,i∥∥2

θt,∗

+
ηF (θ)

T
+

1

2ηT

T∑
t=1

∣∣∣∣∣∣∇′θt∣∣∣∣∣∣2∗
)
.

Proof. The meta-algorithm in Alg. 3 coincides with Alg. 1 applied to the outer-tasks problem in
Eq. (3), once one makes the identifications α′m  ∇′θt for the (approximated) subgradients and
realizes that the outer-tasks problem in Eq. (3) is of the form in Eq. (4) with

m M, j  t, M  T, v  θ, V  Θ, gj  Lt, Aj  I, cm  η, r  F.

As a consequence, denoting by ∆Dual the associated dual optimality gap introduced in Thm. 1,
specializing the first point of Thm. 1 to this setting and exploiting the fact ∆Dual ≥ 0, we get

0 ≤ −
T∑
t=1

Lt(θt) + min
θ∈Θ

{ T∑
t=1

Lt(θ) + ηF (θ)
}

+
1

2η

T∑
t=1

∣∣∣∣∣∣∇′θt∣∣∣∣∣∣2∗ +
1

n

T∑
t=1

εθt . (10)

Substituting the closed form of εθt in Prop. 2 (applied to the task t) into Eq. (10), one immediately
observes that the term

∑T
t=1 Lt(θt) erases. The desired statement then directly follows by rearranging

the remaining terms, using the definition of (Lt)Tt=1 and multiplying by the number of points n.

When the inputs are bounded and both the inner loss and meta-objective are Lipschitz w.r.t. the
associated norms (as we will see for Ex. 1), the terms

∣∣∣∣∣∣∇′θt∣∣∣∣∣∣2∗ and
∥∥xt,is′θt,i∥∥2

θt,∗
can be upper

bounded by a constant. In this case, for an appropriate choice of λ and η, we recover a reasonable
rate Õ(1/

√
n) +O(1/

√
T ). However, when the bounds on

∣∣∣∣∣∣∇′θt∣∣∣∣∣∣2∗ hide a dependency w.r.t. λ or n
(as we will see for Ex. 2), the bound must be accordingly analyzed.

5 Adaptation to the statistical setting

In this section we present guarantees for our method in the statistical setting. Following the framework
outlined in [6, 23, 26] we assume that, for any t ∈ {1, . . . , T}, the within-task dataset Zt is an
independently identically distributed (i.i.d.) sample from a distribution (task) µt, and in turn the
tasks (µt)

T
t=1 are an i.i.d. sample from a meta-distribution ρ. The estimator we consider here is

w̄θ̄ = 1
n

∑n
i=1 wθ,i, the average of the iterates resulting from applying Alg. 2 to a test dataset Z

with meta-parameter θ̄ = 1
T

∑T
t=1 θt, the average of the meta-parameters returned by our online

meta-algorithm in Alg. 3 applied to the training datasets (Zt)
T
t=1. We wish to study the performance

of such an estimator in expectation w.r.t. the tasks sampled from the environment ρ.
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Formally, for any µ ∼ ρ, we require that the corresponding true riskRµ(w) = E(x,y)∼µ`(〈x,w〉, y)

admits minimizers over the entire space Rd and we denote by wµ the minimum norm one. With these
ingredients, we introduce the oracle Eρ = Eµ∼ρ Rµ(wµ), representing the expected minimum error
over the environment of tasks, and, introducing the transfer risk of the estimator w̄θ̄:

Estat(w̄θ̄) = Eµ∼ρ EZ∼µn Rµ(w̄θ̄(Z)), (11)
we give a bound on it w.r.t. the oracle Eρ. This is described in the following theorem.
Theorem 5 (Transfer risk bound). Let the same assumptions in Thm. 4 hold in the i.i.d. statistical
setting. Then, introducing the regularized transfer risk of the average w̄θ̄ of the iterates resulting
from the combination of Alg. 2 and Alg. 3,

Ereg
stat(w̄θ̄) = Eµ∼ρ EZ∼µn

[
Rµ(w̄θ̄(Z)) + λf(w̄θ̄(Z), θ̄)

]
,

for any θ ∈ Θ such that Eµ∼ρf(wµ, θ) < +∞, the following upper bound holds in expectation w.r.t.
the sampling of the datasets (Zt)

T
t=1

E Ereg
stat(w̄θ̄) ≤ Eρ + λ Eµ∼ρf(wµ, θ) +

1

2λnT
E

T∑
t=1

n∑
i=1

1

i

∥∥xt,is′θt,i∥∥2

θt,∗

+
ηF (θ)

T
+

1

2ηT
E

T∑
t=1

∣∣∣∣∣∣∇′θt∣∣∣∣∣∣2∗ + E Eµ∼ρ EZ∼µn
1

2λn

n∑
i=1

1

i

∥∥xis′θ̄,i∥∥2

θ̄,∗.

The proof of the statement above is reported in App. E. It exploits the regularized cumulative error
bound given in Thm. 4 for our Meta-Learning procedure and two nested online-to-batch conversion
steps [9, 22], one within-task and one across-tasks. The bound above is composed by the expectation
of the terms comparing in Thm. 4 plus an additional term. Such a term comes out from the online-
to-batch conversion and, as we will see in the sequel, it does not affect the general behavior of the
bound. Finally, we observe that, differently from [1, Thm. 6.1] and [3, Thm. 3.3], the theorem
above holds for the average of the meta-parameters (θt)

T
t=1 returned by our meta-algorithm (not

for a meta-parameter randomly sampled from the pool) and, consequently, it does not require their
memorization or the introduction of additional randomization to the process. In the following section
we will show that specializing Thm. 4 and Thm. 5 to Ex. 1 and Ex. 2, we will get meaningful bounds.

6 Examples

In this section we specify our framework to Ex. 1 and Ex. 2 outlined at the end of Sec. 2. In order
to do this, we require the following assumption, which is for instance satisfied by the absolute loss
`(ŷ, y) =

∣∣ŷ − y∣∣ and the hinge loss `(ŷ, y) = max
{

0, 1− yŷ
}

, where y, ŷ ∈ Y .
Assumption 3 (Lipschitz Loss). Let `(·, y) be L-Lipschitz for any y ∈ Y .

Below, for any task t ∈ {1, . . . , T}, we let the input covariance matrices Ct = 1
n

∑n
i=1 xt,ix

>
t,i, Ĉt =∑n

i=1
1
i xt,ix

>
t,i, C

tot = 1
T

∑T
t=1 Ct and Ĉtot = 1

T

∑T
t=1 Ĉt. We also use the notation ‖Ctot‖∞,a =

1
T

∑T
t=1 ‖Ct‖a∞ with a = 1, 2 and, in the statistical setting, we let Cρ = Eµ∼ρ E(x,y)∼µxx

>.

Bias. In App. G we report the adaptation of our method in Alg. 2 and Alg. 3 (cf. Alg. 5 and Alg. 6)
and we specify Thm. 4 and Thm. 5 (cf. Cor. 40 and Cor. 42) to Ex. 1. In such a case, the resulting
inner algorithm coincides with online Subgradient Descent on the regularized empirical risk and,
similarly, the resulting meta-algorithm coincides with online Subgradient Descent (with approximated
subgradients) on the meta-objectives (Lt)Tt=1. We thus recover the method in [11] with a slightly
different choice of the inner algorithm step size. Our results (see App. G.4.2) are in line with [11],
where we present the same bound in Cor. 42 with slightly worse constants.

Feature map. In App. H.1 we report the adaptation of our method in Alg. 2 and Alg. 3 (cf. Alg. 7 and
Alg. 8) to Ex. 2. In this case, the resulting inner algorithm coincides with a pre-conditioned variant
of online Subgradient Descent on the regularized empirical risk and the resulting meta-algorithm
coincides with a lazy variant of online Subgradient Descent (with approximate subgradients) on the
meta-objectives (Lt)Tt=1, projected on the set S . The meta-algorithm we retrieve is a slightly different
version of the algorithm we propose in [12] for an OWB statistical framework.

Our next result specifies the cumulative error bound in Thm. 4 to Ex. 2. The proof is in App. H.2.
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Corollary 6 (Cumulative error bound, feature map). Let Asm. 3 hold, consider the setting in Thm. 4
applied to Ex. 2 and let Ĉtot

θ1:T
= 1

T

∑T
t=1 θtĈt. Then, for any sequence of vectors (ŵt)

T
t=1 in Rd,

introducing B̂ = 1
T

∑T
t=1 ŵtŵ

>
t , for any θ ∈ S such that Ran(B̂) ⊆ Ran(θ), the following bound

holds for our method with an appropriate choice of hyper-parameters

Ereg
meta

(
(Zt)

T
t=1

)
≤ nT

(
1

T

T∑
t=1

RZt(ŵt) + L

√√√√Tr(θ†B̂)

(
Tr(Ĉtot

θ1:T
)

n
+ ‖θ − θ0‖F

√
‖Ctot‖∞,2

T

))
.

The next result specifies the transfer risk bound in Thm. 5 to Ex. 2. The proof is in App. H.3.
Corollary 7 (Transfer risk bound, feature map). Let Asm. 3 hold and consider the setting in Thm. 5
applied to Ex. 2. Then, in expectation w.r.t. the sampling of the datasets (Zt)

T
t=1, introducing

Bρ = Eµ∼ρwµw>µ , for any θ ∈ S such that Ran(Bρ) ⊆ Ran(θ), the following bound holds for our
method with an appropriate choice of hyper-parameters

E Ereg
stat(w̄θ̄) ≤ Eρ + L

√√√√Tr(θ†Bρ)

(
2
(
log(n) + 1

)
Tr(E θ̄Cρ)

n
+ ‖θ − θ0‖F

√
E ‖Ctot‖∞,2

T

)
.

We now analyze the statistical setting. Following [12, 26, 25] we study whether, as the number of
tasks grows, our method mimics the performance of the inner algorithm with the best feature map in
hindsight (oracle, see App. H.4.1) for any task. We note that, once fixed in an appropriate way the
meta-parameter θ in the statement (hence, the hyper-parameters), the above bound in Cor. 7 becomes
comparable to the bound for the best feature map in hindsight, see the discussion in App. H.4.2.
Hence, we recover the same conclusion: there is an advantage in using the feature map found by our
Meta-Learning method w.r.t. solving each task independently when ‖Cρ‖∞ is small (the inputs are
high-dimensional, for instance) and Bρ is low-rank (the tasks share a low dimensional representation).
In addition, note that the bound in Cor. 7 converges, as the number of tasks grow, to the oracle at a
rate of O(T−1/4), whereas the corresponding bounds for the bias example (cf. Cor. 40 and Cor. 42 in
App. G) yield the faster O(T−1/2) rate, suggesting that feature learning is a more difficult problem
than bias learning. Regarding the non-statistical setting, the bound in Cor. 6 is less clear to interpret
because of the presence of the modified version of the inputs’ covariance matrix Ĉtot

θ1:T
. Future work

may be devoted to investigate this point, which could be either an artifact of our analysis or due to
some intrinsic characteristics of the problem we are considering.

7 Experiments

We present preliminary experiments with our OWO Meta-Learning method (ONL-ONL)2 in the
statistical setting of Ex. 2. In all experiments, the hyper-parameters λ and η were chosen by a
meta-validation procedure (see App. I for more details) and we fixed θ0 = I/d for the meta-algorithm
in Alg. 8. We compared ONL-ONL to the modified batch-online (BAT-ONL) variant, where the
meta-subgradients in the meta-training phase are computed with higher accuracy by a convex solver
(such as CVX), to Independent-Task Learning (ITL), i.e. running the inner Alg. 7 with the feature
map θ = I/d for each task, and, in the synthetic data experiment, to the Oracle, i.e. running the inner
Alg. 7 with the best feature map in hindsight for each task, see App. H.4.1.

Synthetic data. We considered the regression setting with the absolute loss function. We generated
Ttot = 3600 tasks. For each task, the corresponding dataset (xi, yi)

ntot
i=1 of ntot = 80 points was

generated according to the linear equation y = 〈x,wµ〉+ ε, with x sampled uniformly on the unit
sphere in Rd with d = 20 and ε sampled from a Gaussian distribution, ε ∼ G(0, 0.2). The tasks’
predictors wµ were generated as wµ = Pw̃µ with the components of w̃µ ∈ Rd/5 sampled from
G(0, 1) and then w̃µ normalized to have unit norm, with P ∈ Rd×d/5 a matrix with orthonormal
columns. In this setting, the operator norm of the inputs’ covariance matrix Cρ is small (equal to
1/d) and the weight vectors’ covariance matrix Bρ is low-rank, a favorable setting for our method,
according to Cor. 7. Looking at the results in Fig. 1 (Left), we can state that, in this setting, our method
outperforms ITL and it tends to the Oracle as the number of training tasks increases. Moreover, the

2The code is available at https://github.com/dstamos/Adversarial-LTL
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Figure 1: Synthetic data (Left) and Movielens-100k dataset (Right). Performance of different methods as the
number of training tasks increases. The results are averaged over 10 runs/splits of the data.

Figure 2: Mini-Wiki dataset (Left) and Jester-1 dataset (Right). Performance of different methods as the number
of training tasks increases. The results are averaged over 10 splits of the data.

performance of ONL-ONL and BAT-ONL are comparable, suggesting that our approximation of the
meta-subgradients is an effective way to keep the entire process fully online.

Real data. We further validated the proposed method on three real datasets: 1) the Movielens-100k
dataset3, containing the ratings of different users to different movies 2) the Mini-Wiki dataset from
[3], containing sentences from Wikipedia pages and 3) the Jester-1 dataset4, containing the ratings of
different users to different jokes. For the Movielens-100k and the Jester-1 datasets we considered each
user as a task and each movie/joke as a point. Specifically, we casted each task as a regression problem
where the labels are the ratings of the users and the raw features are simply the index of the movie/joke
(i.e. a matrix completion setting where the input dimension d coincides with the number of points).
For the Mini-Wiki dataset we casted each task as a multi-class classification problem where the labels
are the Wikipedia pages and the features are vectors with dimension d = 50. After processing the
data, we ended with a total number of Ttot = 939, 813, 5700 tasks and ntot = 939, 128, 100 points
per task for the Movielens-100k, the Mini-Wiki and the Jester-1 datasets, respectively. In the above
formulation of the problem for the Movielens-100k and the Jester-1 datasets, it is possible to show
that, the ITL algorithm is not able to predict any rate for the films/jokes without observed rates. For
this reason, in order to evaluate the performance of the Meta-Learning methods ONL-ONL and
BAT-ONL, we decided to introduce a more challenging method for this particular formulation of the
problem in which, for the films/jokes without any observed rate, we predicted the rate coinciding
with the average of the rates of all the observed users, at the end of the entire sequence of tasks. We
denoted this method as BAT. In Fig. 1 (Right) and Fig. 2 we report the performance of the methods by
using the absolute loss for the Movielens-100k and the Jester-1 datastes and the multi-class hinge loss
for the Mini-Wiki dataset. The results we got are consistent with the synthetic experiments above,
showing the effectiveness of our method also in real-life scenarios. We note also that the online
Meta-Learning methods outperform the BAT method when the number of training tasks increases.

8 Conclusion

We presented a fully online Meta-Learning method stemming from primal-dual Online Learning. Our
method can be adapted to a wide class of learning algorithms and it covers various types of tasks’
relatedness. By means of a new analysis technique we derived a cumulative error bound for our
method based on which it is also possible to obtain guarantees in the statistical setting. We illustrated
our framework with two important examples, the bias and the feature learning, improving upon
state-of-the-art results. To conclude, we believe that the generality of our framework and our method
of proof could be a valuable starting point for future theoretical investigations of Meta-Learning.

