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Appendix

In Appendix A, we provide several definitions and details about the underlying large market continuum
model that we consider in the main model in Section 2. In Appendices B and C, we include the proofs
of all results in Sections 3 and 4, respectively. Appendix D contains auxiliary technical results used
in the proofs. Finally, Appendix E discusses alternative models and extensions.

A Large Markets

A.1 Large market setting

Time t = 0, 1, . . . is discrete but we assume that each arriving worker and employer stays for K
periods in the market. The market is initially empty and no workers and employers have entered the
market before time t = 0.

Worker and employer history. At any time t, a mass λi of agents i ∈ {A,B,N,D} arrives in the
market. For workers of each social group c ∈ {A,B}, a mass λHc = λcp0 consists of high-skilled
workers and the rest λLc = λc(1 − p0) of low-skilled workers.1 Let Ωk, k = 1, . . . ,K denote the
worker history of length k− 1. Formally, the worker history Ωk = {ω1, . . . , ωk−1} consists of all the
past hiring decisions mk ∈ {0, 1} and reviews rk ∈ {�, g, b} for that worker, that is ωk = (mk, rk).
Let Hn = {h1, . . . , hn−1}, n = 1, . . . ,K, also denote the employer history of length n− 1. Each
hn consists of the hiring decision mn ∈ {0, 1} made by that employer about a worker with history
Ωk

2 and social group c ∈ {A,B}, i.e. where hn = (mn,Ωk, c). Initially, H1 = ∅ and Ω1 = ∅.

System profile. We denote by µ(Ωk, c,Q), k = 1, . . . ,K, the mass of workers in the system with
history Ωk, social group c and skill level Q. Let ν(Hn, e) also be the mass of employers in the system
with history Hn belonging to group e. The evolution of the system is described by (µt, νt) for t ∈ N.
A matching policy σ(Hn,Ωk, c | (µt, νt)) specifies the mass of workers of social group c and history
Ωk to be matched to a mass of employers of history Hn, given the system state (µt, νt) at time t.

At each period, employers meet workers according to the matching policy σ (for example, in Section
3, we assumed a uniform matching (UM) policy). A mass of employers of group e meets an equal
mass of workers of social group c, true skill level Q and history Ωk. Then, a fraction ξ(ω,Ωk, c,Q, e)
of this mass leads to a hiring-review outcome ω ∈ {(0, �), (1, �), (1, g), (1, b)} (for example, see

1For technical completeness, in the case where K →∞, we can assume that λi = λi(K)→ 0, thus arrival
rates scale down so that the total mass of agents in the market remains fixed at each time step (see also [11]).

2Note that Ωk can be of any length 0 and K − 1.
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(A.1)). The quantity ξ(ω,Ωk, c,Q, e) may be analytically computed based on any of the learning
mechanisms (taste- or belief-based) described in Sections 2 and E.1.

For workers, all Ωk, c, Q and e determine the hiring review-outcome ω. However, note that, given any
of those mechanisms with constant prior belief, we know that, when an employer meets a candidate
worker, only the history Ωk and social group c (and not skill level Q) of the worker play a role in her
hiring decision; the true skill level Q determines the review. For that reason, it is useful to compute
the hiring probability π(1,Ωk, c, e) separately; similarly, we denote the probability of not hiring by
π(0,Ωk, c, e). The distinction will become clear in equations (A.1) and (A.2).

A.2 Dynamics, steady-state equilibrium and the UM policy

At any time t, a total mass (λA + λB)K of workers and a total mass (λN + λD)K of employers
are present in the market. The platform cannot directly observe µt(Ωk, c,Q) and νt(Hn, e) but
only

∑
Q µt(Ωn, c,Q) and

∑
e νt(Hn, e) for each history Ωk and Hn. However, given λi, ξ and

π, the platform can infer each mass µt(Ωk, c,Q) and νt(Hn, g). Regarding workers, we have for
k = 1, . . . ,K − 1, and absolute time t+ 1 in the market,

µt+1(∅, c,Q) = λQc

µt+1((Ωk, ω), c,Q) = µt(Ωk, c,Q)
∑
e

λe
λN + λD

ξ(ω,Ωk, c,Q, e)
(A.1)

where the factor
∑
e

λe
λN+λD

ξ(ω,Ωk, c,Q, e) results from uniform matching.

Regarding employers, UM induces the following system dynamics for n = 1, . . . ,K − 1,

νt+1(∅, e) = λe

νt+1((Hn, (m,Ωk, c)), e) = νt(Hn, e)
∑

Ωk,c,Q

µt(Ωk, c,Q)

(λA + λB)K
π(m,Ωk, c, e).

