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1 Hardness of cost effective active search

In this section, we present the proof of Theorem 1 in the main text, restated below:

Theorem 1. Any algorithm A with computational complexity o (n") has an approximation ratio
Q(ne), for e = 0.16; that is,
E[cost 4]
- Y = Q € 1
opT (), (1)

where E[cost 4] is the average cost of A, and OPT is that of the optimal policy.

Proof. We begin our proof by constructing a very similar class of instances H as inJiang et al.[[2017]],
with different parameter settings. We reproduce the instance illustration in[Jiang et al|[2017] here in
Figure[I] and briefly summarize the essences; details can be found in the supplementary materials of
Jiang et al|[2017]. Each instance in the class has n points with two types: “clumps” and “isolated
points”.

“Clumps.” As shown in Figure there are n*¢ clumps, and each one has T' = n¢ points with the
same labels, where € is a small constant such as 0.1. There is exactly one positive clump. So a priori
the marginal probability of each clump point being positive is p, = 1/n%°.

“Isolated points.” The remaining n —n® = ©(n) points are isolated points, they are all independent
to each other; these points are further categorized into two classes: a “secret set” and totally
independent points.

* The secret set, denoted by S (Figure [Ta), encodes the location of the positive clump in
the following way: S contains m = log,(n¢) = 4elogn groups Sy, Sa, . . . , S, each of
size n?¢; each S; are further partitioned into d = n¢/(1 — 5¢) groups[ﬂ, with each group
having ¢ = n€ points. Each of the jth (j = 1,...,d group in S;,¢ = 1,...,m encodes
one virtual bit b;; by taking the OR operation on the c labels (i.e. b;; = 1 iff at least one
of the ¢ points are positive); then the d bits b;1, . . . , b;q encode a virtual bit b; using XOR,
ie., b; = bj1 @ D byg. We set probability of each pointin S as p; = 1 — 21% so that
Pr(b;; = 1) = (1 — py)° = %, which also leads to Pr(b; = 1) = 1. Finally the binary
string b1 b - - - b, determines the index of the positive clump.

* The remaining n — T'2™ — mdc points, denoted as set R, are totally independent to each
other and any other points. The probability of any point in R is also p,.

The goal is to find T" points with minimum labeling cost.

The two observations given in the proof of Jiang et al.| [2017] still hold, as restated as following.

"here dividing by (1 — 5¢) is not essential; only for the purpose of getting a simpler formula in our theorem.
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Figure 1: An instance of active search where any efficient algorithm can be arbitrarily worse than an
optimal policy.

Observation 1. At least d points from S; (for any i) need to be observed in order to infer one bit b;
of information about the positive clump.

Observation 2. Observing any number of clump points does not change the marginal probability of
any point in the secret set S.

Consider a random instance Z € H. We assume any policy has access to the correct marginal
probability Pr(y | z, D) where D may contain current observations and/or some “lookahead” points,
and we limit the lookahead amount to be d since an optimal policy operates under such condition.

Upper bound of an optimal policy. With unlimited computational power, a policy can first compute
the marginal probability of an arbitrary fixed clump point, conditioning on every possible subset of
the isolated points of size d with labels all equal to 1. This set of O(n?) inference calls will reveal
the location of the secret set, since exactly those points that could change the marginal probability of
any fixed clump point are the secret points. Then the policy could query the identified positive clump
and is guaranteed to achieve the target 7" in time 7'. So the total cost of an optimal policy is upper
bounded by |S| + T, i.e.,

4
OPT < mdc+ T = 7 € p2e logn + n* = O(n*). (2)

— O€
In our asymptotic notations, all log factors will be omitted.

Lower bound of any policy with limited computational power. Fix a policy .A. Our goal is to
show that with o (n"") inference calls, the expected cost of A is lower bounded by 2 (n¢). The key
is to bound the probability of A revealing the secret set throughout its execution. By Observation [I]
and[2} A can make inference calls Pr(y | «, D) to distinguish points in S from those in R only when
|D N S| > d. Suppose that before the ith inference call, A has no information about . Then the
chance of A choosing a set D such that |D N .S| > d is no better than that of a random selection from
n' =n—2MT =n —nb = O(n) points. Since our goal is to prove a lower bound of the cost in the
order of 2(n3¢), we allow A to make inference calls Pr(y | z, D) with |D| < n3¢. Note this is much
larger than the lookahead limit d. We can upper bound the probability of A choosing a dataset D
such that [D N S| > d, by counting how many subsets would contain at least d points from S, among
all subsets of the n’ points of size at most 3 = n3¢:

") (5-4)

Pr (DN S| > d) < ( 3)
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With « such inference calls, the probability p; of at least one of them hitting the secret set can be
union bounded by

o
p<0(-). (©)
n
Hence for any ov < n” ¢ (for any positive constant §),
1
pr <O (né) : )

If A ever hits the secret set S, we simply assume it will find all 7" positives with zero cost. If not, then
A can do no better than random selection, and its expected cost is T'/ps (note ps > p., and querying
n3¢ clump points would not make the remaining clump points’ grobabilities higher than p;). So the
overall expected cost is lower bounded by pp, - 0+ (1 —pp) - - = O(n3<). Here we used the fact

that ps = 1 — 21% = @(%), which is easy to verify by L’Hopital’s rule.