3https://grouplens.org/datasets/movielens/
4http://goldberg.berkeley.edu/jester-data/
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Appendix
The appendix is organized as follows. We start from giving a detailed discussion of previous work
in App. A. In App. B we give some necessary preliminaries from convex analysis that are used
throughout this work. In App. C we recall the general primal-dual Online Learning framework, which
is used in App. C.2 to give the proof of Thm. 1 stated in the main body. In App. D we report the proof
of Prop. 3, describing how to compute an approximated meta-subgradient for our meta-objectives.
In App. E we report the proofs of the statements given in the main body in Sec. 5 for the statistical
setting. In App. F we report the results regarding the application of the within-task Alg. 1 with a
meta-parameter fixed in hindsight for any task. These results will be used as benchmark to evaluate
our meta-procedure aiming at estimating from the data a good meta-parameter for the inner algorithm.
Then, in App. G and App. H we report the results and the computation needed for specializing the
general method described in the paper and the corresponding analysis to the settings outlined in Ex. 1
and Ex. 2, respectively. Finally, in App. I, we provide some experimental details we skipped in the
main body.

A Previous work

We now discuss more in detail some of the papers mentioned above in the main body.

One of the first OWO Meta-Learning framework was presented in [1]. In that case, the proposed
setting can cover a quite broad family of inner algorithms and, as observed before, it can be adapted
by online-to-batch arguments to the statistical framework. However, the main drawback of that work
is the fact that the proposed meta-algorithm is not efficient, since it requires memorizing the entire
data sequence.

In [8, 12] the authors focus on the statistical OWB setting and they study the family of regularized
empirical risk minimizers with the same regularizer introduced in Ex. 2. In [8], the authors consider
a Lipschitz loss function and, in order to estimate from the data the feature map parametrizing the
family, they propose to apply Frank-Wolfe or Exponentiated-Weighted as meta-algorithm to the
functions given by the minimum of the regularized empirical risks associated to the observed tasks
(the same meta-objectives used in this work). In [12], the feature map is estimated by projected
Gradient Descent applied to the empirical risk of the inner algorithms, without regularizer. As we
will see in the following App. H, the meta-algorithm we will use for this setting will be different.

In the more recent work [16], the authors consider under the Meta-Learning perspective the problem
of the so-called fine tuning, in which the goal is to estimate a good starting point for a prescribed
iterative inner algorithm. Specifically, they consider as inner algorithm one step of gradient descent
from the point θ, namely, for an appropriate step size γ > 0, wθ = θ − γ∇f̂(θ), where f̂ is some
function, for instance an approximation of the (true) risk. Then, in order to estimate the initial point
θ, they consider a meta-objective of the form L(θ) = f(θ − γ∇f̂(θ)), where f is another function
with the same intuition of f̂ . The main result in [16] is to show that, under strong assumptions on the
functions f and f̂ , such meta-objective is (strongly) convex in the meta-parameter θ. Once proven
this, they propose to estimate the starting point applying as meta-algorithm Follow-The-Leader on
the sequence of these functions and, relying on the well-known analysis for this algorithm, they state
a cumulative error bound for it.

Perhaps closer in spirit to our work is [3]. In that work, the authors consider as inner algorithm
online Mirror Descent with constant step size and a penalty term given by a Bregman divergence
parametrized by a meta-parameter. On the contrary, our inner algorithm corresponds to fixing the
step size as 1/(λ(i+ 1)) at each iteration and this allows us to derive a regularized cumulative error
bound. This, as we will see in the following, brings benefits in the statistical setting. Furthermore, the
proposed meta-algorithm here is different from the one in [3], in that it works on different objective
functions. In their case, as meta-objectives, they consider the sequence of Bregman divergences
evaluated at the empirical risk minimizer of the corresponding task, while in our case, we consider
the minimum of the entire regularized empirical risk. Such a choice, combined with the primal-
dual interpretation of online Mirror Descent and the concept of approximated subgradients, allows
us to develop an OWO method without the need of adding further assumptions. On the other
hand, in [3], in order to extend their work to the fully online setting, the authors need additional
assumptions (specifically a growth condition on the empirical error). We also mention the very
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recent (contemporary to our work) sequel [21] where the authors, considering a setting similar to
the one described in [3], propose a Meta-Learning approach to estimate also the step-size of the
inner algorithm. However, also in this case, the basic version of their method requires to compute a
batch within-task empirical risk minimizer and, in order to extend their framework to the fully online
setting, they need to introduce additional assumptions on the loss functions.

At last, we briefly discuss our work [11], which is the closest one. As already discussed in Sec. 6
and as we will see in App. G, the method and the analysis proposed there can be recovered from
the OWO framework described here for the specific case of Ex. 1 in the statistical setting. In this
work, we develop a different analysis which allows us to extend the study to more general family of
learning algorithms, also in the non-statistical setting.

B Preliminaries on convex analysis

In this appendix we recall some basic concepts of convex analysis. We refer to [7, 19, 4, 31] for a
complete and detailed overview.

Let V be an Euclidean space, i.e a finite dimensional real vector space endowed with an inner product
〈·, ·〉. Moreover, for a generic norm ‖ · ‖ over V , we recall that its dual norm ‖ · ‖∗ at the point α ∈ V
is defined as

‖α‖∗ = sup
v∈V:‖v‖≤1

〈α, v〉. (12)

As direct consequence of the definition above, we have the following standard fact.
Lemma 8 (Generalized Holder’s inequality). For any α,w ∈ V ,

〈α,w〉 ≤ ‖α‖∗ ‖w‖. (13)

Proof. We start from observing that ‖w‖ = 0 if, and only if, w = 0. If w = 0, the statement above
is obvious. Thus, we consider the case w 6= 0. In such a case, by definition of the dual norm, we can
write the following

〈α,w〉 = ‖w‖
〈
α,

w

‖w‖

〉
≤ ‖w‖ ‖α‖∗. (14)

This coincides with the desired statement.

In the following, we consider extended real-valued functions. We start from giving the following
basic definitions, which are frequently used in this work.
Definition 9 (ε-minimizer). A point v̂ε ∈ V is an ε-minimizer (with ε ≥ 0) of a function f : V →
R ∪ {+∞} if, for any v ∈ V ,

f(v̂ε) ≤ f(v) + ε. (15)

The concept of exact minimizer is retrieved from the definition above by setting ε = 0. Moreover, an
ε-maximizer of a function f must be intended as an ε-minimizer of the opposite function −f .
Definition 10 (Domain of a function, see e.g. [31, Sec. 2.1]). For a given function f : V →
R ∪ {+∞}, define its domain as

Domf =
{
v ∈ V : f(v) < +∞

}
⊆ V. (16)

Definition 11 (Epigraph of a function, see e.g. [31, Sec. 2.1]). For a given function f : V →
R ∪ {+∞}, define its epigraph as

Epif =
{

(v, t) ∈ V × R : f(v) ≤ t
}
⊆ V × R. (17)

The above quantities are now exploited to introduce the following basic definitions.
Definition 12 (Proper function, see e.g. [31, Sec. 2.1]). A function f : V → R ∪ {+∞} is proper if
Domf 6= ∅.

Definition 13 (Closed or lower semi-continuous function, see e.g. [31, Sec. 2.2]). A function
f : V → R ∪ {+∞} is closed or lower semi-continuous if Epif is a closed set of V × R.
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Definition 14 (Convex function, see e.g. [31, Sec. 2.3]). A function f : V → R ∪ {+∞} is convex
if, for any t ∈ [0, 1] and any v, v′ ∈ Domf ,

f(tv + (1− t)v′) ≤ tf(v) + (1− t)f(v′). (18)

The above inequality is known as Jensen’s inequality and it can be extended to combinations of more
points or expectations of random variables in the following way.
Lemma 15 (Convex functions and generalized Jensen’s inequality, see e.g. [7, Sec. 3.1.8]). Let
f : V → R∪ {+∞} be a convex function and consider a random variable X taking values in Domf
with probability 1. Then, provided that the following expectations exist,

f(E X) ≤ E f(X). (19)

In particular, in the discrete case, for any sequence of vectors (vj)
m
j=1 ∈ Vm and weights (aj)

m
j=1 ∈

Rm such that aj ≥ 0 for any j ∈ {1, . . . ,m} and
∑m
j=1 aj = 1, we have

f
( m∑
j=1

ajvj

)
≤

m∑
j=1

ajf(vj). (20)

One key property of convex functions is the following.
Lemma 16 (Convex functions and continuity, see e.g. [31, Prop. 3.5]). Let f : V → R ∪ {+∞} be
a convex function. Then, f is continuous on the interior of its domain. In particular, a (real-valued)
convex function f : V → R is continuous on the entire space V .

We now have all the ingredients necessary to introduce the set of functions

Γ0(V) =
{
f : V → R ∪ {+∞} : f is proper, closed and convex

}
. (21)

We now recall the following definition, which is frequently used in this work.
Definition 17 (ε-subdifferential of a function, see e.g. [31, Sec. 3.4]). Let ε ≥ 0. Then, the ε-
subdifferential of f ∈ Γ0(V) at the point v ∈ Domf is the collection of the ε-subgradients at that
point, namely,

∂εf(v) =
{
α ∈ V : f(v′) ≥ f(v) + 〈α, v′ − v〉 − ε, for any v′ ∈ Domf

}
. (22)

The standard subdifferential ∂f is retrieved from the above definition by setting ε = 0. The following
result is a direct consequence of the definition above and it links the concept of the ε-subdifferential
of a function to the corresponding set of ε-minimizers.
Lemma 18 (Fermat rule, see e.g. [19, Thm. 1.1.5]). v̂ε ∈ V is an ε-minimizer of f ∈ Γ0(V) if, and
only if, 0 ∈ ∂εf(v̂ε).

Before proceeding, we recall the definition of the Fenchel conjugate of a function.
Definition 19 (Fenchel conjugate of a function, see e.g. [31, Sec. 3.6]). Let f ∈ Γ0(V). Then, its
Fenchel conjugate f∗ : V → R ∪ {+∞} is defined at α ∈ V as

f∗(α) = sup
v∈V
〈v, α〉 − f(v). (23)

In our proofs, we exploit the following standard properties of the conjugate function.
Lemma 20 (Fenchel conjugate and rescaling, see e.g. [7, Sec. 3.3.2]). Let f ∈ Γ0(V) and c > 0.
Then, for any α ∈ V , (cf)∗(α) = cf∗(α/c).

Lemma 21 (Separable functions and Fenchel conjugate, see e.g. [7, Sec. 3.3.2]). Let V1, . . . ,Vm be
Euclidean spaces. For any v = (v1, . . . , vm) ∈ V1 × · · · × Vm, let

f(v) =

m∑
j=1

fj(vj), (24)

with fj ∈ Γ0(Vj). Then, for any α = (α1, . . . , αm) ∈ V1 × · · · × Vm, we have

f∗(α) =

m∑
j=1

f∗j (αj). (25)
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Lemma 22 (Fenchel conjugate and monotonicity, see e.g. [31, Prop. 3.50]). Let f1, f2 ∈ Γ0(V)
such that f1 ≤ f2. Then, f∗1 ≥ f∗2 .

Lemma 23 (Young-Fenchel inequality, see e.g. [19, Prop. 1.2.1]). Let f ∈ Γ0(V) and consider
v ∈ Domf . Then, α ∈ ∂εf(v) if, and only if,

f∗(α)− 〈α, v〉 ≤ −f(v) + ε. (26)

We now introduce a further definition which is used throughout this work.
Definition 24 (Lipschitz function, see e.g. [34, Def. 12.6]). A function f : V → R ∪ {+∞} is
L-Lipschitz (with L > 0) w.r.t. a norm ‖ · ‖ over V if, for any v, v′ ∈ Domf ,∣∣f(v)− f(v′)

∣∣ ≤ L ‖v − v′‖. (27)

The above definition implies the following bound on the dual norm of the subgradients.
Lemma 25 (Lipschitz functions and bounded subgradients, see e.g. [34, Lemma 14.7]). Let ‖ · ‖
be a norm over V and let ‖ · ‖∗ be its dual. A function f : V → R ∪ {+∞} with open domain is
L-Lipschitz w.r.t. ‖ · ‖ if, and only if, for any v ∈ Domf and for any α ∈ ∂f(v), ‖α‖∗ ≤ L.

Another definition we need is the following.
Definition 26 (Lipschitz smooth function). Let ‖ · ‖ be a norm over V and let ‖ · ‖∗ be its dual. A
(real-valued) function f : V → R is β-Lipschitz smooth (with β > 0) w.r.t. ‖ · ‖ if it is differentiable
and, for any v, v′ ∈ V , it holds that∥∥∇f(v)−∇f(v′)

∥∥
∗ ≤ β ‖v − v

′‖. (28)

The following result describes a well-known property of Lipschitz smooth functions.
Lemma 27 (Lipschitz smooth functions and descent lemma, see e.g. [31, Lemma 1.30]). Let
f : V → R be a β-Lipschitz smooth function w.r.t. a norm ‖ · ‖ over V . Then, for any v, v′ ∈ V ,

f(v′) ≤ f(v) + 〈∇f(v), v′ − v〉+
β

2
‖v′ − v‖2. (29)

Before proceeding, we strengthen the notion of convexity as follows.
Definition 28 (Strongly convex function, see e.g. [31, Sec 2.3]). A function f : V → R ∪ {+∞} is
σ-strongly convex (with σ > 0) w.r.t. a norm ‖ · ‖ over V if, for any t ∈ [0, 1] and any v, v′ ∈ Domf ,

f(tv + (1− t)v′) ≤ tf(v) + (1− t)f(v′)− σ

2
t(1− t) ‖v − v′‖2. (30)

The following result describes a key property of strongly convex functions.
Lemma 29 (Strongly convex functions and minimizers, see e.g. [31, Prop. 3.23]). Let f : V →
R ∪ {+∞} be a proper, closed and σ-strongly convex function w.r.t. a norm ‖ · ‖ over V . Then, f
admits a minimizer over V and such a minimizer is unique.

We now give two key results for our proofs. The first one describes the duality between strong
convexity and Lipschitz smoothness, the second one allows us to study the scaling effect on the
Fenchel conjugate function.
Lemma 30 (Duality between strong convexity and Lipschitz smoothness, see e.g. [20, Thm. 6], [36,
Lemma 3]). Let ‖ · ‖ be a norm over V and let ‖ · ‖∗ be its dual. Let f : V → R∪{+∞} be a proper,
closed and σ-strongly convex function w.r.t. ‖ · ‖. Then, f∗ is (1/σ)-Lipschitz smooth w.r.t. ‖ · ‖∗.
Moreover, for any α ∈ V ,

∇f∗(α) = argmax
v∈V

〈α, v〉 − f(v) ∈ Domf. (31)

Lemma 31 (Fenchel conjugate and scaling effect, see e.g. [36, Lemma 4]). Let ‖ · ‖ be a norm over
V and let ‖ · ‖∗ be its dual. Let f ∈ Γ0(V) be a strongly convex function w.r.t. ‖ · ‖ and consider
c1, c2 > 0. Then, for any α ∈ V , introducing the vector vc2 = ∇f∗(α/c2), we have

(c2f)∗(α)− (c1f)∗(α) = c2f
∗(α/c2)− c1f∗(α/c1) ≤ (c1 − c2)f(vc2). (32)

In the following section we briefly recall the main results we need from Fenchel Duality.
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B.1 Fenchel Duality

For the content in this section, the reader can refer to [31, Sec. 3.6.2]. Given two Euclidean spaces
V and U , a linear operator A : V → U and two functions J ∈ Γ0(V) and G ∈ Γ0(U), consider the
primal problem

P̂ = inf
v∈V

P (v) P (v) = G(Av) + J(v). (33)

The associated dual problem reads as follows

D̂ = inf
α∈U

D(α) D(α) = G∗(α) + J∗(−A∗α), (34)

where A∗ : U → V is the adjoint operator of A and G∗ and J∗ are the Fenchel conjugates of G and
J , respectively. We recall also that the duality gap associated to two generic points v ∈ V and α ∈ U
is defined as

P (v) +D(α). (35)
It is well know that, for any v ∈ V and α ∈ U , the above quantity is always non-negative, i.e.