(A.2)

Steady state of UM policy. Under the above dynamics (A.1)-(A.2), the system yields a unique
steady-state equilibrium (µ, ν). The equilibrium (µUM, νUM) can be recursively computed for n, k =
1, . . . ,K − 1 from the following equations:

µUM(∅, c,Q) = λQc

µUM((Ωk, ω), c,Q) = µUM(Ωk, c,Q)
∑
e

λe
λN + λD

ξ(ω,Ωk, c,Q, e)
(A.3)

νUM(∅, e) = λe

νUM((Hn, (m,Ωk, c)), e) = νUM(Hn, e)
∑

Ωk,c,Q

µUM(Ωk, c,Q)

(λA + λB)K
π(m,Ωk, c, e).

(A.4)

Lemma A.1. The discrete time dynamical system (A.1)-(A.2) reaches a unique steady-state equilib-
rium.

Proof. For simplicity, fix c and Q. At first we focus only on µt. For given c and Q, the iteration
mapping that describes the dynamics of µt is of the form F (x) = Cx+d. Each element (Ωk, ω),Ωk,
k = 1, . . . ,K − 1 of the matrix C is given by C(Ωk,ω),Ωk =

∑
e

λe
λN+λD

ξ(ω,Ωk, c,Q, e) while C is
zero everywhere else. For the vector c we have that d(∅) = λQc ; d takes a zero value everywhere else.

We have that

‖C‖∞ = max
(Ω,ω)

C(Ω,ω),Ω =
∑
e

λe
λN + λD

ξ(ω,Ω, c,Q, e) <
∑
e

λe
λN + λD

= 1
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since in each row all elements are zero expect for the element ((Ω, ω),Ω) and, by Assumption 1,
it follows that 0 < ξ(ω,Ω, c,Q, e) < 1 for all ω ∈ {(0, �), (1, �), (1, g), (1, b)}. Therefore, the
spectral radius is also bounded by 1, i.e. ρ(C) ≤ ‖C‖∞ < 1. Because any iteration of the form
µt+1 = Cµt+c converges for every starting point if and only if ρ(C) < 1, this system must converge.
Furthermore, the limit has to be the fixed point of F .

We proved that µt converges to the steady-state equilibrium µUM, and given the form of the dynamics
(A.1), its convergence is independent of the convergence of νt. We have that

νt+1 − νUM <
(νt − νUM) · |

∑
µUM|

(λA + λB)K
+
νt · |

∑
µt −

∑
µUM|

(λA + λB)K

Since µt → µUM as t→∞ (note that νt is bounded for any fixed K) and |
∑
µUM| = (λA + λB)K,

we can eventually show that
‖νt+1 − νUM‖ → 0.

Therefore, we get that νt also converges to the steady-state equilibrium νUM.

B Proofs from Section 3

Proof of Lemma 1. At period k, we have

qNk − qDk =
(1− β)G0

Bk +Gk +N0
> 0. (B.1)

Therefore, as k increases, Bk +Gk also weakly increases thus qNk − qDk is weakly decreasing.

Proof of Lemma 2. It follows directly from Lemma 1 and the fact that the CDF FA is strictly
increasing on the support [a, a].

Proof Sketch of Theorem 1. The existence of the unique steady-state equilibrium of the market is
proved in Lemma A.1.

Given this result, we compare the expected welfare of a minority and a majority worker with same
skill level Q over their lifetime to show the existence of discrimination. For clarity of exposition,
we assume that the probability of receiving a review conditional on being hired is η = 1, as it is
straightforward to generalize the proof for general η > 0. As we define in Appendix A.1, the worker
history Ωk = {ω1, . . . , ωk−1} consists of all the past hiring decisions mk ∈ {0, 1} and reviews
rk ∈ {�, g, b} for that worker, that is ωk = (mk, rk). Initially, Ω1 = ∅.
We first analyze the expected welfare for the fixed Q ∈ {H,L}, and use backward induction on the
history length k to show that, given a worker history Ωk, the expected future welfare of majority
workers after life period k and up to the last period K is larger than the one of majority workers. The
basis step (period K) is trivial and follows directly by Lemma 2. Then, by a slight abuse of notation
and given history Ωk−1, we can write the expected welfare of a worker of group c after life period
k − 1 in the following form

W c
Q(Ωk−1,K) =P(ωk = (1, g) | Q, c, (Ωk−1, (1, g)))W c

Q((Ωk−1, (1, g)),K)+

P(ωk = (1, b) | Q, c, (Ωk−1, (1, b)))W
c
Q((Ωk−1, (1, b)),K)+

(1− P(ωk = (1, g) | Q, c, (Ωk−1, (1, g)))− P(ωk = (1, b) | Q, c, (Ωk−1, (1, b))))W
c
Q((Ωk−1, (0, �)),K)

where the last term can be written as

W c
Q((Ωk−1, (0, �)),K) = δW c

Q(Ωk−1,K)− ψ(c,Q,Ωk−1),

where the term ψ(c,Q,Ωk−1) refers to the last period K only.