Therefore,
Elcost4] = Q(n3)
OPT O(n?)
That is, any policy A for cost effective active search with a = o(n™") inference calls would have
expected cost at least 2(n€) times more than the optimal cost. The proof holds for € such that

n’ =n — n® = O(n) indicating 6¢ < 1, and for (5) to hold, we have 5¢ < 1. We can set ¢ = 0.16,
which is less than 1/6.

—Q(n). @®)

O
Remark 1. The parameters of the constructed instance are set to satisfy the following constraints:

* Make OPT linear in T, which means T = Q(|S]).

* Our goal is to prove an )(n€) bound, so the probability of the secret points ps = 1 — 21% =

O(1/c) should be O(-L-). This is because OPT is set to be linear in T and the cost upper
bound of a uniform random policy T [p, should be at least Q(n°) - T.

* Make the probability of secret points larger than that of the clump points, i.e., ps > D,
otherwise the cost upper bound would be T'/p.. So we have # > That makes
m > elogn.

2m:

e The number of clump points should be less than the total number of points. That is,
n > T - 2™, which leads to m < (1 — 2¢) log n.

* d controls the scale of the computational complexity bound and lookahead limit, the larger
the tighter would be the bound.

2 Example mass functions of negative Poisson binomial distribution

Figure2]shows some examples of negative Poisson binomial distributions using the posterior marginal
probabilities shown in[2a] We sort the probabilities in decreasing order since this is obviously the
order that leads to minimum E[m], which is what we care in CEAS.

3 All results of materials and drug discovery

In the main paper, we only showed the results for ENS and CEAS with their best parameters. Table|[T]
and 2] show the full set of results for all tested policies. Note we did not test CEAS-50 and CEAS-0.5
for drug data since we expect them to be worse, according to Table[2]

Figure [3] show the cost curves for each individual drug discovery datasets. The average of the 9 plots
is shown in the main text.
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Figure 2: Illustration of a probability vector [py, pa, . . .
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, Dn] and the corresponding probability mass

functions of NPB distribution for different r. Left: the top 1500 posterior marginal probabilities after
conditioning on 100 positive and 100 negative points (randomly selected); probabilities are computed
using a k-nn model (with k£ = 50) on the CiteSeer dataset; middle: = 50; right: » = 200.

Table 1: Results for all tested policies for the materials discovery dataset.

50 100 200 300 400 500 1000 1500 average
GREEDY 84.5 175.0 3477 5225 721.8 9241 20259 29817 9729
TWO-STEP 86.0 179.1 349.0 5332 7350 938.1 1973.1 30194 976.6
ENS-10 81.7 167.8 3392 5204 7219 9398 1896.1 2836.5 9379
ENS-30 786 1640 3358 5152 7247 9274 17958 2799.3 917.6
ENS-50 78.0 1625 329.6 517.0 729.6 926.6 1793.0 28122 918.6
ENS-70 81.5 1651 337.7 5246 7200 910.0 1790.6 2757.0 910.8
ENS-0.1 84.2 1772 3432 520.6 71777 9463 1804.7 2765.1 9199
ENs-0.3 83.6 171.1 3402 5182 689.5 917.1 18159 27394 909.4
ENS-0.5 823 1627 3354 5353 6932 8979 18128 27364  907.0
ENS-0.7 80.2 1678 3284 509.7 708.6 8874 17985 2773.6 906.8
ENCES-10 873 173.8 3450 5183 719.0 930.0 18255 2886.7 935.7
ENCES-20 88.8 167.5 3354 5185 7151 9250 1779.7 2761.6 9114
ENCES-30 88.4 164.1 3327 511.5 703.7 8984 17347 2768.2 900.2
ENCES-40 79.3 154.6 330.3 5238 713.2 910.0 17488 2757.6 902.2
ENCES-50 852 156.4 330.8 5184 7014 885.7 17454 2753.2 897.1
ENCES-0.1 86.2 1739 3415 517.0 716.1 9455 1844.1 27753 925.0
ENCES-0.2 845 167.6 3349 506.7 7209 9195 1845.1 2805.7 923.1
ENCES-0.3 855 1703 3336 524.2 709.1 884.5 1823.6 2767.0 9122
ENCEs-04 834 1586 331.2 5320 7045 8814 1797.0 2808.3 912.0
ENCEs-0.5 87.1 1643 3369 513.7 6839 8919 17741 27240 897.0
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Table 2: Results for all tested policies for the nine drug discovery datasets.
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50 100 150 200 average
GREEDY 21577 4144 503.2 5874 430.2
TWO-STEP 71.7 1560 2432 3224 1984
ENS-10 59.3  133.0 2119 2914 1739
ENS-30 58.8 1349 2083 2833 1713
ENS-50 586  137.3  205.1 2863 171.8
ENS-70 80.2 197.4 2073 288.8 1935
ENS-0.1 61.3 1422 219.1 2975 180.1
ENS-0.3 59.5 1330 2153 2928 1752
ENS-0.5 59.2 132.6 2150 2879 173.7
ENs-0.7 59.1 1328 2120 2842 172.0
ENCES-10  57.3 1195 1962 2736 161.7
ENCES-20 56.3 112.7 1845 2551 152.2
ENCES-30  75.1 1284 196.5 261.5 165.4
ENCES-40 1024 1659 2215 2823 193.0
ENCES-0.1  58.2 1973 1950 2714 1805
ENCEs-0.2 729 116.0 1948 2989 170.7
ENCES-0.3 57.1 1215 267.6 3189 1913
ENCEs-04 56.8 1344 2755 319.8 196.6
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Figure 3: Average cost versus the number of positives found for 9 drug discovery datasets. The total
number of positives are 553, 378, 506, 1023, 218, 916, 1024, 431, 255, respectively.