−D(α) ≤ P (v). (36)

As a consequence, we have

sup
α∈U
{−D(α)} = − inf

α∈U
D(α) = −D̂ ≤ inf

v∈V
P (v) = P̂ . (37)

The following proposition studies when the above inequality is in fact an equality.
Proposition 32 (Strong duality, see e.g. [31, Thm. 3.51]). Consider the primal and the dual problems
in Eq. (33) and Eq. (34). Assume that there exist a point v ∈ DomJ such that G is continuous at Av
and assume that the primal problem in Eq. (33) admits a solution

v̂ ∈ argmin
v∈V

P (v). (38)

Then, the dual problem in Eq. (34) admits a solution

α̂ ∈ argmin
α∈U

D(α). (39)

Moreover, the following statements hold.

1. Strong duality holds, namely,

−min
α∈U

D(α) = −D(α̂) = −D̂ = min
v∈V

P (v) = P̂ (v̂) = P̂ . (40)

2. The optimality conditions, also known as the Karush–Kuhn–Tucker (KKT) conditions, read
as follows

v̂ ∈ ∂J∗(−A∗α̂) α̂ ∈ ∂G(Av̂). (41)

C Primal-dual Online Learning

In this appendix we recall the primal-dual Online Learning framework. Specifically, in App. C.1
we report some background material which is then used in the following App. C.2 for the proof of
Thm. 1 in Sec. 3 in the main body. The material in this appendix is based on [36, 35, 37, 38].

Many online algorithms on a (primal) problem can be derived from the following primal-dual
framework. At each iteration m ∈ {1, . . . ,M}, a) we define a pair of instantaneous primal-dual
problems, b) we update the dual variable according to an appropriate greedy coordinate descent
procedure on the dual, c) we update the new primal variable by evaluating the KKT conditions at the
current dual variable. We now describe the above steps in detail. Throughout this appendix, we let V
be an Euclidean space endowed with a scalar product 〈·, ·〉 and a generic norm ‖ · ‖ with dual ‖ · ‖∗.
a) The primal and the dual problems. Regarding the first step, for any iteration m ∈ {1, . . . ,M},
consider the primal problem of the following form as in Eq. (4)

P̂m+1 = inf
v∈V

Pm+1(v) Pm+1(v) =

m∑
j=1

gj(Ajv) + cmr(v), (42)
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where cm > 0, r ∈ Γ0(V) is a σr-strongly convex function (with σr > 0) w.r.t. a norm ‖ · ‖ such
that infv∈V r(v) = 0, for any j ∈ {1, . . . ,M}, letting Vj an Euclidean space, gj ∈ Γ0(Vj) and
Aj : V → Vj is a linear operator with adjointt A∗j . Even though it is not necessary, to simplify the
presentation, we set P1 ≡ 0. Introducing the following linear operator

Am : V → V1 × · · · × Vm v ∈ V 7→ (A1v, . . . , Amv) ∈ V1 × · · · × Vm (43)

and the function Gm ∈ Γ0(V1 × . . .Vm) defined, for any α = (α1, . . . , αm) ∈ V1 × · · · × Vm, as

Gm(α) =

m∑
j=1

gj(αj), (44)

we can rewrite the problem in Eq. (42) as

P̂m+1 = inf
v∈V

Pm+1(v) Pm+1(v) = Gm(Amv) + cmr(v). (45)

Hence, according to what observed in App. B.1, exploiting the separability of Gm (see Lemma 21 in
App. B), using the scaling properties of the conjugate (see Lemma 20 in App. B) and observing that
the adjoint operator of Am is give by

A∗m : V1 × · · · × Vm → V α = (α1, . . . , αm) ∈ V1 × · · · × Vm 7→
m∑
j=1

A∗jαj ∈ V, (46)

the dual of the problem in Eq. (42) is given by

D̂m+1 = inf
α∈V1×···×Vm

Dm+1(α) Dm+1(α) =

m∑
j=1

g∗j (αj)︸ ︷︷ ︸
G∗m(α)

+ cmr
∗
(
− 1

cm

m∑
j=1

A∗jαj

)
︸ ︷︷ ︸

(cmr)
∗(−A∗mα)

, (47)

where g∗j and r∗ represent the conjugate function of gj and r, respectively. To simplify, we set also in
this case D1 ≡ 0. We observe that, when the above problems satisfy the assumptions in Prop. 32 in
App. B, since the strong convexity of r is equivalent to the Lipschitz-smoothness of r∗ (see Lemma 30
in App. B), denoting by v̂m+1 and α̂m+1 a solution of the primal and the dual problem above, the
corresponding KKT conditions read as follows

v̂m+1 = ∇r∗
(
− 1

cm
A∗mα̂m+1

)
α̂m+1 ∈ ∂Gm(Amv̂m+1), (48)

where, more explicitly, we recall that

A∗mα̂m+1 =

m∑
j=1

A∗j α̂m+1,j . (49)

We observe that, under the assumptions above, the primal objective Pm+1 results to be proper, closed
and strongly convex w.r.t. the norm ‖ · ‖. As a consequence, by Lemma 29 in App. B, we can in fact
ensure the existence and the uniqueness of the primal solution v̂m+1.

We now are ready to describe the dual and the primal updating steps.

b) c) The updating rules. The algorithm updates the dual variable αm+1 in a such way that, for a
given parameter εm ≥ 0, there exist α′m ∈ ∂εmgm(Amvm) such that

Dm+1(αm+1) ≤ Dm+1(αm,1 , . . . , αm,m−1︸ ︷︷ ︸ , α′m) = Dm+1( αm︸︷︷︸ , α′m). (50)

The primal variable is then updated by the KKT conditions from the dual one. More precisely,
following [38], in this last step we use a slightly different version of the KKT conditions in which we
divide by cm+1 instead of cm as in Eq. (48). For more details we refer to Alg. 4, which is a more
general version of Alg. 1 given in the main body in Sec. 3. We also observe that, by definition, thanks
to Lemma 30 in App. B, the primal variables (vm)Mm=1 generated by the algorithm are guaranteed to
belong to Dom r.

Note that the requirement above about the dual update in Eq. (50) is satisfied (with the equality)
by the update described in the main body αm+1 = (αm, α

′
m). The resulting primal algorithm
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Algorithm 4 Primal-dual online algorithm (more general version of Alg. 1)

Input (gm)Mm=1, (Am)Mm=1, (cm)Mm=1, (εm)Mm=1, r as described in the text
Initialization α1 = (), v1 = ∇r∗(0) ∈ Dom r

For m = 1 to M
Receive gm, Am, cm+1, εm
Suffer gm(Amvm) and compute α′m ∈ ∂εmgm(Amvm)

Update αm+1 according to Eq. (50) by using α′m
Define vm+1 = ∇r∗

(
−1/cm+1A∗mαm+1

)
= ∇r∗

(
−1/cm+1

∑m
j=1A

∗
jαm+1,j

)
∈ Dom r

Return (αm)M+1
m=1 , (vm)M+1

m=1

coincides in this case with a lazy variant of online Mirror Descent. However, we stress that Eq. (50) is
satisfied also by other more aggressive dual steps, including for example the one generating the primal
Follow-The-Regularized-Leader updating scheme. We refer to [36, 35, 37, 38] for more details about
this.

We finally conclude by observing that the framework above is a slightly different version of the stan-
dard primal-dual Online Learning setting described in the papers mentioned above. The differences in
our presentation are the introduction of the linear operators (Am)Mm=1 inside the functions (gm)Mm=1
and the possibility to deal with an approximation of the subdifferential ∂gm(Amvm). These two
modifications will allow us to adapt the theory above to the Meta-Learning setting described in the
main body.

C.1 Main inequality on the dual gap

In the next proposition we study the behavior of the gap between two consecutive iterations on the
dual objective for Alg. 4 (or Alg. 1). This statement will be the main tool used in App. C.2 in order to
prove Thm. 1 in Sec. 3.

Proposition 33 (Dual Gap, see [33, Lemma 1]). Let (αm)M+1
m=1 and (vm)M+1

m=1 be the iterates returned
by Alg. 4 (or Alg. 1). Then,

∆1 = D2(α2)−D1(α1) ≤ −g1(A1v1) +
1

2σrc1

∥∥A∗1α′1∥∥2

∗ + ε1. (51)

Furthermore, for any m ∈ {2, . . . ,M}, we have

∆m = Dm+1(αm+1)−Dm(αm)

≤− gm(Amvm) +
1

2σrcm

∥∥A∗mα′m∥∥2

∗ + εm

+ cmr
∗
(
− 1

cm
A∗m−1αm

)
− cm−1r

∗
(
− 1

cm−1
A∗m−1αm

)
.

(52)

Proof. We first prove Eq. (51). Thanks to the updating rule in Eq. (50), the closed form of the dual
objective in Eq. (47) and the definition D1 ≡ 0, we can write

∆1 = D2(α2)−D1(α1) = D2(α2) ≤ D2(α′1) = g∗1(α′1) + c1r
∗
(
− 1

c1
A∗1α

′
1

)
, (53)

where α′1 ∈ ∂ε1g1(A1v1) is the approximated subgradient used by Alg. 4 (or Alg. 1). But, thanks to
Lemma 30 in App. B, the σr-strong convexity of r w.r.t. ‖ · ‖ is equivalent to the (1/σr)-Lipschitz
smoothness of r∗ w.r.t. ‖ · ‖∗, hence, applying Lemma 27 in App. B, exploiting the definition of v1 in
Alg. 4 (or Alg. 1) and the assumption r∗(0) = infv∈V r(v) = 0, we have

r∗
(
− 1

c1
A∗1α

′
1

)
≤ r∗(0)− 1

c1

〈
∇r∗(0), A∗1α

′
1

〉
+

1

2σrc21

∥∥A∗1α′1∥∥2

∗

= − 1

c1
〈v1, A

∗
1α
∗
1〉+

1

2σrc21

∥∥A∗1α′1∥∥2

∗.

(54)
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Substituting in Eq. (53), we get the statement

∆1 ≤ g∗1(α′1) + c1r
∗
(
− 1

c1
A∗1α

′
1

)
≤ g∗1(α′1)− 〈v1, A

∗
1α
∗
1〉+

1

2σrc1

∥∥A∗1α′1∥∥2

∗

≤ −g1(A1v1) + ε1 +
1

2σrc1

∥∥A∗1α′1∥∥2

∗,

(55)

where, in the last inequality, we have exploited the fact that α′1 ∈ ∂ε1g1(A1v1) and Lemma 23 in
App. B. We now prove the statement for m ∈ {2, . . .M}. By Eq. (50), the closed form of the dual
objective in Eq. (47) and the rewriting

A∗mαm+1 = A∗m−1αm +A∗mα
′
m, (56)

with α′m ∈ ∂εmgm(Amvm) the approximated subgradient used by Alg. 4 (or Alg. 1), we have

∆m = Dm+1(αm+1)−Dm(αm) ≤ Dm+1(αm , α′m)−Dm(αm)

= g∗m(α′m) + cmr
∗
(
− 1

cm
A∗m−1αm−

1

cm
A∗mα

′
m

)
− cm−1r

∗
(
− 1

cm−1
A∗m−1αm

)
.

(57)

Again, thanks to Lemma 30 in App. B, the σr-strong convexity of r w.r.t. ‖ · ‖ is equivalent to the
(1/σr)-Lipschitz smoothness of r∗ w.r.t. ‖ · ‖∗, hence, applying Lemma 27 in App. B and exploiting
the definition of vm in Alg. 4 (or Alg. 1), we have

r∗
(
− 1

cm
A∗m−1αm −

1

cm
A∗mα

′
m

)
≤ r∗

(
− 1

cm
A∗m−1αm

)
− 1

cm

〈
∇r∗

(
− 1

cm
A∗m−1αm

)
, A∗mα

′
m

〉
+

1

2σrc2m

∥∥A∗mα′m∥∥2

∗

= r∗
(
− 1

cm
A∗m−1αm

)
− 1

cm
〈vm, A∗mα′m〉+

1

2σrc2m

∥∥A∗mα′m∥∥2

∗.

Substituting into Eq. (57), we can write the following

∆m ≤ g∗m(α′m) + cmr
∗
(
− 1

cm
A∗m−1αm −

1

cm
A∗mα

′
m

)
− cm−1r

∗
(
− 1

cm−1
A∗m−1αm

)
≤ g∗m(α′m)− 〈vm, A∗mα′m〉+

1

2σrcm

∥∥A∗mα′m∥∥2

∗

+ cmr
∗
(
− 1

cm
A∗m−1αm

)
− cm−1r

∗
(
− 1

cm−1
A∗m−1αm

)
≤ −gm(Amvm) + εm +

1

2σrcm

∥∥A∗mα′m∥∥2

∗

+ cmr
∗
(
− 1

cm
A∗m−1αm

)
− cm−1r

∗
(
− 1

cm−1
A∗m−1αm

)
,

where, in the last inequality, we have exploited the fact that α′m ∈ ∂εmgm(Amvm) and Lemma 23 in
App. B. The last inequality above coincides with the desired statement.

C.2 Proof of Thm. 1

In this section, starting from the result described above in Prop. 33, we present the proof of Thm. 1
reported in the main body. More precisely, we provide the proof of a more general statement with
a generic strong convexity parameter σr > 0 for the function r. For convenience of the reader, we
restate Thm. 1 here. The first point of the statement below is an adaptation of [33, Lemma 1], while,
for the second point, we refer to [36, Lemma 5].
Theorem 1 (Dual optimality gap for Alg. 1). Let (vm)Mm=1 be the primal iterates returned by Alg. 1
when applied to the generic problem in Eq. (4) and let ∆Dual = DM+1(αM+1) − D̂M+1 be the
corresponding (non-negative) dual optimality gap at the last dual iterate αM+1 of the algorithm.

1. If, for any m ∈ {1, . . . ,M}, cm+1 ≥ cm, then,

∆Dual ≤ −
M∑
m=1

gm(Amvm) + P̂M+1 +
1

2

M∑
m=1

1

cm

∥∥A∗mα′m∥∥2

∗ +

M∑
m=1

εm.
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2. If, for any m ∈ {1, . . . ,M}, cm =
∑m
j=1 λj for some λj > 0, then,

∆Dual ≤ −
M∑
m=1

{
gm(Amvm) + λmr(vm)

}
+ P̂M+1 +

1

2

M∑
m=1

1

cm

∥∥A∗mα′m∥∥2

∗ +

M∑
m=1

εm.

C.3 Proof of Thm. 1 point 1.

In this subsection we prove the first point of Thm. 1, namely, the bound linking the optimality reached
by the last dual iteration of Alg. 4 (or Alg. 1) to the cumulative error of the corresponding primal
iterates.

Proof of Thm. 1 point 1. We first show that, for any m ∈ {1, . . . ,M},

∆m ≤ −gm(Amvm) +
1

2σrcm

∥∥A∗mα′m∥∥2

∗ + εm. (58)

As described in Prop. 33, the statement above in Eq. (58) holds for the case m = 1. For m ∈
{2, . . . ,M}, we observe the following. Thanks to the choice of the increasing parameters cm+1 ≥ cm
and the non-negativity of r, according to Lemma 22 in App. B, we have

cmr
∗
(
− 1

cm
A∗m−1αm

)
− cm−1r

∗
(
− 1

cm−1
A∗m−1αm

)
= (cmr)

∗(−A∗m−1αm)− (cm−1r)
∗(−A∗m−1αm) ≤ 0.

(59)

Substituting this last inequality in Prop. 33, we get the statement in Eq. (58) for m ∈ {2, . . . ,M}.
Now, we observe that, thanks to the definition D1 ≡ 0, we can write

DM+1(αM+1) =

M∑
m=1

∆m +D1(α1) =

M∑
m=1

∆m. (60)

Thus, summing Eq. (58) over m ∈ {1, . . . ,M}, we obtain that

DM+1(αM+1) ≤ −
M∑
m=1

gm(Amvm) +
1

2σr

M∑
m=1

1

cm

∥∥A∗mα′m∥∥2

∗ +

M∑
m=1

εm. (61)

The desired statement now follows by summing to this last inequality the following relation

−D̂M+1 ≤ P̂M+1, (62)
coinciding with the non-negativity of the duality gap in Eq. (37).