By the induction hypothesis (for k), we have that

WA
Q ((Ωk−1, (1, g)),K) > WB

Q ((Ωk−1, (1, g)),K),

WA
Q ((Ωk−1, (1, b)),K) > WB

Q ((Ωk−1, (1, b)),K),

WA
Q ((Ωk−1, (0, �)),K) > WB

Q ((Ωk−1, (0, �)),K).
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By Lemma D.4,

P(ωk = (1, g) | A, c, (Ωk−1, (1, g))) ≥ P(ωk = (1, g) | B, c, (Ωk−1, (1, g)))

and
P(ωk = (1, b) | A, c, (Ωk−1, (1, b))) ≥ P(ωk = (1, b) | B, c, (Ωk−1, (1, b))),

which hold with strict inequality for some (if not all) histories Ωk−1. Assuming δ small enough and
using the previous inequalities, it follows easily that WA

Q (Ωk−1,K) > WB
Q (Ωk−1,K).

Now, it remains to generalize the result for any δ ∈ (0, 1) and apply it for W c
Q(K) = W c

Q(∅,K). Fix
K. We adopt the following construction argument. We start with all histories ΩK−1 and feasible δ′,
take inequality WA

Q (ΩK−1,K) > WB
Q (ΩK−1,K) and multiply by (δ/δ′)K . Then, we repeat the

same process for lifetime K − 1 and all histories ΩK−1, and continue up to lifetime 1 and empty
history Ω1 = ∅. Adding all the formed inequalities and starting from the empty history Ω1 = ∅, we
ended up with WA

Q (K) > WB
Q (K) which concludes the proof.

Proof of Theorem 2. We consider the case of minority and majority workers separately.

At any time k in a worker’s life, both groups of employers have the same belief qk about the same
majority worker. By (9), it suffices to look only at the sequence qτ1+1, qτ2+1, . . .. For convenience,
we define q̂eτk , qeτk+1. An application of Lemma D.1 (coupled with Assumption 1) guarantees that
mt = 1 infinitely often. Therefore, to show that qk → q∞ almost surely, it suffices to prove that
q̂τk → q∞ almost surely as k grows to∞.

We use a “Robbins-Monro” argument (adapted from Theorem 2 in [6] to our model). For k ≥ 1, we
can write that

q̂τk+1
= q̂τk +

1

k + 1 +N0
(1{rτk+1

=g}−q̂τk). (B.2)

Equation (B.2) describes a stochastic approximation algorithm of the form (D.2) where

h(q) = E(1{rτk+1
=g}−q̂τk | q̂τk = q,Q)

= P(rτk+1
= g | q̂τk = q,Q)− q,

(B.3)

and the sequence of step gains is γτk+1 = 1
k+1+N0

, k ≥ 1.

Next we show that h(q) satisfies the assumptions in Lemma D.2. Specifically,

|H(q,Xτk+1
)| = |1{rτk+1

=g}−q| ≤ max{|q|, |1− q|}

implies that condition (D.4) holds, i.e.

σ2(q) ≤ C(1 + |q|2)

for some constant C > 0.

To prove the stability condition (D.5), first observe that the function h(q) is strictly decreasing in q.
Furthermore, limq→∞ h(q) = −∞ while Assumption 1 guarantees that h(0) > 0. This ensures that
h(q) = 0 has a unique solution q∗. Hence, by the fact that h(q) strictly decreasing in q, we can easily
show that,

(q − q∗)h(q) = (q − q∗)(h(q)− h(q∗)) ≤ −(q − q∗)2.

This in turn implies that for all ε > 0,

sup
ε≤|q−q∗|≤ 1

ε

(q − q∗)h(q) ≤ sup
ε≤|q−q∗|≤ 1

ε

−(q − q∗)2 ≤ −ε2 < 0.

All conditions of Lemma D.2 are satisfied thus we conclude that q̂eτk (and consequently qek) converges
almost surely to the limit qe∞ = q∗, i.e. for both g ∈ {N,D}, qek → q∗ almost surely.

For the second part of the theorem, we have proved that q∗ satisfies h(q∗) = 0. Hence, from (B.3)
we find q∞(Q) ≡ q∗ for Q ∈ {H,L}. Also, it is clear that h(q) and q∞(Q) do not depend on the
prior belief of each employer group.