Table 3: Average pruning rate across all iterations in all experiments for the reported ENCES policies.

BMGs drug discovery

ENCES-50 ENCES-0.5 ENCES-20 ENCES-0.2
98.64% 98.01% 99.03% 99.06%

4 Implementation and pruning

To enable fast update of the posterior probabilities, we use &k nearest neighbor (k-nn) model, following
Garnett et al.|[2012] and Jiang et al.|[2017,|2018]]. We briefly describe the model again. Intuitively,
the posterior probability of a point is computed by counting the proportion of observed positive
points in its k nearest neighbors. Formally, let N(z) denote the set of k nearest neighbors of x, and
LN(z) C N(z) be the possibly empty subset that is currently labeled. Then the posterior probability
of x conditioned on D is

v+ Zm’GLN(z) y/
1+ |LN(x)]

Pr(y=1|z,D) = )
Here 7 is a constant accounting for “pseudocount” of the positives. We set it to our prior belief of
the proportion of positives in the pool. So when there are no observations in its k nearest neighbors,

we use the prior belief. For BMGs data, we set v = 0.05. For the drug discovery datasets, we set
v = 0.001.

When conditioning on a new point z, only those points having z in its k nearest neighbors need
to be updated. Assume conditioning on one point changes at most & probabilities (k is roughly
O(k)), then use the implementation tricks in Jiang et al.| [2017]], our policy can be computed in

(@] (n logn+n (l;: log k + E[mﬂ)) (note under the k-nn model, E[m~] is always no less than
E[m™)).

To further improve the computational efficiency, we develop similar pruning techniques as for policies
in the budgeted case [Garnett et al., 2012} Jiang et al.,|2017}2018]]. Assume we have upper bounds p
of the probabilities after one additional positive observation: that is Vo € X' \ D;,

p(z) > Pr(y |z, D;, 2’y = 1),Va' € X. (10)

We can compute a lower bound of E[m™] using p. If we also assume observing a negative does not
increase the probability of any other point (the k-nn model satisfies this condition), then a natural
probability upper bound after observing a negative point is simply the current probability

Pr(y | z,D;) > Pr(y | z, D, 2,y = 0), (11

and we can compute a lower bound of E[m~] using Pr(y | z, D;). Combining both lower bounds we
get a lower bound of f(z),Vz € X \ D;. Itis easy to see the bound is tighter with smaller r. This
bound can be used to prune points in a similar fashion as in [Jiang et al.,[2018].

To find the point z* = argmin, f(x), we evaluate the candidate points in increasing order of the
lower bound, and maintain the minimum of currently evaluated points as an upper bound of min f(z);
we can stop whenever the lower bound becomes greater than the upper bound. We will show that
often only a very small percentage (e.g. 1%) of the candidate points need to be evaluated in each
iteration.

Pruning results. We also show the effectiveness of our pruning technique in Table[3] The second
row indicates the policy as reported in the main text. The third row shows the average percentage
of pruned points over all candidates in each iteration; the average is taken over all iterations and all
experiments. We see the pruning is very effective on all datasets; most of the time only 1% of the
points need to be evaluated in each iteration.
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