C.4 Proof of Thm. 1 point 2.

In this subsection we prove the second point of Thm. 1, namely, the bound linking the optimality
reached by the last dual iteration of Alg. 4 (or Alg. 1) to the regularized cumulative error of the
corresponding primal iterates.

Proof of Thm. 1 point 2. We first show that, for any m ∈ {1, . . . ,M},

∆m ≤ −
(
gm(Amvm) + λmr(vm)

)
+

1

2σrcm

∥∥A∗mα′m∥∥2

∗ + εm. (63)

Thanks to the definition v1 = ∇r∗(0) in Alg. 4 (or Alg. 1), Lemma 30 in App. B and the assumption
infv∈V r(v) = 0, we can write r(v1) = r(∇r∗(0)) = infv∈V r(v) = 0. As a consequence, by
Prop. 33, the above statement in Eq. (63) holds for the case m = 1. For any m ∈ {2, . . . ,M},
introducing the notation λ1:m =

∑m
j=1 λj , we can write

cmr
∗
(
− 1

cm
A∗m−1αm

)
− cm−1r

∗
(
− 1

cm−1
A∗m−1αm

)
≤ (cm−1 − cm) r

(
∇r∗

(
− 1

cm
A∗m−1αm

))
= (λ1:m−1 − λ1:m) r

(
∇r∗

(
− 1

λ1:m
A∗m−1αm

))
= (λ1:m−1 − λ1:m) r(vm) = −λmr(vm),

(64)
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where, in the inequality we have applied Lemma 31 in App. B to c1  cm−1, c2  cm, f  r,
α −A∗m−1αm, in the first equality we have introduced the definition of the parameter cm = λ1:m

and in the second equality we have exploited the definition of vm in Alg. 4 (or Alg. 1). Substituting
this last inequality in Prop. 33, we get the statement in Eq. (63) for m ∈ {2, . . . ,M}. Now, we
observe again that, thanks to the definition D1 ≡ 0, we have

DM+1(αM+1) =

M∑
m=1

∆m +D1(α1) =

M∑
m=1

∆m. (65)

Thus, summing Eq. (63) over m ∈ {1, . . . ,M}, we obtain

DM+1(αM+1) ≤ −
( M∑
m=1

gm(Amvm) + λmr(vm)
)

+
1

2σr

M∑
m=1

1

λ1:m

∥∥A∗mα′m∥∥2

∗ +

M∑
m=1

εm.

Also in this case, the desired statement follows by summing to this last inequality the following
relation

−D̂M+1 ≤ P̂M+1, (66)
coinciding the non-negativity of the duality gap in Eq. (37).

D Computation of the approximated meta-subgardients, proof of Prop. 3

In this section we report the proof of Prop. 3, describing how to compute an approximate subgradient
for our meta-objectives. In order to do this, we need the following technical lemma.
Lemma 34 (Strong duality for the within-task problem). Let Asm. 1 hold. For any dataset Z and any
meta-parameter θ ∈ Θ, consider the non-normalized primal within-task problem in Eq. (2). Then,
the corresponding dual problem with objective in Eq. (8) admits a solution

ŝθ ∈ argmin
s∈Rn

Dn+1(s, θ). (67)

Moreover, the following statements hold.

1. Strong duality holds, namely, we have
n LZ(θ) = − min

s∈Rn
Dn+1(s, θ). (68)

2. The KKT conditions read as follows

ŵθ = ∇f(·, θ)∗
(
− 1

λn

n∑
i=1

xiŝθ,i

)
ŝθ ∈ ∂

( n∑
i=1

`i

)(
〈x1, ŵθ〉, . . . , 〈xn, ŵθ〉

)
, (69)

where, we recall that ŵθ is the minimizer of the primal problem in Eq. (2).

Proof. We rely on the standard result reported in Prop. 32 in App. B.1 according to which, the
desired statements hold for the couples of within-task primal-dual problems above if, for any θ ∈ Θ,
1) the primal problem admits a solution and 2) there exist a point in Domf(·, θ) where the function∑n

i=1 `i(〈xi, ·〉) is continuous. Regarding the point 1), as already observed in the main body, the
existence of the primal solution ŵθ is ensured by Asm. 1. Regarding the point 2), we observe that,
thanks to Asm. 1, the function

∑n
i=1 `i(〈xi, ·〉) is real-valued. As a consequence, since a convex

real-valued function is continuous over the entire space (see Lemma 16 in App. B), also the continuity
requirement above is satisfied. Hence, the desired statement directly derives from specializing
Prop. 32 in App. B to our context, observing that the strong convexity of f(·, θ) is equivalent to the
Lipschitz-smoothness of f(·, θ)∗ (see Lemma 30 in App. B).

We now are ready to prove Prop. 3.
Proposition 3 (Computation of an ε-subgradient of LZ ). Let Asm. 1 hold and let sθ,n+1 be the output
of Alg. 2 with θ ∈ Θ over the dataset Z. Let ∇θ ∈ ∂{−Dn+1(sθ,n+1, ·)}(θ), where

Dn+1(s, θ) =

n∑
i=1

`∗i (si) + λnf∗(·, θ)
(
− 1

λn

n∑
i=1

xisi

)
s ∈ Rn (8)

is the dual of the non-normalized Eq. (2). Then, ∇′θ = ∇θ/n ∈ ∂εθ/nLZ(θ), with εθ as in Prop. 2.
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Proof. We start from recalling that, for any θ ∈ Θ, the function Dn+1(·, θ) reported in Eq. (8) is the
objective of the dual problem associated to the non-normalized within-task problem in Eq. (2). Since
in our assumptions, strong duality holds for this couple of problems (see Lemma 34 above), we can
rewrite

LZ(θ) = max
s∈Rn

D̃n+1(s, θ) D̃n+1(s, θ) = − 1

n
Dn+1(s, θ). (70)

Thanks to Prop. 2, we know that the dual vector sθ,n+1 returned by Alg. 2 is an εθ-minimizer of the
dual objectiveDn+1(·, θ), where εθ is given in Prop. 2. Consequently, sθ,n+1 is an (εθ/n)-maximizer
of the function D̃n+1(·, θ) defined above. We now observe that, for any θ′ ∈ Θ, we have

LZ(θ′) = max
s∈Rn

D̃n+1(s, θ′) ≥ D̃n+1(sθ,n+1, θ
′)

≥ D̃n+1(sθ,n+1, θ) +
〈∇θ
n
, θ′ − θ

〉
≥ LZ(θ)− εθ

n
+
〈∇θ
n
, θ′ − θ

〉
,

where, in the second inequality we have exploited the assumption ∇θ ∈ ∂
{
−Dn+1(sθ,n+1, ·)

}
(θ),

implying ∇θ/n ∈ ∂D̃n+1(sθ,n+1, ·)(θ), and in the last inequality we have used the fact that sθ,n+1

is an (εθ/n)-maximizer of the function D̃n+1(·, θ) as explained above and strong duality again. By
definition of ε-subgradients, the above inequality proves the desired statement.

E Proofs of the statements in the statistical setting

In this section we report the proof of the transfer risk bound in Thm. 5 in Sec. 5. In order to do this,
we require the following intermediate result.

Proposition 35 (Online-to-batch conversion). Under the same assumptions of Thm. 4, in expectation
w.r.t. the sampling of the datasets (Zt)

T
t=1, it holds that

E Ereg
stat(w̄θ̄) ≤ E

1

nT
Ereg

meta

(
(Zt)

T
t=1

)
+ E Eµ∼ρ EZ∼µn

1

2λn

n∑
i=1

1

i

∥∥xis′θ̄,i∥∥2

θ̄,∗.

Proof. Throughout this proof, for any θ ∈ Θ, we will need to make explicit the dependency w.r.t.
the dataset in the iterations (wθ,i)

n
i=1 generated by Alg. 2, in their average w̄θ and in the regularized

empirical risk minimizer

ŵθ = argmin
w∈Rd

Rθ,Z(w) Rθ,Z(w) = RZ(w) + λf(w, θ). (71)

Moreover, for any θ ∈ Θ and any µ ∼ ρ, by arguments similar to the ones made for the existence
of ŵθ, exploiting Asm. 1, we manage to ensure the existence and the uniqueness of the regularized
(true) risk minimizer

wθ,µ = argmin
w∈Rd

Rθ,µ(w) Rθ,µ(w) = Rµ(w) + λf(w, θ). (72)

In the sequel, we will also use also the short-hand notation

C = E Eµ∼ρ EZ∼µn
1

2λn

n∑
i=1

1

i

∥∥xis′θ̄,i∥∥2

θ̄,∗. (73)

The desired statement can be written more explicitly as follows

E Eµ∼ρ EZ∼µn Rθ̄,µ(w̄θ̄(Z)) ≤ E
1

T

T∑
t=1

1

n

n∑
i=1

{
`t,i(〈xt,i, wθt,i(Zt)〉) +λf(wθt,i(Zt), θt)

}
+C.

(74)
In the following, we will explicitly write the expectation E in the statement above as

Eµ1,...,µT∼ρT EZ1∼µn1 ,...,ZT∼µnT . (75)
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We now prove Eq. (74). We start from observing that, for any dataset Z ∼ µn and for any θ ∈ Θ not
depending on Z, recalling the subgradients (s′θ,i)

n
i=1, s′θ,i ∈ ∂`i(〈xi, wθ,i(Z)〉), used by Alg. 2 over

Z, we can write

EZ∼µn
[
Rθ,µ(w̄θ(Z))

]
≤ EZ∼µn

1

n

n∑
i=1

Rθ,µ(wθ,i(Z))

= EZ∼µn
1

n

n∑
i=1

{
`i(〈xi, wθ,i(Z)〉) + λf(wθ,i(Z), θ)

}
≤ EZ∼µn

[
LZ(θ) +

1

2λn

n∑
i=1

1

i

∥∥xis′θ,i∥∥2

θ,∗

]
= EZ∼µn LZ(θ) + C.

(76)

In the first inequality above we have applied Jensen’s inequality (see Lemma 15 in App. B) to the
convex functionRθ,µ, the first equality holds by standard online-to-batch arguments, more precisely,
since wθ,i(Z) depends only on the points (zj)

i−1
j=1, thanks to the fact Z ∼ µn, we have

EZ∼µn Rθ,µ(wθ,i(Z)) = EZ∼µn
[
`i(〈xi, wθ,i(Z)〉) + λf(wθ,i(Z), θ)

]
, (77)

and, finally, the last inequality derives from exploiting the non-negativity of ∆Dual and moving the
terms in Eq. (7) in Prop. 2. Hence, rewriting LZ(θ) = Rθ,Z(ŵθ(Z)), we can write the following

Eµ1,...,µT∼ρT EZ1∼µn1 ,...,ZT∼µnT Eµ∼ρ EZ∼µn Rθ̄,µ(w̄θ̄(Z))

≤ Eµ1,...,µT∼ρT EZ1∼µn1 ,...,ZT∼µnT Eµ∼ρ EZ∼µn Rθ̄,Z(ŵθ̄(Z)) + C

≤ Eµ1,...,µT∼ρT EZ1∼µn1 ,...,ZT∼µnT
1

T

T∑
t=1

Eµ∼ρ EZ∼µn Rθt,Z(ŵθt(Z))︸ ︷︷ ︸+C,

(78)

where, in the first inequality we have applied Eq. (76) with θ = θ̄ and in the second inequality we
have applied Jensen’s inequality (see Lemma 15 in App. B) to the convex function Eµ∼ρ EZ∼µn LZ .
We now observe that, by definition of ŵθt(Z) and wθt,µ, we can write the following

EZ∼µn Rθt,Z(ŵθt(Z))︸ ︷︷ ︸ ≤ EZ∼µn Rθt,Z(wθt,µ) = EZ∼µn Rθt,µ(wθt,µ)

≤ EZ∼µn Rθt,µ(w̄θt(Z))︸ ︷︷ ︸ . (79)

Substituting in Eq. (78), we can write the following

Eµ1,...,µT∼ρT EZ1∼µn1 ,...,ZT∼µnT Eµ∼ρ EZ∼µn Rθ̄,µ(w̄θ̄(Z))

≤ Eµ1,...,µT∼ρT EZ1∼µn1 ,...,ZT∼µnT
1

T

T∑
t=1

Eµ∼ρ EZ∼µn Rθt,Z(ŵθt(Z))︸ ︷︷ ︸+C

≤ Eµ1,...,µT∼ρT EZ1∼µn1 ,...,ZT∼µnT
1

T

T∑
t=1

Eµ∼ρ EZ∼µn Rθt,µ(w̄θt(Z))︸ ︷︷ ︸+C

=
1

T

T∑
t=1

Eµ1,...,µt−1∼ρt−1 EZ1∼µn1 ,...,Zt−1∼µnt−1
Eµt∼ρ EZt∼µnt Rθt,µt(w̄θt(Zt)) + C

≤ 1

T

T∑
t=1

Eµ1,...,µt−1∼ρt−1 EZ1∼µn1 ,...,Zt−1∼µnt−1
Eµt∼ρ EZt∼µnt

1

n

n∑
i=1

Rθt,µt(wθt,i(Zt)) + C

= Eµ1,...,µT∼ρT EZ1∼µn1 ,...,ZT∼µnT
1

T

T∑
t=1

1

n

n∑
i=1

{
`t,i(〈xt,i, wθt,i(Zt)〉) + λf(wθt,i(Zt), θt)

}
+ C
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where, in the first equality we have exploited the fact that θt depends only on (Zj)
t−1
j=1 and the i.i.d.

sampling of the datasets, in the third inequality we have applied Jensen’s inequality (see Lemma 15 in
App. B) to the convex functionRθt,µt and, finally, in the second equality we have exploited the fact
that wθt,i(Zt) depends only on the points (zt,j)

i−1
j=1 and, consequently, thanks to the fact Zt ∼ µnt , as

already observed in Eq. (77),

EZt∼µnt Rθt,µt(wθt,i(Zt)) = EZt∼µnt
[
`t,i(〈xt,i, wθt,i(Zt)〉) + λf(wθt,i(Zt), θt)

]
. (80)

This coincides with the desired statement in Eq. (74).

The above result in Prop. 35 is a different version of [1, Thm. 6.1] and [3, Thm. 3.3], where the
authors give statistical guarantees for the meta-parameter defined by sampling uniformly from the
whole pool of the meta-parameters (θt)

T
t=1 returned by their method. Their result is consequently in

expectation w.r.t. the data and w.r.t. this uniform sampling. On the contrary, in our case, leveraging
on the convexity of our meta-objectives and the fact that we derived a regularized cumulative error
bound for the inner algorithm (see Prop. 2), we have been able to obtain statistical guarantees for the
average of the meta-parameters, without adding randomness and without the need of memorizing the
previous meta-parameters. We now are ready to prove Thm. 5.
Theorem 5 (Transfer risk bound). Let the same assumptions in Thm. 4 hold in the i.i.d. statistical
setting. Then, introducing the regularized transfer risk of the average w̄θ̄ of the iterates resulting
from the combination of Alg. 2 and Alg. 3,

Ereg
stat(w̄θ̄) = Eµ∼ρ EZ∼µn

[
Rµ(w̄θ̄(Z)) + λf(w̄θ̄(Z), θ̄)

]
,

for any θ ∈ Θ such that Eµ∼ρf(wµ, θ) < +∞, the following upper bound holds in expectation w.r.t.
the sampling of the datasets (Zt)

T
t=1

E Ereg
stat(w̄θ̄) ≤ Eρ + λ Eµ∼ρf(wµ, θ) +

1

2λnT
E

T∑
t=1

n∑
i=1

1

i

∥∥xt,is′θt,i∥∥2

θt,∗

+
ηF (θ)

T
+

1

2ηT
E

T∑
t=1

∣∣∣∣∣∣∇′θt∣∣∣∣∣∣2∗ + E Eµ∼ρ EZ∼µn
1

2λn

n∑
i=1

1

i

∥∥xis′θ̄,i∥∥2

θ̄,∗.