We also need to prove the theorem for the case of minority workers which is more complicated.
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Specifically, by Lemma 1, we have that q̂Nτk > q̂Dτk , k ≥ 1. However, for each employer group
e ∈ {N,D}, an analog of equation (B.2) holds for each e ∈ {N,D} and for all k ≥ 1,

q̂eτk+1
= q̂eτk +

1

k + 1 +N0
(1{rτk+1

=g}−q̂eτk) (B.4)

but here the probability

P(rτk+1
= g | q̂Nτk = qN , q̂Dτk = qD, Q) = (B.5)

λN
λN + λD

P(rτk+1
= g | q̂Nτk = qN , Q) +

λD
λN + λD

P(rτk+1
= g | q̂Dτk = qD, Q)

depends on both q̂Nτk = qN and q̂Dτk = qD.

Lemma D.2 can now be applied to the pair of random variables q̂Nτk and q̂Dτk . The rest of the proof
follows similar steps as in the case of majority workers and leads to the same conclusion, i.e. that for
both e ∈ {N,D}, q̂Nτk → q∞(Q) almost surely. Intuitively, as k grows, Lemma 1 implies that the
difference q̂Nτk − q̂

D
τk

tends to 0, which means that algorithm (B.4) resembles the behavior of (B.2).

For the last statement of the theorem, by a contradiction argument, we can show that

q∞(H) > q∞(L).

Proof Sketch of Proposition 3. Since a+ µP < 0, then for q̂ small enough, we have

P(Ak + µP + q̂ ≤ 0) = 1. (B.6)

However, in finite time t0, there is a positive probability that qNt can become as small as q̂. Then,
(B.6) implies that hirings stop. By (9), we conclude that qek remains unchanged, i.e. qek = qek0+1 ≤ q̂,
for all k > k0.

C Proofs from Section 4

Lemma C.1 (Lemma 4). Suppose that the mass µ(Ωk, B,Q), k = 1, . . . ,K ′ of minority workers
in the system is known for each history Ωk and skill level Q, and does not change over time. A
fixed employer is paired uniformly at random to a minority worker n, i.i.d. for each period n of the
employer’s lifetime. Then, for large enough K and θ, the expected time until an employer of group
e ∈ {N,D} gets e-labelled is at most K, i.e.

E(inf{n > 0 : ln ≥ θ} | e = D) < K and E(inf{n > 0 : ln ≤ −θ} | e = N) < K. (C.1)

Proof. First, we analyze further the learning problem of the platform regarding the true type e ∈
{N,D} of our fixed employer. When a minority worker of history Ωk is matched to the employer
then the log-likelihood ratio ln of learning the type of the employer is updated as follows:

ln+1 = ln + log
XD(mn,Ωk)

XN (mn,Ωk)
, n ≥ 1 (C.2)

where l1 = log λD
λN

and

Xe(mn,Ωk) , mnπ(1,Ωk, B, e) + (1−mn)π(0,Ωn, B, e).

The probabilities π(1,Ωk, B, e) and π(0,Ωk, B, e) have been defined in Appendix A.1 and represent
the probability that an employer of group e hires or not a minority worker with history Ωk, respectively.

Next, we adapt Lemma D.5 to our setting. Specifically, let I ≡ {N,D}, Xn ≡ (mn,Ωk),

f (N)(Xn) ≡ log
XD(mn,Ωk)

XN (mn,Ωk)
, f (D)(Xn) ≡ log

XN (mn,Ωk)

XD(mn,Ωk)
.
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By Lemma 2 and Assumption 1, the KL-divergence3

KL(D,N | Ωk) , π(1,Ωk, B,D) log

(
π(1,Ωk, B,D)

π(1,Ωk, B,N)

)
+π(0,Ωk, B,D) log

(
π(0,Ωk, B,D)

π(0,Ωk, B,N)

)
is positive for some (if not all) Ωk, n = 1, . . . , N . (Specifically, KL(D,N | Ωk) is positive for some
(if not all) Ωk for each history length k). The same holds for KL(N,D | Ωk) which is defined in
a symmetric way. Also note that minority workers are chosen uniformly at random so any worker
of any history Ωk, n = k, . . . ,K ′ has positive probability to be matched to that particular employer.
Thus, given e = D,

E(f (N)(Xn)) =
∑
Ωk

∑
Q µ(Ωk, B,Q)∑

Ωk,Q
µ(Ωk, B,Q)

KL(D,N | Ωk)

while the formula for E(f (D)(Xn)) follows similarly. By applying Lemma D.5 for α ≡ θ, we get
that there exists a large enough θ such that

E(inf{n > 0 : ln ≥ θ} | e = D) < A log θ

for some constant A that does not depend on θ. Choosing a large enough K > A log θ completes the
proof.

Lemma C.2. Under the DM policy, there exists a steady-state equilibrium in the market. Furthermore,
for large enough θN and θD, there exists a steady-state equilibrium where the steady-state fraction
of D employers in the learning pool is strictly smaller than λD

λN+λD
.

Proof sketch. We use notation and definitions provided in Appendix A.1.