Proof. The desired statement derives from combining Prop. 35 with the regularized cumulative error
bound in Thm. 4 with ŵt = wµt for any t ∈ {1, . . . , T} and observing that, thanks to the definition
of the vectors ŵt and the i.i.d. sampling of the datasets, we can write

Eµ1,...,µT∼ρT EZ1∼µn1 ,...,ZT∼µnT
1

T

T∑
t=1

f(ŵt, θ) = Eµ1,...,µT∼ρT
1

T

T∑
t=1

f(wµt , θ)

= Eµ∼ρ f(wµ, θ)

(81)

Eµ1,...,µT∼ρT EZ1∼µn1 ,...,ZT∼µnT
1

T

T∑
t=1

RZt(ŵt) =
1

T

T∑
t=1

Eµt∼ρ EZt∼µnt RZt(wµt)

= Eµ∼ρ EZ∼µn RZ(wµ)

= Eµ∼ρ Rµ(wµ)

(82)

where, in the last equality we have used the fact that Z ∼ µ and the independence of wµ on the data
Z.

F Fixed parameter in hindsight

In this section we report the results regarding the application of Alg. 2 with an appropriate meta-
parameter fixed in hindsight for any task. In App. F.1 we will focus on the non-statistical setting,
while in App. F.2 we will consider the statistical setting. These results will be used as benchmark to
evaluate the quality of the meta-parameters estimated by our OWO Meta-Learning procedure.
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F.1 Non-statistical setting

In the next result we give a (regularized) cumulative error bound for the iterates generated by the
application of Alg. 2 with an appropriate meta-parameter fixed in hindsight for any tasks. Such
a bound will be compared to the corresponding bound we have obtained in Thm. 4 for our Meta-
Learning procedure.
Theorem 36 (Cumulative error bound with fixed meta-parameter in hindsight). Let Asm. 1 hold.
Consider a sequence of vectors (ŵt)

T
t=1 in Rd and any θ ∈ Θ such that f(ŵt, θ) < +∞ for any

t ∈ {1, . . . , T}. Let (wt,i)
n
i=1 be the iterates generated by Alg. 2 with a meta-parameter θ as above

over the dataset Zt, by means of the subgradients (s′t,i)
n
i=1, with s′t,i ∈ ∂`t,i(〈xt,i, wt,i〉). Then, the

following upper bound holds
T∑
t=1

Ereg
inner(Zt, θ) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt)+
λ

T

T∑
t=1

f(ŵt, θ)+
1

2λnT

T∑
t=1

n∑
i=1

1

i

∥∥xt,is′t,i∥∥2

θ,∗

)
. (83)

Proof. We start from observing that, according to Prop. 2, since ∆Dual ≥ 0, by definition of Lt as
minimum, we can write

Ereg
inner(Zt, θ) ≤ n

(
RZt(ŵt) + λf

(
ŵt, θ

)
+

1

2λn

n∑
i=1

1

i

∥∥xt,is′t,i∥∥2

θ,∗

)
. (84)

The statement directly derives from summing over the datasets the above bound.

We observe that the bound for our method in Thm. 4 is composed by two main parts: one part (the
first row) is similar to the benchmark bound in Eq. (83), the other part (the second row) can be
considered as the additional effort due to the estimation of the meta-parameter from the data. As
we will see in the following, for the settings in Ex. 1 and Ex. 2, these additional terms can be made
vanishing in the number of tasks T , by choosing in an appropriate way the hyper-parameter η.

F.2 Statistical setting

In the next result we give a (regularized) transfer risk bound for the average of the iterates generated
by the application of Alg. 2 with an appropriate meta-parameter fixed in hindsight for any tasks.
Such a bound will be compared to the corresponding bound we have obtained in Thm. 5 for our
Meta-Learning procedure.
Theorem 37 (Transfer risk bound with fixed meta-parameter in hindsight). Let Asm. 1 hold. Consider
in the i.i.d. statistical setting any θ ∈ Θ such that Eµ∼ρ f(wµ, θ) < +∞. Let w̄θ be the average of
the iterates (wθ,i)

n
i=1 generated by Alg. 2 with a meta-parameter θ as above over the dataset Z, by

means of the subgradients (s′θ,i)
n
i=1, with s′θ,i ∈ ∂`t,i(〈xt,i, wθ,i〉). Then, the following upper bound

holds

Ereg
stat(w̄θ) ≤ Eρ + λ Eµ∼ρ f(wµ, θ) +

1

2λn
Eµ∼ρ EZ∼µn

n∑
i=1

1

i

∥∥xis′θ,i∥∥2

θ,∗. (85)

Proof. We start from observing that, according to Prop. 2, since ∆Dual ≥ 0, by definition of LZ as
minimum, we can write

1

n
Ereg

inner(Z, θ) =
1

n

n∑
i=1

{
`i
(
〈xi, wθ,i〉

)
+ λf

(
wθ,i, θ

)}
≤ RZ(wµ) + λf

(
wµ, θ

)
+

1

2λn

n∑
i=1

1

i

∥∥xis′θ,i∥∥2

θ,∗.

(86)

Taking the expectation of the above bound w.r.t. µ ∼ ρ and Z ∼ µn, recalling that, as already
observed in Eq. (76),

EZ∼µn
[
Rθ,µ(w̄θ)

]
≤ EZ∼µn

1

n

n∑
i=1

{
`i(〈xi, wθ,i〉) + λf(wθ,i, θ)

}
(87)

and recalling that EZ∼µn RZ(wµ) = Rµ(wµ), we obtain the desired statement.
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Algorithm 5 Within-task algorithm for Ex. 1

Input λ > 0, θ ∈ Rd, Z = (zi)
n
i=1

Initialization sθ,1 = (), wθ,1 = θ

For i = 1 to n
Receive the datapoint zi = (xi, yi)

Compute s′θ,i ∈ ∂`i(〈xi, wθ,i〉) ⊆ R
Define (sθ,i+1)i = s′θ,i, γi = λ(i+ 1)

Define pθ,i = xis
′
θ,i + λ(wθ,i − θ)

Update wθ,i+1 = wθ,i − 1/γi pθ,i

Return (wθ,i)
n+1
i=1 , w̄θ =

1

n

n∑
i=1

wθ,i, sθ,n+1

Algorithm 6 Meta-algorithm for Ex. 1

Input η > 0, (Zt)
T
t=1

Initialization θ1 = 0

For t = 1 to T
Receive incrementally the dataset Zt
Run Alg. 5 with θt over Zt
Compute sθt,n+1

Define∇′θt = X>t sθt,n+1/n

Update θt+1 = θt −∇′θt/η

Return (θt)
T+1
t=1 , θ̄ =

1

T

T∑
t=1

θt

Looking at the bound in Thm. 5 for our method and the benchmark performance in Eq. (85), the
conclusions and the comments we can derive are an adaptation to the statistical setting of the
comments we have given above for the performance of our method in the non-statistical setting.

G Specializing to the bias in Ex. 1

In this chapter we specify our Meta-Learning framework to the setting in Ex. 1. We recall that, in such
a case, the meta-parameter coincides with a bias vector θ ∈ Rd and, as we will see in the following,
the tasks’ similarity translates into the existence of a bias vector closed to the tasks’ target vectors.
We start this chapter by specializing in App. G.1 our general OWO method to Ex. 1, deriving the
corresponding inner and meta-algorithm. The method is then analyzed in App. G.2 and App. G.3,
where we consider the non-statistical setting and the statistical setting, respectively. Finally, in
App. G.4, we discuss the results.

G.1 Deriving the method for Ex. 1

We start from specializing the generic inner algorithm in Alg. 2 and the generic meta-algorithm in
Alg. 3 to the setting outlined in Ex. 1. The algorithms we obtain are reported in Alg. 5 and Alg. 6,
respectively, where, Xt ∈ Rn×d denotes the input vectors’ matrix of the task t, having as i–th row
the input vector xt,i. The deduction is reported in Lemma 38 and Lemma 39 below, respectively.

We start from the deduction of the inner algorithm in Alg. 5.
Lemma 38 (Derivation of the inner Alg. 5, bias). For any i ∈ {0, . . . , n}, let wθ,i+1 be the update
of the (primal) variable deriving from applying Alg. 2 to the dataset Z = (xi, yi)

n
i=1 in the setting

outlined in Ex. 1 with bias θ ∈ Rd. Let s′θ,i ∈ ∂`i(〈xi, wθ,i〉) be the subgradient used by such
an algorithm to compute wθ,i+1. Then, wθ,1 = θ and, for any i ∈ {1, . . . , n}, introducing the
subgradient of the regularized loss

pθ,i = xis
′
θ,i + λ(wθ,i − θ) ∈ ∂

(
`i(〈xi, ·〉) +

λ

2
‖ · −θ‖22

)
(wθ,i), (88)

we have
wθ,i+1 = wθ,i −

1

λ(i+ 1)
pθ,i. (89)

Proof. We start from observing that, according to the choices made in Ex. 1, for any θ, w, u ∈ Rd,
we have

f(w, θ) =
1

2
‖w − θ‖22 f(·, θ)∗(u) =

1

2
‖u‖22 + 〈u, θ〉 ∇f(·, θ)∗(u) = u+ θ.

Consequently, according to the definition of wθ,1 in Alg. 2, we have

wθ,1 = ∇f(·, θ)∗(0) = θ. (90)
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We now show the desired closed form of wθ,i+1 for any i ∈ {1, . . . , n}. In such a case, denoting by
X1:i ∈ Ri×d the matrix containing the first i input vectors as rows, by definition of wθ,i+1 in Alg. 2,
we can write

wθ,i+1 = ∇f(·, θ)∗
(
− 1

λ(i+ 1)
X>1:isθ,i+1

)
= − 1

λ(i+ 1)
X>1:isθ,i+1 + θ. (91)

For i = 1 the statement holds, as a matter of fact, since wθ,1 = θ, exploiting Eq. (91) and introducing
the subgradient pθ,1 = x1s

′
θ,1 + λ(wθ,1 − θ) = x1s

′
θ,1, we can write

wθ,2 = − 1

2λ
x1s
′
θ,1 + θ = wθ,1 −

1

2λ
pθ,1. (92)

Now, we show that the statement holds also for i ∈ {2, . . . , n}. Since X>1:isθ,i+1 = X>1:i−1sθ,i +
xis
′
θ,i, we can write the following

wθ,i+1 = − 1

λ(i+ 1)
X>1:isθ,i+1 + θ = − 1

λ(i+ 1)

(
X>1:i−1sθ,i + xis

′
θ,i

)
+ θ

=
λi

λ(i+ 1)

(
− 1

λi
X>1:i−1sθ,i

)
−

xis
′
θ,i

λ(i+ 1)
+ θ

=
λ(i+ 1)(wθ,i − θ)− xis′θ,i − λ(wθ,i − θ)

λ(i+ 1)
+ θ

=
λ(i+ 1)wθ,i − pθ,i

λ(i+ 1)
= wθ,i −

1

λ(i+ 1)
pθ,i,

(93)

where, in the first and the fourth equality, we have exploited Eq. (91) and in the fifth equality we have
exploited the form of the subgradient pθ,i = xis

′
θ,i + λ(wθ,i − θ).

We now proceed with the deduction of the meta-algorithm in Alg. 6.
Lemma 39 (Derivation of the meta-algorithm in Alg. 6, bias). For any t ∈ {0, . . . , T}, let θt+1 be
the update of the variable deriving from applying Alg. 3 to the data (Zt)

T
t=1 in the setting outlined in

Ex. 1. Let∇′θt be the approximated meta-subgradient computed as described in Prop. 3 and used by
the algorithm to compute θt+1. Then, θ1 = 0 ∈ Rd and, for any t ∈ {1, . . . , T}, we have

θt+1 = θt −
1

η
∇′θt . (94)

Moreover, for any t ∈ {1, . . . , T}, we have

∇′θt =
1

n
X>t sθt,n+1, (95)

where sθt,n+1 ∈ Rn is the output of Alg. 6 with bias vector θt over the dataset Zt and, under Asm. 3,∥∥∇′θt∥∥2

2
≤ L2‖Ct‖∞. (96)

Proof. We start from observing that, according to the choices made in Ex. 1, for any k, θ, u ∈ Rd,
we have

F (θ) =
1

2
‖θ‖22 F ∗(k) =

1

2
‖k‖22 ∇F ∗(k) = k f(·, θ)∗(u) =

1

2
‖u‖22 + 〈u, θ〉.

Consequently, according to the definition of θ1 in Alg. 3, we have

θ1 = ∇F ∗(0) = 0. (97)

We now show the desired closed form of θt+1, for any t ∈ {1, . . . , T}. In such a case, by the
definition of θt+1 in Alg. 3, we can write

θt+1 = ∇F ∗
(
−1

η

t∑
j=1

∇′θj
)

= −1

η

t∑
j=1

∇′θj . (98)
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For t = 1 the statement holds, as a matter of fact, since θ1 = 0, exploiting Eq. (98), we can write

θ2 = −1

η
∇′θ1 = θ1 −

1

η
∇′θ1 . (99)

For t ∈ {2, . . . , T}, we observe that, according to Eq. (98), we have

θt+1 = −1

η

t∑
j=1

∇′θj = −1

η

t−1∑
j=1

∇′θj −
1

η
∇′θt = θt −

1

η
∇′θt . (100)

We now specify the closed form of the approximated meta-subgradients, computed as described in
Prop. 3 for Ex. 1. We start from observing that adding to the notation in Prop. 3 the further task index
t, by strong duality (see Lemma 34), we can rewrite

Lt(θ) = max
s∈Rn

D̃t,n+1(s, θ) D̃t,n+1(s, θ) = − 1

n
Dt,n+1(s, θ) (101)

where, according to Eq. (8), in the setting outlined in Ex. 1,

−Dt,n+1(s, θ) = −
n∑
i=1

`∗t,i(si)− λnf(·, θ)∗
(
− 1

λn

n∑
i=1

xt,isi

)
= −

n∑
i=1

`∗t,i(si)− λnf(·, θ)∗
(
− 1

λn
X>t s

)
= −

n∑
i=1

`∗t,i(si)−
1

2λn

∥∥Xt
>s
∥∥2

2
+
〈
Xt
>s, θ

〉
.

(102)

Consequently, recalling that the output sθt,n+1 of the inner algorithm coincides with the last iterate
of the corresponding dual inner iteration, according to Prop. 3, we have

∇θt = Xt
>sθt,n+1 (103)

and, consequently,
∇′θt = ∇θt/n ∈ ∂εθt/n Lt(θt), (104)

where εθt is outlined in Prop. 3 and it must be specified to Ex. 1. In order to prove Eq. (96),
we start from observing that sθt,n+1 is the vector in Rn having as component i the subgradient
s′θt,i ∈ ∂`t,i(〈xt,i, wθt,i〉). Hence, under Asm. 3, exploiting Lemma 25 in App. B, any component of
sθt,n+1 is absolutely bounded by L, and, consequently, ‖sθt,n+1‖2 ≤ L

√
n. This allows us to get

the desired bound by applying Holder’s inequality (see Lemma 8 in App. B) to the matrices’ scalar
product as follows∥∥∇′θt∥∥2

2
=

1

n
Tr
( 1

n

n∑
i=1

xt,ix
>
t,isθt,n+1s

>
θt,n+1

)
≤ 1

n

∥∥∥ 1

n

n∑
i=1

xt,ix
>
t,i

∥∥∥
∞
‖sθt,n+1‖22

≤ L2
∥∥∥ 1

n

n∑
i=1

xt,ix
>
t,i

∥∥∥
∞

= L2‖Ct‖∞,

where in the last equality we have introduced the definition of Ct.

We observe that the inner Alg. 5 we have deduced is a slightly different version of the inner algorithm
used in [11] in the statistical setting, where the step size decreases as 1/(λi) instead of 1/(λ(i+ 1)).
Instead, the meta-algorithm in Alg. 6 we have retrieved is exactly the same analyzed in that work.
We refer to the discussion in App. A for more details about that work.

We also observe that for the setting in Ex. 1, our method in Alg. 5 and Alg. 6 scales linearly with the
dimension of the input space. Thus, it will be appropriate also for datasets in more rich observation
spaces, such as [41].

In the next section, we analyze the performance of our OWO Meta-Learning method applied to Ex. 1,
in the non-statistical setting.
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G.2 Analysis of the method in the non-statistical setting for Ex. 1

In the next result we specify Thm. 4 to Ex. 1, that is, we provide a (regularized) cumulative error
bound for the procedure deriving from combining Alg. 5 with Alg. 6.
Corollary 40 (Cumulative error bound, bias). Let Asm. 3 hold and consider the setting in Thm. 4
applied to Ex. 1. Then, introducing the empirical variance of the vectors (ŵt)

T
t=1 w.r.t. a bias vector

θ ∈ Rd

V̂ (θ) =
1

2T

T∑
t=1

‖ŵt − θ‖22, (105)

the following (regularized) cumulative error bound holds for any θ ∈ Rd

Ereg
meta

(
(Zt)

T
t=1) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt)+λV̂ (θ)+
L2Tr(Ĉtot)

2λn
+
η‖θ‖22

2T
+
L2‖Ctot‖∞,1

2η

)
. (106)

Hence, optimizing w.r.t. the hyper-parameters λ and η, for

λ = L

√
Tr(Ĉtot)

2nV̂ (θ)
η =

L
√
T ‖Ctot‖∞,1
‖θ‖2

, (107)

we get

Ereg
meta

(
(Zt)

T
t=1) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt) + L

(√
2V̂ (θ)Tr(Ĉtot)

n
+ ‖θ‖2

√
‖Ctot‖∞,1

T

))
.

Proof. Specializing Thm. 4 to the quantities outlined in Ex. 1, exploiting the bound on the norm of
the approximated meta-subgradients given in Eq. (96) (exploiting Asm. 3) and using the notation in
Eq. (105), for any θ ∈ Rd, we get

Ereg
meta

(
(Zt)

T
t=1

)
≤ nT

(
1

T

T∑
t=1

RZt(ŵt)+λV̂ (θ) +
1

2λnT

T∑
t=1

n∑
i=1

1

i

∥∥xt,is′θt,i∥∥2

2

+
η‖θ‖22

2T
+
L2‖Ctot‖∞,1

2η

)
.

(108)

The statement derives from the above inequality observing that, under Asm. 3, using the definition of
Ĉtot, we can write

1

T

T∑
t=1

n∑
i=1

1

i

∥∥xt,is′θt,i∥∥2

2
≤ L2Tr

( 1

T

T∑
t=1

n∑
i=1

1

i
xt,ix

>
t,i

)
= L2Tr(Ĉtot). (109)

In order to evaluate the quality of the bound above, we specify Thm. 36 to Ex. 1, that is, we provide a
(regularized) cumulative error bound for the procedure deriving from running the within-task Alg. 5
with a bias vector fixed in hindsight for any task.
Corollary 41 (Cumulative error bound with fixed meta-parameter in hindsight, bias). Let Asm. 3 hold
and consider the setting in Thm. 36 applied to Ex. 1. Then, according to the notation in Eq. (105),
the following (regularized) cumulative error bound holds for any θ ∈ Rd

T∑
t=1

Ereg
inner(Zt, θ) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt) + λV̂ (θ) +
L2Tr(Ĉtot)

2λn

)
. (110)

Hence, optimizing w.r.t. the hyper-parameter λ, for

λ = L

√
Tr(Ĉtot)

2nV̂ (θ)
, (111)

we get
T∑
t=1

Ereg
inner(Zt, θ) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt) + L

√
2V̂ (θ)Tr(Ĉtot)

n

)
. (112)
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Proof. Specializing Thm. 36 to the quantities outlined in Ex. 1, using the notation in Eq. (105), for
any θ ∈ Rd, we get

T∑
t=1

Ereg
inner(Zt, θ) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt) + λV̂ (θ) +
1

2λnT

T∑
t=1

n∑
i=1

1

i

∥∥xt,is′t,i∥∥2

2

)
. (113)

The statement derives from the above inequality observing that, under Asm. 3, using the definition of
Ĉtot, we can write

1

T

T∑
t=1

n∑
i=1

1

i

∥∥xt,is′t,i∥∥2

2
≤ L2Tr

( 1

T

T∑
t=1

n∑
i=1

1

i
xt,ix

>
t,i

)
= L2Tr(Ĉtot). (114)

We postpone to App. G.4 a discussion about the results we reported above. In the next section, we
analyze the performance of our OWO Meta-Learning method applied to Ex. 1, in the statistical
setting.

G.3 Analysis of the method in the statistical setting for Ex. 1

In the result below we specify Thm. 5 to Ex. 1, that is, we provide a (regularized) transfer risk bound
for the average w̄θ̄ of the estimators returned by the combination of Alg. 5 with Alg. 6.
Corollary 42 (Transfer risk bound, bias). Let Asm. 3 hold and consider the statistical setting in
Thm. 5 applied to Ex. 1. Then, introducing the exact variance of the vectors wµ w.r.t. a bias vector
θ ∈ Rd

Vρ(θ) =
1

2
Eµ∼ρ ‖wµ − θ‖22, (115)

the following (regularized) transfer risk bound holds for any θ ∈ Rd

E Ereg
stat(w̄θ̄) ≤ Eρ + λVρ(θ) +

(log(n) + 1)L2Tr(Cρ)
λn

+
η‖θ‖22

2T
+
L2E ‖Ctot‖∞,1

2η
. (116)

Hence, optimizing w.r.t. the hyper-parameters λ and η, for

λ = L

√
(log(n) + 1)Tr(Cρ)

nVρ(θ)
η =

L
√
T E ‖Ctot‖∞,1
‖θ‖2

, (117)

we get

E Ereg
stat(w̄θ̄) ≤ Eρ + L

(
2

√
(log(n) + 1)Vρ(θ)Tr(Cρ)

n
+ ‖θ‖2

√
E ‖Ctot‖∞,1

T

)
. (118)

Proof. Specializing Thm. 5 to the quantities outlined in Ex. 1, exploiting the bound on the norm of
the approximated meta-subgradients given in Eq. (96) (exploiting Asm. 3) and using the notation in
Eq. (115), the following bound holds for any θ ∈ Rd

E Ereg
stat(w̄θ̄) ≤ Eρ + λVρ(θ) +

1

2λnT
E

T∑
t=1

n∑
i=1

1

i

∥∥xt,is′θt,i∥∥2

2

+
η‖θ‖22

2T
+
L2E ‖Ctot‖∞,1

2η
+

1

2λn
E Eµ∼ρ EZ∼µn

n∑
i=1

1

i

∥∥xis′θ̄,i∥∥2

2
.

The desired statement derives from the above inequality and from observing that, thanks to Asm. 3
and the i.i.d. sampling of the data, using the inequality

∑n
i=1 1/i ≤ log(n) + 1 and the definition of

Cρ, we have

E
1

T

T∑
t=1

n∑
i=1

1

i

∥∥xt,is′θt,i∥∥2

2
≤ L2E Tr

( 1

T

T∑
t=1

n∑
i=1

1

i
xt,ix

>
t,i

)
≤ L2(log(n) + 1)Tr(Cρ)

E Eµ∼ρ EZ∼µn
n∑
i=1

1

i

∥∥xis′θ̄,i ∥∥2

2
≤ L2Eµ∼ρ EZ∼µn Tr

( n∑
i=1

1

i
xix

>
i

)
≤ L2(log(n) + 1)Tr(Cρ).
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In order to evaluate the quality of the bound above, we specify Thm. 37 to Ex. 1, that is, we provide
a (regularized) transfer risk bound for w̄θ, the average of the iterations returned by running the
within-task Alg. 5 with bias vector θ fixed in hindsight for any task.
Corollary 43 (Transfer risk bound with fixed meta-parameter in hindsight, bias). Let Asm. 3 hold
and consider the statistical setting in Thm. 37 applied to Ex. 1. Then, according to the notation in
Eq. (115), the following (regularized) transfer risk bound holds for any θ ∈ Rd

Ereg
stat(w̄θ̄) ≤ Eρ + λVρ(θ) +

L2(log(n) + 1)Tr(Cρ)
2λn

. (119)

Hence, optimizing w.r.t. the hyper-parameter λ, for

λ = L

√
(log(n) + 1)Tr(Cρ)

2nVρ(θ)
, (120)

we get

Ereg
stat(w̄θ̄) ≤ Eρ + L

√
2(log(n) + 1)Vρ(θ)Tr(Cρ)

n
. (121)

Proof. Specializing Thm. 37 to the quantities outlined in Ex. 1, using the notation in Eq. (115), for
any θ ∈ Rd, we get

Ereg
stat(w̄θ̄) ≤ Eρ + λVρ(θ) +

1

2λn
Eµ∼ρ EZ∼µn

n∑
i=1

1

i

∥∥xis′θ,i∥∥2

2
.

The statement derives from the above inequality observing that, under Asm. 3, exploiting the i.i.d.
sampling of the data and the inequality

∑n
i=1 1/i ≤ log(n) + 1, introducing the definition of Cρ, we

can write

Eµ∼ρ EZ∼µn
n∑
i=1

1

i

∥∥xis′θ,i∥∥2

2
≤ L2Eµ∼ρ EZ∼µn Tr

( n∑
i=1

1

i
xix

>
i

)
≤ L2(log(n) + 1) Tr(Cρ).

Also in this case, the comments to the bounds above are postponed in the following App. G.4.

G.4 Discussion of the results for Ex. 1

We start from discussing the results in Cor. 41 and Cor. 43, where the bias vector used by the inner
algorithm is fixed in hindsight for any task.

G.4.1 Advantage of selecting the right bias

Looking at the bounds in Cor. 41 and Cor. 43, we can state that the advantage in using one bias
vector θ ∈ Rd in comparison to the others is determined by the associated empirical variance V̂ (θ) in
Cor. 41 or by the corresponding exact variance Vρ(θ) in Cor. 43. This inspires us to consider as the
best algorithm in our class (oracle) the algorithm associated to the bias vector minimizing the above
quantities:

θ̂ = argmin
θ∈Rd

V̂ (θ) =
1

T

T∑
t=1

ŵt, (122)

for the non-statistical setting in Cor. 41, and

θρ = argmin
θ∈Rd

Vρ(θ) = Eµ∼ρ wµ, (123)

for the statistical setting in Cor. 43. In the following, we will consider these two reasonable vectors
as benchmark in order to evaluate the quality of the bias returned by our Meta-Learning procedure.

On the other hand, solving the tasks independently (ITL), in this case, corresponds to the unbiased
case, i.e. to the application of the inner Alg. 5 with bias θITL = 0 ∈ Rd for any task. In particular,
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from the above bounds, we can say that there is an advantage in using the optimal bias w.r.t. solving
each task independently, when the tasks are similar in the sense that the variance of the associated
target vectors is much smaller than their second moment, i.e. when

V̂ (θ̂) = min
θ∈Rd

1

2T

T∑
t=1

‖ŵt − θ‖22 =
1

2T

T∑
t=1

‖ŵt − θ̂‖22 �
1

2T

T∑
t=1

‖ŵt‖22 = V̂ (0) (124)

for the non-statistical setting and

Vρ(θρ) = min
θ∈Rd

Eµ∼ρ
1

2
‖wµ − θ‖22 = Eµ∼ρ

1

2
‖wµ − θρ‖22 � Eµ∼ρ

1

2
‖wµ‖22 = Vρ(0) (125)

for the statistical setting.

We now can make the following observations about the bounds we have obtained in Cor. 40 and
Cor. 42 for our Meta-Learning procedures.

G.4.2 Bias resulting from our Meta-Learning method

Looking at the bounds in Cor. 40 and Cor. 42, we can state that our Meta-Learning methods are
effective, because, when the number of training tasks is sufficiently large w.r.t. the number of points
n (hence the term T−1/2 is negligible), with an appropriate tuning of the hyper-parameters λ and
η, the bias vector estimated by our methods can provide comparable guarantees as those for the
corresponding best bias vector in hindsight in Cor. 41 and Cor. 43. As a consequence, when the tasks
are similar as explained above, our methods can provide a significant advantage w.r.t. ITL. These
observations are in line with [11], where we only consider the statistical setting and we present the
same bound in Cor. 42 with slightly worse constants.

H Specializing to the feature map in Ex. 2

In this chapter we specify our Meta-Learning framework to the setting in Ex. 2. We recall that, in
such a case, the meta-parameter coincides with a linear feature map θ ∈ Sd+ and, as we will see
in the following, the tasks’ similarity translates into the existence of a low-rank linear feature map
containing in its range the tasks’ target vectors. We start this chapter by specializing in App. H.1 our
general OWO method to Ex. 2, deriving the corresponding inner and meta-algorithm. The method
is then analyzed in App. H.2 and App. H.3, where we consider the non-statistical setting and the
statistical setting, respectively. Finally in App. H.4, we discuss the results.

H.1 Deriving the method for Ex. 2

We start from specializing the generic inner algorithm in Alg. 2 and the generic meta-algorithm in
Alg. 3 to the setting outlined in Ex. 2. The algorithms we obtain are reported in Alg. 7 and Alg. 8,
respectively, where, projS is the Euclidean projection over the set S and we recall that Xt ∈ Rn×d
denotes the input vectors’ matrix of the task t, having as i–th row the input vector xt,i. The deduction
is reported in Lemma 44 and Lemma 45 below, respectively.

We start from the deduction of the inner-algorithm in Alg. 7.