We write down the dynamics of the system under the DM policy. In the technical details of the proof,
we can ignore majority workers and employers matched to them; establishing that an equilibrium
point exists for minority workers’ mass profile directly generalizes the result to the whole system.
For convenience, we also omit B from notation.

Let H+
e denote the set of all histories such that employers of group e are correctly identified as

e. Similarly, let H−e denote the set of all histories such that employers of group e are incorrectly
identified as e′ 6= e. For minority workers in the learning pool (LP), we have that for k = 1, . . . ,K:

µLP
t+1(∅, Q) = µLP

t (∅, Q) min{1,
[
1−

∑
n ν

ID
t (n) +

∑
Hn∈H+

N∪H
−
D
νLP
t (Hn, N)−

∑
k µ

ID
t (k,Q)∑

Ω,Q µ
LP
t (Ω, Q)

]+

}

(C.3)

µ
LP
t+1((Ωk, ω), Q) = µ

LP
t (Ωk, Q)

∑
e

∑
Hn

νLP
t (Hn, e)∑

e

∑
Hn

νLP
t (Hn, e)

ξ(ω,Ωk, Q,B, e) min{1,
[
1−

∑
n ν

ID
t (n) +

∑
Hn∈H

+
N
∪H−

D

νLP
t (Hn, N)−

∑
k µ

ID
t (k,Q)∑

Ω,Q µ
LP
t (Ω, Q)

]+
}}

(C.4)

where by (ID) we denote the mass of N -identified employers and the mass of minority workers
matching to each other out of the learning pool.

For employers in the learning pool, we have for n = 1, . . . ,K:

νLP
t+1(∅, e) =

λe
λN + λD

( ∑
HK+1

∑
e′

νLP
t (HK+1, e

′) +
∑

Hn∈H+
N

νLP
t (Hn, N) +

∑
Hn∈H−D

νLP
t (Hn, D)

−
∑
Ωk

µLP
t (Ωk, Q)(1−min{1,

[
1−

∑
n ν

ID
t (n) +

∑
Hn∈H+

N
∪H−

D
νLP
t (Hn, N)−

∑
k µ

ID
t (k,Q)∑

Ω,Q µ
LP
t (Ω, Q)

]+

})
)

(C.5)

3The Kullback-Leibler divergence between Bernoulli(p) and Bernoulli(q) is defined as p log( p
q
) + (1 −

p) log( 1−p
1−q ).
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νLP
t+1((Hn, (m,Ωk)), e) = νLP

t (Hn, e)
∑
Q

µLP
t (Ωk, Q)∑

Ωk,Q
µLP
t (Ωk, Q)

π(m,Ωk, B, e), if Hn /∈ H+
e ∪H−e .

(C.6)

For N -identified employers and minority workers matching to each other out of the learning pool
(ID), we care only about their history lengths (in order to establish the proof). By slightly abusing the
notation, we can group their mass as follows

µID
t+1(0, Q) = λB −

∑
Ωk

∑
Q

µLP
t (∅, Q) (C.7)

µID
t+1(k + 1, Q) = µID

t (k,Q) +
∑
Ωk

µLP
t (Ωk, Q)(1−min{1,

[
1−

∑
n ν

ID
t (n) +

∑
Hn∈H+

N
∪H−

D
νLP
t (Hn, N)−

∑
k µ

ID
t (k,Q)∑

Ω,Q µ
LP
t (Ω, Q)

]+

})

(C.8)

ν ID
t+1(n+ 1) = ν ID

t (n) +
∑

Hn∈H+
N

νLP
t (Hn, N) +

∑
Hn∈H−D

νLP
t (Hn, D) (C.9)

for n, k = 1, . . . ,K.

From equation (C.3), it becomes clear that at any equilibrium point (µLP, νLP, µID, νID) we must have

min{1,
∑
k µ

ID
t (k,Q)∑

n ν
ID
t (n) +

∑
Hn∈H+

N
νLP
t (Hn, N) +

∑
Hn∈H−D

νLP
t (Hn, D)

} = 1

thus all the system equations are simplified. By (C.8) and (C.9), it also follows that the total sum of
minority workers and the total sum of employers out of the learning pool (ID) remains constant. The
same follows for minority workers and employers in the learning pool; furthermore, their total mass
is equal, i.e.

K
∑
Q

µLP(∅, Q) =
∑
Hn,e

νLP(Hn, e). (C.10)

To compute the fixed point (µLP, νLP, µID, νID) we proceed as follows. We start with equation (C.4)
and observe that the value of µLP depends on the fraction of D employers in the learning pool, i.e.
the factor j(D) ,

∑
Hn

νLP(Hn,D)∑
e

∑
Hn

νLP(Hn,e)
, which is constant at the equilibrium point.

Our goal for the welfare of minority workers in the learning pool is to improve it or at least keep it the
same as in UM. Suppose that we choose a target j(D) ≤ λD

λD+λN
. Solving for µLP, we can compute

µLP as a function of our chosen j(D) and quantities µLP(∅, H), µLP(∅, L). Note that arguments similar
to the ones in the proof of Lemma A.1 prove that, given any 0 ≤ j(D) ≤ 1, there exists a unique
solution µLP to (C.3)-(C.4). We can compute this solution by constructively starting from Ω1 = ∅.
Substituting each factor µLP(Ωk,Q)

K
∑
Q µLP(∅,Q) in (C.6), we also find a unique solution νLP.

Forming the equation

j(D) =

∑
Hn

νLP(Hn, D)

K
∑
Q µUM(∅, Q)

, (C.11)

we find that the RHS in (C.11) is linear in j(D) thus it has at most one solution. If it has a solution
j(D) ≤ λD

λN
, then we have found a desired equilibrium point. If not, then, for the second part of the

lemma statement, we still need to prove that, we can always find large enough K, θD and θN , such
that the system (C.3)-(C.9) has a fixed point solution with j(D) ≤ λD

λN+λD
leading to an equilibrium

point that strictly improves the welfare of minority workers.

We construct such a solution as follows. The most important step is to define a high enough θN such
that, given our chosen K, no employer D or N can get identified as N . Since K is finite, this is
always feasible for large enough θN . Next, we need to specify a large enough θD, so that the fraction
of D employers who get identified as D is strictly larger than λD

λN+λD
. By Lemma D.4, we can find
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such a θD. The intuition is as follows. Consider only employers who have rejected all the workers
they were matched to. Then, by Lemma D.4 and the fact that all employers in the learning pool have
the same probability to get matched to workers with histories Ω1, . . . ,Ωn, we get that
P(Hn = {(0,Ω1, B), . . . , (0,Ωn−1, B)} | e = D) > P(Hn = {(0,Ω1, B), . . . , (0,Ωn−1, B)} | e = N)

(C.12)
with strict inequality for at least some Ω1, . . . ,Ωn−1 (for example, Ω1 = . . . = Ωn−1 = ∅).
Then, consider the setHD of all employer histories Hn such that an employer gets D-identified4, i.e.
HD = {Hn = {h1, . . . , hn−1}, n ∈ N : ln(Hn) > θD and ln′(H ′n) ≤ θD,∀Hn′ = {h1, . . . , hn′−1}, n′ < n}.

(C.13)
For θD large enough, the set HD contains only a subset of the histories of the form Hn =
{(0,Ω1, �), . . . , (0,Ωn−1, �)}. Therefore, by equation (C.12), it follows that∑
Hn∈HD

νLP(Hn, D) = νLP(∅, D)
∑

Hn∈HD

P(Hn | e = D) > νLP(∅, D)
∑

Hn∈HD

P(Hn | e = N) =
λD
λN

∑
Hn∈HD

νLP(Hn, N).

Equivalently, we get the result we wanted, i.e j(D) ≤ λD
λD+λN

.

Lemma C.3. Given a threshold θ > 0, the probability that a D employer is incorrectly N -identified
is

P(ln ≤ −θ for some n ≤ K | g = D) ≤ λN/λD
θ

(C.14)

while the same probability for N employers is also

P(ln ≥ θ for some n ≤ K | g = N) ≤ λN/λD
θ

. (C.15)

Proof. It follows from the fact that the likelihood ratio P(g=D|Hn)
P(g=N |Hn) is a Martingale and we can apply

Doob’s martingale inequality to prove it.

Proof Sketch of Theorem 3. At the steady-state equilibrium of the market (see the proof of Lemma
C.2 for details), a fraction xID ≥ 0 of the incoming minority workers is matched at least to some
N -identified employers. A fraction xUM ≥ 0 of the incoming minority workers is randomly matched
N or D (unidentified) employers where he matches to D employers with probability λD

λD+λN
(exactly

as under UM). The rest 1− xID − xUM > 0 enter the learning pool.

An incoming minority worker who will be matched with N -identified employers (with probability
xID) will have a higher welfare in expectation. More specifically, by Lemma C.3, a D employer
incorrectly becomes N -identified with probability

P(ln ≤ −θN for some n ≤ K | g = D) ≤ λN/λD
θN

,

meaning that at most a fraction λN/λD
θN

of the D employers are actually get identified as N . For large
enough θD and θN , the probability to match with a D employer who was identified as N is smaller
than the probability λD

λD+λN
to match with a D employer under the UM policy.

Similarly to the proof of Theorem 1, we can show that, given the fact that an incoming minority
worker of skill level Q has been selected to match mostly with N -identified employers, his expected
welfare WB

Q,ID increases compared to his welfare WB
Q,UM under UM.

On the other hand, we can control (via θN and θD, if necessary; see Lemma C.2 for details) the
fraction j(D) of D employers who are in the learning pool at each time t so that j(D) ≤ λD

λD+λN
.