Lemma 44 (Derivation of the inner Alg. 7, feature map). For any i ∈ {0, . . . , n}, let wθ,i+1 be the
update of the (primal) variable deriving from applying Alg. 2 to the dataset Z = (xi, yi)

n
i=1 in the

setting outlined in Ex. 2 with feature map θ ∈ S. Let s′θ,i ∈ ∂`i(〈xi, wθ,i〉) be the subgradient used
by such an algorithm to compute wθ,i+1. Then, wθ,i+1 ∈ Ran(θ). Moreover, wθ,1 = 0 ∈ Rd and, for
any i ∈ {1, . . . , n}, introducing the subgradient of the regularized loss

pθ,i = xis
′
θ,i + λθ†wθ,i ∈ ∂

(
`i(〈xi, ·〉) +

λ

2
〈·, θ†·〉

)
(wθ,i), (126)

we have

wθ,i+1 = wθ,i −
1

λ(i+ 1)

(
θxis

′
θ,i + λwθ,i

)
= wθ,i −

1

λ(i+ 1)
θpθ,i. (127)
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Algorithm 7 Within-task algorithm for Ex. 2

Input λ > 0, θ ∈ S, Z = (zi)
n
i=1

Initialization sθ,1 = (), wθ,1 = 0

For i = 1 to n
Receive the datapoint zi = (xi, yi)

Compute s′θ,i ∈ ∂`i(〈xi, wθ,i〉) ⊆ R
Define (sθ,i+1)i = s′θ,i, γi = λ(i+ 1)

Define pθ,i = xis
′
θ,i + λθ†wθ,i

Update wθ,i+1 = wθ,i − 1/γi θpθ,i

Return (wθ,i)
n+1
i=1 , w̄θ =

1

n

n∑
i=1

wθ,i, sθ,n+1

Algorithm 8 Meta-algorithm for Ex. 2

Input η > 0, (Zt)
T
t=1, θ0 ∈ S

Initialization θ1 = θ0, P1 = 0 ∈ Sd

For t = 1 to T
Receive incrementally the dataset Zt
Run Alg. 7 with θt over Zt
Compute sθt,n+1

Define∇′θt = − qtq
>
t

2λn2
qt = Xt

>sθt,n+1

Update Pt+1 = Pt +∇′θt
Update θt+1 = projS

(
−Pt+1/η + θ0

)
Return (θt)

T+1
t=1 , θ̄ =

1

T

T∑
t=1

θt

Proof. We start from observing that, according to the choices made in Ex. 2, for any θ ∈ S and for
any w, u ∈ Rd, we have

f(w, θ) =
1

2
〈w, θ†w〉+ ιRan(θ)(w) f(·, θ)∗(u) =

1

2
‖θ1/2u‖22 ∇f(·, θ)∗(u) = θu. (128)

As a consequence, as observed in Prop. 2, for any θ ∈ Θ, we get that wθ,i+1 ∈ Domf(·, θ) = Ran(θ),
for any i ∈ {0, . . . , n}. Moreover, according to the definition of wθ,1 in Alg. 2, we have

wθ,1 = ∇f(·, θ)∗(0) = 0. (129)

We now show the closed form of wθ,i+1 for any i ∈ {1, . . . , n}. In such a case, denoting by
X1:i ∈ Ri×d the matrix containing the first i input vectors as rows, by definition of wθ,i+1 in Alg. 2,
we can write

wθ,i+1 = ∇f(·, θ)∗
(
− 1

λ(i+ 1)
X>1:isθ,i+1

)
= − 1

λ(i+ 1)
θX>1:isθ,i+1. (130)

For i = 1 the statement holds, as a matter of fact, sincewθ,1 = 0, exploiting Eq. (130) and introducing
the subgradient pθ,1 = x1s

′
θ,1 + λθ†wθ,1 = x1s

′
θ,1, we can write

wθ,2 = − 1

2λ
θx1s

′
θ,1 = wθ,1 −

1

2λ
θpθ,1. (131)

Now, we show that the statement holds also for i ∈ {2, . . . , n}. Since X>1:isθ,i+1 = X>1:i−1sθ,i +
xis
′
θ,i, we can write the following

wθ,i+1 = − 1

λ(i+ 1)
θX>1:isθ,i+1 = − 1

λ(i+ 1)

(
θX>1:i−1sθ,i + θxis

′
θ,i

)
=

λi

λ(i+ 1)

(
− 1

λi
θX>1:i−1sθ,i

)
−

θxis
′
θ,i

λ(i+ 1)

=
λ(i+ 1)wθ,i − θxis′θ,i − λwθ,i

λ(i+ 1)

= wθ,i −
1

λ(i+ 1)

(
θxis

′
θ,i + λwθ,i

)
= wθ,i −

1

λ(i+ 1)
θpθ,i,

(132)

where, in the first and the fourth equality, we have exploited Eq. (130) and in the sixth equality we
have exploited the form of the subgradient pθ,i = xis

′
θ,i + λθ†wθ,i and the fact that wθ,i ∈ Ran(θ).

We now proceed with the deduction of the meta-algorithm in Alg. 8.
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Lemma 45 (Derivation of the meta-algorithm in Alg. 8, feature map). For any t ∈ {0, . . . , T}, let
θt+1 be the update of the variable deriving from applying Alg. 3 to the data (Zt)

T
t=1 in the setting

outlined in Ex. 2. Let ∇′θt be the approximated meta-subgradient computed as described in Prop. 3
and used by the algorithm to compute θt+1. Then, θt+1 ∈ S. Specifically, we have θ1 = θ0 and, for
any t ∈ {1, . . . , T},

θt+1 = projS

(
−1

η

t∑
j=1

∇′θj + θ0

)
. (133)

Moreover, for any t ∈ {1, . . . , T},

∇′θt = − 1

2λn2
Xt
>sθt,n+1s

>
θt,n+1Xt, (134)

where sθt,n+1 ∈ Rn is the output of Alg. 8 with feature map θt over the dataset Zt and, under Asm. 3,∥∥∇′θt∥∥2

F
≤ L4‖Ct‖2∞

4λ2
. (135)

Proof. We start from observing that, according to the choices made in Ex. 2, according to Lemma 30
in App. B, for any K ∈ Sd, θ ∈ S and u ∈ Rd, we have

F (θ) =
1

2
‖θ − θ0‖2F + ιS(θ)

F ∗(K) = max
θ∈S
〈θ,K〉 − 1

2
‖θ − θ0‖2F

∇F ∗(K) = argmax
θ∈S

〈θ,K〉 − 1

2
‖θ − θ0‖2F = argmin

θ∈S

1

2
‖θ − θ0‖2F − 〈θ,K〉

= argmin
θ∈S

1

2
‖θ − (K + θ0)‖2F −

1

2
‖K‖2F − 〈θ0,K〉

= projS(K + θ0)

f(·, θ)∗(u) =
1

2
‖θ1/2u‖22.

(136)

Consequently, according to the definition of θ1 in Alg. 3, we have

θ1 = ∇F ∗(0) = θ0. (137)

The desired closed form of θt+1 for any t ∈ {1, . . . , T} directly derives from the definition of θt+1

in Alg. 3, according to which

θt+1 = ∇F ∗
(
−1

η

t∑
j=1

∇′θj
)

= projS

(
−1

η

t∑
j=1

∇′θj + θ0

)
. (138)

We now specify the closed form of the approximated meta-subgradients, computed as described in
Prop. 3 for Ex. 2. We start from observing that adding to the notation in Prop. 3 the further task index
t, by strong duality (see Lemma 34), we can rewrite

Lt(θ) = max
s∈Rn

D̃t,n+1(s, θ) D̃t,n+1(s, θ) = − 1

n
Dt,n+1(s, θ) (139)

where, according to Eq. (8), in the setting outlined in Ex. 2,

−Dt,n+1(s, θ) = −
n∑
i=1

`∗t,i(si)− λnf(·, θ)∗
(
− 1

λn

n∑
i=1

xt,isi

)
= −

n∑
i=1

`∗t,i(si)− λnf(·, θ)∗
(
− 1

λn
Xt
>s
)

= −
n∑
i=1

`∗t,i(si)−
1

2λn
s>XtθXt

>s.

(140)
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Consequently, recalling that the output sθt,n+1 of the inner algorithm coincides with the last iterate
of the corresponding dual inner iteration, according to Prop. 3, we have

∇θt = − 1

2λn
Xt
>sθt,n+1s

>
θt,n+1Xt (141)

and, consequently,
∇′θt = ∇θt/n ∈ ∂εθt/nLt(θt), (142)

where εθt is outlined in Prop. 3 and it must be specified to Ex. 2. In order to prove Eq. (135),
we start from observing that sθt,n+1 is the vector in Rn having as component i the subgradient
s′θt,i ∈ ∂`t,i(〈xt,i, wθt,i〉). Hence, under Asm. 3, by Lemma 25 in App. B, any component of sθt,n+1

is absolutely bounded by L, and, consequently, ‖sθt,n+1‖2 ≤ L
√
n. This allows us to get the desired

bound by applying Holder’s inequality (see Lemma 8 in App. B) to the matrices’ scalar product as
follows∥∥∇′θt∥∥F =

1

2λn
Tr
( 1

n

n∑
i=1

xt,ix
>
t,isθt,n+1s

>
θt,n+1

)
≤ 1

2λn

∥∥∥ 1

n

n∑
i=1

xt,ix
>
t,i

∥∥∥
∞
‖sθt,n+1‖22

≤ L2

2λ

∥∥∥ 1

n

n∑
i=1

xt,ix
>
t,i

∥∥∥
∞

=
L2‖Ct‖∞

2λ
,

where in the last equality we have introduced the definition of Ct.

We observe that the meta-algorithm we have retrieved in Alg. 8 is a slightly different version of that
one proposed in [12], where we consider only an OWB statistical Meta-Learning framework. We
refer to the discussion in App. A for more details about that work.

We also observe that for the setting in Ex. 2, our Meta-Learning method in Alg. 7 and Alg. 8 requires
to compute the eigenvalue decomposition of a rank one perturbation of the current matrix. This can
be performed using methods such as the ones in [39], which essentially scale quadratically w.r.t. the
input dimension. As done in [8] for an OWB statistical Meta-Learning setting, a cheaper alternative
here may be to use as meta-algorithm Frank-Wolfe, which requires to compute only the maximum
eigenvalue. However, the better scaling property of this method comes at the price of a slower
learning/convergence rate.

In the next section, we analyze the performance of our OWO Meta-Learning method applied to Ex. 2,
in the non-statistical setting.

H.2 Analysis of the method in the non-statistical setting for Ex. 2

In the next result we specify Thm. 4 to Ex. 2, that is, we provide a (regularized) cumulative error
bound for the procedure deriving from combining Alg. 7 with Alg. 8.
Corollary 6 (Cumulative error bound, feature map, long version). Let Asm. 3 hold and consider the
setting in Thm. 4 applied to Ex. 2. Then, introducing the empirical covariance matrix of the vectors
(ŵt)

T
t=1

B̂ =
1

T

T∑
t=1

ŵtŵ
>
t , (143)

the following (regularized) cumulative error bound holds for any θ ∈ S such that Ran(B̂) ⊆ Ran(θ),

Ereg
meta

(
(Zt)

T
t=1) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt)+
λTr(θ†B̂)

2
+
L2Tr(Ĉtot

θ1:T
)

2λn
+
η‖θ − θ0‖2F

2T
+
L4‖Ctot‖∞,2

8λ2η

)
where we have defined the matrix

Ĉtot
θ1:T =

1

T

T∑
t=1

θtĈt. (144)

Hence, optimizing w.r.t. the hyper-parameters λ and η, for

λ = L

√√√√ 1

Tr(θ†B̂)

(
Tr(Ĉtot

θ1:T
)

n
+ ‖θ − θ0‖F

√
‖Ctot‖∞,2

T

)
η =

L2
√
T ‖Ctot‖∞,2

2λ‖θ − θ0‖F
,

(145)
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we get

Ereg
meta

(
(Zt)

T
t=1) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt) + L

√√√√ Tr(θ†B̂)

(
Tr(Ĉtot

θ1:T
)

n
+ ‖θ − θ0‖F

√
‖Ctot‖∞,2

T

))
.

Proof. Specializing Thm. 4 to the quantities outlined in Ex. 2, exploiting the bound on the norm of
the approximated meta-subgradients given in Eq. (135) (exploiting Asm. 3), and using the notation in
Eq. (143) for any θ ∈ S such that Ran(B̂) ⊆ Ran(θ), we get

Ereg
meta

(
(Zt)

T
t=1) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt) +
λTr(θ†B̂)

2
+

1

2λnT

T∑
t=1

n∑
i=1

1

i

∥∥θt1/2xt,is′θt,i∥∥2

2

+
η‖θ − θ0‖2F

2T
+
L4‖Ctot‖∞,2

8λ2η

)
.

(146)

The statement derives from the above inequality observing that, under Asm. 3 using the definition of
Ĉtot
θ1:T

in Eq. (144), we can write

1

T

T∑
t=1

n∑
i=1

1

i

∥∥θt1/2xt,is′t,i∥∥2

2
≤ L2Tr

( 1

T

T∑
t=1

θt

n∑
i=1

1

i
xt,ix

>
t,i

)
= L2Tr(Ĉtot

θ1:T ). (147)

Also in this case, in order to evaluate the quality of the bound above, we specify Thm. 36 to Ex. 2,
that is, we provide a (regularized) cumulative error bound for the procedure deriving from running
the within-task Alg. 7 with an appropriate feature map fixed in hindsight for any task.
Corollary 46 (Cumulative error bound with fixed meta-parameter in hindsight, feature map). Let
Asm. 3 hold and consider the setting in Thm. 36 applied to Ex. 2. Then, according to the notation
in Eq. (143), the following (regularized) cumulative error bound holds for any θ ∈ S such that
Ran(B̂) ⊆ Ran(θ)

T∑
t=1

Ereg
inner(Zt, θ) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt) +
λTr(θ†B̂)

2
+
L2Tr(θĈtot)

2λn

)
. (148)

Hence, optimizing w.r.t. the hyper-parameter λ, for

λ = L

√
Tr(θĈtot)

nTr(θ†B̂)
, (149)

we get

T∑
t=1

Ereg
inner(Zt, θ) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt) + L

√
Tr(θ†B̂) Tr(θĈtot)

n

)
. (150)

Proof. Specializing Thm. 36 to the quantities outlined in Ex. 2, using the notation in Eq. (143), for
any θ ∈ S such that Ran(B̂) ⊆ Ran(θ), we get

T∑
t=1

Ereg
inner(Zt, θ) ≤ nT

(
1

T

T∑
t=1

RZt(ŵt) +
λTr(θ†B̂)

2
+

1

2λnT

T∑
t=1

n∑
i=1

1

i

∥∥θ1/2xt,is
′
t,i

∥∥2

2

)
.

The statement derives from the above inequality observing that, under Asm. 3 using the definition of
the matrix Ĉtot, we can write

1

T

T∑
t=1

n∑
i=1

1

i

∥∥θ1/2xt,is
′
t,i

∥∥2

2
≤ L2Tr

(
θ

1

T

T∑
t=1

n∑
i=1

1

i
xt,ix

>
t,i

)
= L2Tr(θĈtot). (151)
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We postpone to App. H.4 a discussion about the results we have reported above. In the next section,
we analyze the performance of our OWO Meta-Learning method applied to Ex. 2, in the statistical
setting.

H.3 Analysis of the method in the statistical setting for Ex. 2

In the result below we specify Thm. 5 to Ex. 2, that is, we provide a (regularized) transfer risk bound
for the average w̄θ̄ of the estimators returned by the combination of Alg. 7 with Alg. 8.
Corollary 7 (Transfer risk bound, bias, long version). Let Asm. 3 hold and consider the statistical
setting in Thm. 5 applied to Ex. 2. Then, introducing the exact covariance matrix of the vectors wµ

Bρ = Eµ∼ρwµw>µ , (152)

the following (regularized) transfer risk bound holds for any θ ∈ S such that Ran(Bρ) ⊆ Ran(θ)

E Ereg
stat(w̄θ̄) ≤ Eρ +

λTr(θ†Bρ)
2

+
L2(log(n) + 1)Tr

(
E θ̄Cρ

)
λn

+
η‖θ − θ0‖2F

2T
+
L4E ‖Ctot‖∞,2

8λ2η
.

(153)

Hence, optimizing w.r.t. the hyper-parameters λ and η, for

λ = L

√√√√ 1

Tr(θ†Bρ)

(
2(log(n) + 1)Tr

(
E θ̄Cρ

)
n

+ ‖θ − θ0‖F

√
E ‖Ctot‖∞,2

T

)
(154)

η =
L2
√
T E ‖Ctot‖∞,2

2λ‖θ − θ0‖F
, (155)

we get

E Ereg
stat(w̄θ̄) ≤ Eρ + L

√√√√ Tr(θ†Bρ)

(
2(log(n) + 1) Tr

(
E θ̄Cρ

)
n

+ ‖θ − θ0‖F

√
E ‖Ctot‖∞,2

T

)
.

Proof. Specializing Thm. 5 to the quantities outlined in Ex. 2, exploiting the bound on the norm of
the approximated meta-subgradients given in Eq. (135) (exploiting Asm. 3) and using the notation in
Eq. (152), for any θ ∈ S such that Ran(Bρ) ⊆ Ran(θ), we get the following

E Ereg
stat(w̄θ̄) ≤ Eρ +

λTr(θ†Bρ)
2

+
1

2λnT
E

T∑
t=1

n∑
i=1

1

i

∥∥θt1/2xt,is′θt,i∥∥2

2

+
η‖θ − θ0‖2F

2T
+
L4E ‖Ctot‖∞,2

8λ2η

+
1

2λn
E Eµ∼ρ EZ∼µn

n∑
i=1

1

i

∥∥θ̄1/2xis
′
θ̄,i

∥∥2

2
.