Thus, an incoming minority worker who enters the learning pool (with probability 1− xID − xUM)
will have better expected welfare WB

Q,LP than the welfare WB
Q,UM he had under the UM policy.

Finally, putting everything together, we get that
WB
Q,DM(K) = xIDW

B
Q,ID + xUMW

B
Q,UM + (1− xID − xUM)WB

Q,LP > WB
Q,UM.

Consequently, the discrimination gap decreases, i.e.
dDM(Q,K) < dUM(Q,K).

4Observe that, given our previous definitions, it holds thatHD = H+
D = H−N .
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D Auxiliary Lemmas

Lemma D.1 (Theorem 5.3.2 in [9]). Let Ft be a filtration with F0 = {∅,Ω} and Et, t ≥ 1 a
sequence of events with Et ∈ Ft. Then,

{Et i.o.} = {
∞∑
t=1

P(Et | Ft−1) =∞} (D.1)

Lemma D.2 (Theorem 1 in Appendix to Part II in [5]). Let Ft denote the σ-field of events generated
by the random variables θ1, X1, . . . , θt, Xt. Consider the Robbins-Monro stochastic approximation
algorithm

θt+1 = θt + γt+1H(θt, Xt+1) (D.2)
where

E(H(θt, Xt+1)− h(θt) | Ft) = 0 (D.3)
with h(θ) =

∫
H(θ, x)µθ(dx). Specifically, suppose that

σ2(θ) =

∫
|H(θ, x)|2µθ(dx) ≤ C(1 + |θ|2) (D.4)

for some constant C, as well as that the following stability condition holds

∃θ∗ : sup
ε≤|θ−θ∗|≤ 1

ε

(θ − θ∗)Th(θ) < 0 for all ε > 0. (D.5)

With the above assumptions, if the sequence {γt}t≥1 satisfies
∑
γt =∞,

∑
γ2
t <∞, then θt → θ∗

almost surely.
Lemma D.3 (Theorem 22 in Section 1.1.10 in [5]). Let γt = A

na+B for some 0 ≤ a ≤ 1. Under the
assumptions in Lemma D.2, the algorithm (D.2) has the following property

E(|θt − θ∗|2) ≤ κ(a)γt (D.6)

for some suitable constant κ(a).

Lemma D.4. Under the naive social learning rule (2), the following properties hold:

(i) P((1, g) | Q,Ωk, g = N) ≥ P((1, g) | Q,Ωk, g = D)

(ii) P((1, b) | Q,Ωk, g = N) ≥ P((1, b) | Q,Ωk, g = D)

(ii) P((1, �) | Q,Ωk, g = N) ≥ P((1, �) | Q,Ωk, g = D)

(For at least qDk ≤ q0, we also have strict inequality.)

Proof. (i) Observe that

P((1, g) | Q,Ωk, g) = P(Ak + 1{Q=H}+Pk ≥ 0, Ak + qek + µP ≥ 0) =

=

∫ α

max(a,−µP−qek)

∫ p

−a−1{Q=H}

fA(a)fP (p) dp da.

Since qNk > qDk by Lemma 1, we get that

P((1, g) | Q,Ωk, g = N)− P((1, g) | Q,Ωk, g = D) =∫ max(a,−µP−qDk )

max(a,−µP−qNk )

∫ p

−a−1{Q=H}

fA(a)fP (p) dp da ≥ 0.

(ii), (iii) Similar to (i).

We note that, unless a ≥ −µP − qDk , all parts hold with strict inequality. By Assumption 1, for
qDk ≤ q0, we always have strict inequality.
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Lemma D.5 (Lemma 4.3 in [3], Lemma A.3 in [11]). Let X1, X2, . . . be i.i.d random variables on
some finite state space X with marginals p(x). Let f (i) : X → R such that 0 < E(f (i)(Xi)) <∞,
i ∈ I where I is finite. Let S(i)

n = f (i)(X1) + . . .+ f (i)(Xn), L(i)
a =

∑∞
n=1 1 {inft≥n S

(i)
t ≤ a}

and La = maxi∈I L
(i)
a . Then,

lim sup
α→∞

E(La)

α
≤ 1

mini∈I E(f (i)(Xi))
. (D.7)

E Extensions: Social bias and belief updating

E.1 Taste-based social bias

In this section, we focus on the case of taste-based social bias. As we discuss next, discrimination
persists even under this type of bias but learning which employer is discriminating is inherently easier.