(156)

The desired statement derives from the above inequality and from observing that, thanks to Asm. 3,
the i.i.d. sampling of the data and the fact that θt depends only on the previous datasets (Zj)

t−1
j=1,

using the inequality
∑n
i=1 1/i ≤ log(n) + 1 and the definition of Cρ, we have

E
1

T

T∑
t=1

n∑
i=1

1

i

∥∥θt1/2xt,is′θt,i∥∥2

2
≤ L2E Tr

( 1

T

T∑
t=1

θt

n∑
i=1

1

i
xt,ix

>
t,i

)
= L2(log(n) + 1)Tr

(
E θ̄Cρ

) (157)

E Eµ∼ρ EZ∼µn
n∑
i=1

1

i

∥∥θ̄xis′θ̄,i∥∥2

2
≤ L2E Eµ∼ρ EZ∼µn Tr

(
θ̄

n∑
i=1

1

i
xix

>
i

)
= L2(log(n) + 1)Tr

(
E θ̄Cρ

)
.

(158)

37



In order to evaluate the quality of the bound above, we specify Thm. 37 to Ex. 2, that is, we provide
a (regularized) transfer risk bound for w̄θ, the average of the iterations returned by running the
within-task Alg. 7 with an appropriate feature map θ fixed in hindsight for any task.
Corollary 47 (Transfer risk bound with fixed meta-parameter in hindsight, feature map). Let Asm. 3
hold and consider the statistical setting in Thm. 37 applied to Ex. 2. Then, according to the
notation in Eq. (152), the following (regularized) transfer risk bound holds for any θ ∈ S such that
Ran(Bρ) ⊆ Ran(θ)

Ereg
stat(w̄θ̄) ≤ Eρ +

λTr(θ†Bρ)
2

+
L2(log(n) + 1)Tr(θCρ)

2λn
. (159)

Hence, optimizing w.r.t. the hyper-parameter λ, for

λ = L

√
(log(n) + 1)Tr(θCρ)

nTr(θ†Bρ)
, (160)

we get

Ereg
stat(w̄θ̄) ≤ Eρ + L

√
(log(n) + 1)Tr(θ†Bρ)Tr(θCρ)

n
.

Proof. Specializing Thm. 37 to the quantities outlined in Ex. 2, using the notation in Eq. (152), for
any θ ∈ S such that Ran(Bρ) ⊆ Ran(θ), we get the following

Ereg
stat(w̄θ̄) ≤ Eρ +

λTr(θ†Bρ)
2

+
1

2λn
Eµ∼ρ EZ∼µn

n∑
i=1

1

i

∥∥θ1/2xis
′
θ,i

∥∥2

2
.

The desired statement derives from the above inequality and from observing that, under Asm. 3,
exploiting the i.i.d. sampling of the data and the inequality

∑n
i=1 1/i ≤ log(n) + 1, introducing the

definition of the matrix Cρ, we can write

Eµ∼ρ Ezn∼µn
n∑
i=1

1

i

∥∥θ1/2xis
′
θ,i

∥∥2

2
≤ L2Eµ∼ρ EZ∼µn Tr

(
θ

n∑
i=1

1

i
xix

>
i

)
≤ L2(log(n) + 1)Tr(θCρ).

(161)

Also in this case, the comments to the bounds above are postponed in the following App. H.4.

H.4 Discussion of the results for Ex. 2

We start from discussing the results in Cor. 46 and Cor. 47, where the feature map used by the inner
algorithm is fixed in hindsight for any task.

H.4.1 Advantage of selecting the right feature map

We first comment the bounds in the statistical setting in Cor. 47 . In this case, proceeding in the same
way as described for Ex. 1, we should define the best algorithm in our class (oracle) the algorithm
associated to the feature map minimizing the bound in Cor. 47. However, in our case, to simplify the
analysis we consider as the oracle the algorithm associated to the feature map θρ minimizing only
a part of the above bound which is available is closed form. Specifically, appealing to the infimal
formulation of the MTL trace norm regularizer in [2, Eq. (13)], we minimize only the term Tr(θ†Bρ)
over the subset of the feature maps {θ ∈ S : Ran(Bρ) ⊆ Ran(θ)} for which our bound holds:

min
θ∈S:Ran(Bρ)⊆Ran(θ)

Tr(θ†Bρ) = Tr(B1/2
ρ )2 = ‖Wρ‖2Tr, (162)

whereWρ is a square root ofBρ. We consider as the optimal feature map the corresponding minimizer

θρ = argmin
θ∈S:Ran(Bρ)⊆Ran(θ)

Tr(θ†Bρ) =
Wρ

Tr(Wρ)
. (163)
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Similarly to what observed in App. G.4 for the setting in Ex. 1, we will consider this feature map as
benchmark in order to evaluate the performance of our Meta-Learning procedure. With such a choice
of feature map θρ, the bound in Cor. 47 (up to logarithmic factors) becomes proportional to√

Tr(θρ†Bρ) Tr(θρCρ)
n

≤ ‖Wρ‖Tr

√
‖Cρ‖∞
n

, (164)

where, in the inequality above, we have applied Holder’s inequality (see Lemma 8 in App. B) to the
matrices’ scalar product and we have exploited the fact Tr (θρ) = 1.

On the other hand, solving the tasks independently (ITL), in this case, corresponds to apply Alg. 7
with the feature map θITL = I/d for any task. Substituting this value, the bound above becomes
proportional to

‖Wρ‖F

√
Tr(Cρ)
n

. (165)

Comparing the bounds in Eq. (164) and Eq. (165), we can conclude that there is an advantage in
using the optimal feature map θρ w.r.t. solving each task independently, when the tasks are similar
in the sense that ‖Cρ‖∞ � Tr (Cρ) (when the inputs are high-dimensional for instance) and when
‖Wρ‖Tr is comparable to ‖Wρ‖F (i.e. when the matrix Wρ is low-rank, meaning that the tasks’ target
vectors are expected to lie in a low-dimensional subspace, the range of the optimal feature map). This
is inline with previous literature, such as [12, 26, 25].

Regarding the non-statistical setting, in order to comment the cumulative error bound in Cor. 46, one
can proceed as above introducing the corresponding sub-optimal algorithm in the class associated
to the corresponding sub-optimal feature map θ̂. The associated bound, in this case, becomes
proportional to

‖Ŵ‖Tr

√
‖Ĉtot‖∞

n
, (166)

where Ŵ is a square root of B̂. Comparing this last bound to the corresponding bound for ITL

‖Ŵ‖F

√
Tr(Ĉtot)

n
, (167)

we see that there is an advantage in using the optimal feature map θ̂ w.r.t. solving each task
independently, when ‖Ĉtot‖∞ � Tr(Ĉtot) and Ŵ is low-rank (‖Ŵ‖Tr is comparable to ‖Ŵ‖F ).
The first condition on the weighted input covariance matrix Ĉtot = 1

T

∑T
t=1

∑n
i=1

1
i xt,ix

>
t,i is less

clear to interpret than the more natural one ‖Ctot‖∞ � Tr(Ctot) with the standard empirical input
covariance matrix Ctot = 1

T

∑T
t=1

1
n

∑n
i=1 xt,ix

>
t,i. However, in certain data configurations these

two input covariance matrices, may still be closed one to each other. We think that this issue is
avoidable by choosing the inner step size in different way and we will address it in future work.

We now can make the following observations about the bounds we have obtained in Cor. 6 and Cor. 7
for our Meta-Learning procedure.

H.4.2 Feature Map resulting from our Meta-Learning method

In order to analyze the effectiveness of our Meta-Learning method, we investigate whether it mimics
the performance of the best algorithm in the class, when the number of training tasks is sufficiently
large w.r.t. the number of within-task points. In such a case, the term T−1/4 is negligible and,
applying Holder’s inequality and exploiting the fact that, by construction, Tr(θ̄) ≤ 1, as described
above, the bound in Cor. 7 (up to logarithmic factors) can be upper bounded by√

Tr(θ†Bρ)Tr(Cρ)
n

, (168)

where θ ∈ S is the fixed feature map in the statement, defining the choice of the hyper-parameters
for our method. In particular, choosing θ = θρ in Eq. (163), the quantity above in Eq. (168) can be
upper bounded by the bound in Eq. (164) for the best algorithm in the class. As a consequence, when
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the tasks are similar as explained above, our methods can provide a significant advantage w.r.t. ITL
in the statistical setting. We conclude observing that the cumulative error bound in Cor. 6 for the
non-statistical setting is less clear to interpret because of the presence of the modified version of the
covariance matrix Ĉtot

θ1:T
. Future work may be devoted to investigate this point, which could be either

an artifact of our analysis or due to some intrinsic characteristics of the feature learning problem we
are considering.

I Experimental details

In this section, we start from describing in App. I.1 how we tuned the hyper-parameters for our OWO
Meta-Learning method in the statistical setting. After that, in App. I.2 we give some closed form
expressions that we used for the implementation.

I.1 Hyper-parameters tuning for our statistical OWO Meta-Learning method

Denote by θ̄T,λ,η the average of the meta-parameters computed with T iterations (hence T datasets
and tasks) of our meta-algorithm with hyper-parameters λ and η. In all the experiments, we obtained
this meta-parameter by learning it on a collection of Ttr training datasets (tasks), each comprising
a dataset Ztr of n = ntr input-output pairs z = (x, y) ∈ Z = X × Y . We performed this meta-
training for different values of λ ∈ {λ1, . . . , λp} and η ∈ {η1, . . . , ηr} and we selected the best
meta-parameter based on the prediction error measured on a separate set of Tva validation datasets
(tasks). Once such optimal λ and η values were selected, we reported the error of the corresponding
estimator on a set of Tte test datasets (tasks).

Note that the tasks in the test and validation sets were all provided with a training inner dataset Ztr of
ntr points and a test inner dataset Zte of nte points, both sampled from the same distribution. Indeed,
in order to evaluate the performance of a meta-parameter θ, we needed first to train the corresponding
algorithm on the training dataset Ztr, and then, to test the performance of the resulting vector on the
test set Zte.

In addition to this, since we considered the online setting, the training datasets arrived one at the
time, therefore model selection was performed online: the system kept track of all candidate values
θ̄Ttr,λj ,ηk , j ∈ {1, . . . , p}, k ∈ {1, . . . , r}, and, whenever a new training task was presented, these
meta-parameters were all updated by incorporating the corresponding new observations. The best
meta-parameter θ was then returned at each iteration, based on its performance on the validation
set, as explained before. The previous procedure describes how to tune simultaneously both λ and
η. When the meta-parameter θ we used was fixed a priori (e.g. in ITL), we just needed to tune the
hyper-parameter λ; in such a case the procedure was analogous to that one described above.

Specifically, in the experiments reported in the main body, we applied the validation procedure above
as described in the following.

Synthetic data. We considered 14 candidates values for both λ and η in the range [10−5, 105]
with logarithmic spacing and we evaluated the performance of the estimated feature maps by using
T = Ttr = 3000, Tva = 100, Tte = 500 of the available tasks for meta-training, meta-validation
and meta-testing, respectively. In order to train and to test the inner algorithm, we splitted each
within-task dataset into n = ntr = 50% ntot for training and nte = 50% ntot for test.

Movielens-100k dataset. In this case, we removed all movies with less than 20 users’ ratings.
We considered 14 candidates values for both λ and η in the range [10−5, 105] with logarithmic
spacing and we evaluated the performance of the estimated feature maps by splitting the tasks into
T = Ttr = 700, Tva = 100, Tte = 139 tasks used for meta-training, meta-validation and meta-
testing, respectively. In order to train and to test the inner algorithm, we splitted each within-task
dataset into n = ntr = 75% ntot for training and nte = 25% ntot for test.

Mini-Wiki dataset. We considered 14 candidates values for both λ and η in the range [10−5, 105]
with logarithmic spacing and we evaluated the performance of the estimated feature maps by splitting
the tasks into T = Ttr = 500, Tva = 100, Tte = 213 tasks used for meta-training, meta-validation
and meta-testing, respectively. In order to train and to test the inner algorithm, we splitted each
within-task dataset into n = ntr = 75% ntot for training and nte = 25% ntot for test.

40



Algorithm 9 Within-task algorithm for Ex. 2, multi-
class setting, `i = `zi with `zi in Eq. (170)

Input λ > 0, θ ∈ S, Z = (zi)
n
i=1

Initialization Sθ,1 = (), Wθ,1 = 0

For i = 1 to n
Receive the datapoint zi = (xi, yi)

Compute S′θ,i ∈ ∂`i(Wθ,i) ⊆ Rd×M

Define (Sθ,i+1)i = S′θ,i, γi = λ(i+ 1)

Define Pθ,i = S′θ,i + λθ†Wθ,i ∈ Rd×M

Update Wθ,i+1 = Wθ,i − 1/γi θPθ,i

Return (Wθ,i)
n+1
i=1 , W̄θ =

1

n

n∑
i=1

Wθ,i, Sθ,n+1

Algorithm 10 Meta-algorithm for Ex. 2, multi-class
setting

Input η > 0, (Zt)
T
t=1, θ0 ∈ S

Initialization θ1 = θ0, P1 = 0 ∈ Sd

For t = 1 to T
Receive incrementally the dataset Zt
Run Alg. 7 with θt over Zt
Compute (S′θt,i)

n
i=1

Define∇′θt = −QtQ
>
t

2λn2
Qt =

∑n
i=1 S

′
θt,i

Update Pt+1 = Pt +∇′θt
Update θt+1 = projS

(
−Pt+1/η + θ0

)
Return (θt)

T+1
t=1 , θ̄ =

1

T

T∑
t=1

θt

Jester-1 dataset. In this case, we randomly subsampled the 24983 jokes to end up with 5700 total
number of tasks. We considered 14 candidates values for both λ and η in the range [10−5, 105] with
logarithmic spacing and we evaluated the performance of the estimated feature maps by splitting
the tasks into T = Ttr = 5000, Tva = 200, Tte = 500 tasks used for meta-training, meta-validation
and meta-testing, respectively. In order to train and to test the inner algorithm, we splitted each
within-task dataset into n = ntr = 75% ntot for training and nte = 25% ntot for test.

All the experiments were conducted on an Intel Xeon E5-2697 V3 2.60Ghz CPU with 32GB RAM.

I.2 Closed forms for the implementation

At last, we report the closed forms we used in our experiments.

Absolute loss for regression. Let Y ⊆ R. For any ŷ, y ∈ Y , let `(ŷ, y) = |ŷ − y| and denote
`y(·) = `(·, y). Then, we have

∂`y(ŷ) =


{1} if ŷ − y > 0

{−1} if ŷ − y < 0

[−1, 1] if ŷ − y = 0.

(169)

Hinge loss for multi-class classification. Let X ⊆ Rd and Y = {1, . . . ,M}, where M is the
number of classes. We measure the error of the predictors’ matrix W ∈ Rd×M over a datapoint
z = (x, y) ∈ X × Y by the loss function

`z(W ) = max
m∈{1,...M}

1m6=y +
〈
W (:,m), x

〉
−
〈
W (:, y), x

〉
, (170)

where, for any m ∈ {1, . . . ,M}, W (:,m) denotes the m-th column of W and

1m6=y =

{
1 if m 6= y

0 if m = y.
(171)

Introducing the class-index

m̂ = argmax
m∈{1,...M}

1m6=y +
〈
W (:,m), x

〉
−
〈
W (:, y), x

〉
, (172)

we compute a subgradient S′ ∈ ∂`z(W ) ⊆ Rd×M as the matrix with m-th column given by

S′(:,m) =


x if m = m̂

−x if m = y

0 otherwise.
(173)
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As described in the main body, in the Mini-Wiki dataset experiment, we considered the setting
outlined in Ex. 2 with the multi-class hinge loss above. In such a case, our OWO Meta-Learning
method is reported in Alg. 9 – Alg. 10 and it coincides with a matrix-variant of Alg. 7 – Alg. 8.
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