In contrast to the case of belief-based discrimination, discriminating employers with taste-based
bias have the same prior belief q0 = G0

N0
about minority and majority workers but will knowingly

discriminate against minority workers due to pure preference. Specifically, we consider that, if the
employer k of group e hires the worker of social group c, she receives utility

Uk = Ak + 1{Q=H}+Pk + rec , (E.1)

where ρec is an employer group-specific taste parameter about race.5 We normalize rNB = rNA =
rDA = 0 and rDB = −r < 0. Furthermore, the ex ante idiosyncratic term Ak, ex post idiosyncratic
term Pk and constant r should satisfy the richness assumption.6

It follows that, if social bias is taste-based, then inequality in hiring probabilities persists even under
perfect information. On the one hand, discrimination with respect to worker welfare still occurs
(see Theorem 1). On the other hand, it means that even a minority worker with many reviews and
average rating score of 1 will face discrimination. However, this result comes in contrast to the
empirical findings in online platforms [8, 1] which point towards belief-based discrimination. For
example, as we have already mentioned in Section 1, Cui et al. [8] find that the existence of a review
on the guest’s profile can help attenuate discrimination on Airbnb; good reviews have the greatest
impact but even a negative or a blank review can have positive effect on discrimination. In contrast, if
social bias is belief-based, the employer behavior in our main model is consistent with the empirical
observations. As Lemma 1 and Lemma 2 suggest, the difference in hiring probabilities of equally
skilled minority and majority workers is amplified for workers with fewer or zero reviews. In the
limit K →∞, where the number of reviews goes to infinity and uncertainty fades, hiring inequalities
diminish (Theorem 2).

Other representations of taste-based social bias. Several other representations of taste-based social
bias may be considered. One alternative model of taste-based social bias could be the following.
Suppose that we modify the baseline model in Section 2 so that discriminating employers have the
correct prior belief q0 about minority workers’ skill level but they knowingly discount their belief by
β, i.e.

qDk = β
Gk +G0

Gk +Bk +N0
. (E.2)

In this case, the difference qNk − qDk = (1 − β) Gk+G0

Gk+Bk+N0
is positive, but, in contrast to Lemma

1, does not necessarily decrease over time. On the contrary, the difference increases as the number
of good reviews Gk increases but reduces as the number of bad reviews Bk increases. Hence, if
social bias is taste-based, N employers are mostly discriminating against minority workers with high
rating scores. As in the previous model of taste-based social bias, such a behavior by discriminating
employers might be less natural but is in fact inconsistent with the relevant empirical studies (see
e.g. [8]). In any case, we note that a similar result to Theorem 1 also holds in this case of taste-based
social bias.

5Several papers [4, 7, 8] model taste-based preference by adding a constant taste parameter to the agents’
utility structure.

6That is, a + µP − r ≥ 0, a + µP + q0 − r ≥ 0 as well as a + p − r > 0, a + 1 + p − r < 0 (see
Assumption 1).
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Finally, a third alternative of taste-based social bias could be the following. Discriminating employers
have the correct prior belief q0 about minority workers but with some probability p (per period)
do not hire any minority worker regardless of the worker’s review statistics. Similarly to the other
taste-based models, the inequality in hiring opportunities still persists.

DM policy under taste-based social bias. It is important to mention that our DM policy (and its
basic learning component) will also be effective for employers with taste-based social bias. Of course,
the decrease in the discrimination gap may differ but the proof of Theorem 3 will follow along the
same technical arguments. Hence, this result indicates that, given any of the aforementioned taste-
based models or our belief-based model in Section 2, the DM policy will reduce the discrimination
gap.

E.2 Bayesian agents

In this paper, we assumed that agents are characterized by bounded rationality and limited computa-
tional ability in order to approximate a more realistic representation of real human behavior. However,
studying an alternative model of Bayesian agents (with biased private signals or biased prior beliefs)
would be an interesting direction to pursue.

Given our framework, Bayesian D employers have misspeficied prior beliefs about minority workers.
Instead of the naive rule (2), they use Bayes’ rule to compute their belief

qek = P(Q = H | c,Bk, Gk)

that a worker of social group c and review statistics Bk, Gk is high-skilled. For simplicity, we can
assume that employers also know k; alternatively, we could assume that they have a uniform prior on
this variable (as in [2] and [10]). If employers ignore the existence of other types of employers other
than their own, we claim that there exists discrimination against minority workers.

However, in more general settings, it is not clear whether discrimination can possibly change direction.
For example, Bohren et al. [7] consider the case of Gaussian distributions in a - different from ours
- two-period setting where some biased agents may have a lower, misspecified prior. Interestingly,
they find that, under certain condition, the belief of the biased agents about the minority group may
become larger than the belief of the impartial agents about the same group. Within a simplified
version of our framework, it is possible to show that under more general conditions on the distribution
of idiosyncratic preferences and for workers with at least one review, discriminating employers may
have a higher belief for minority workers than majority workers. Exploring the exact relation of
Bayesian agents and discrimination and comparing it to the case of naive agents is left for future
research.
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