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A Tensor and Tensor Slice

As introduced in [2], a tensor and the tensor slice can be defined as follows.

Definition 1 (tensor). LetD1,D2, . . .,DN∈ N denote index upper bounds. A tensorA ∈ RD1,...,DN

of order N is an N -way array where elements Ad1,d2,...,dn
are indexed by dn ∈ {1, 2, . . . , Dn} for

1 ≤ n ≤ N .

The concept of tensor slice is specified as:

Definition 2 (tensor slice). A tensor slice is a two-dimensional section (fragment) of a tensor, obtained
by fixing all indexes except for two indexes.

B Theorem 3.1

Let e1, . . . , en be basis vectors from the vector space S. Assume that these vectors e1, . . . , en are
linear independent and Q,K,V can be linearly represented by this set of basis vectors. The output of
self-attention function in Eq. 2 (in the paper) can be represented by a linear combination of the set of
these basis vectors.

Attention(Q,K, V ) = (e1, . . . , en)M, (1)

where M ∈ Rn×d is a coefficient matrix, and d is a dimension of these matrices (i.e., Q, K, and V ).

Proof. If Q, K and V ∈ Span(e1, . . . , en), the linear combination representation of matrices Q,K
and V can be written as follows:{

Q = (e1, e2, . . . , en) (α1,α2, . . . ,αd)
K = (e1, e2, . . . , en) (β1,β2, . . . ,βd)
V = (e1, e2, . . . , en) (ξ1, ξ2, . . . , ξd)

(2)

The self-attention function is written as follows [8]:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V, (3)
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where QKT can be computed as follows:

QKT = (e1, e2, . . . , en) (α1,α2, . . . ,αd)(β1,β2, . . . ,βd)T (e1, e2, . . . , en)
T (4)

As a result, the input of softmax function is a product of coefficient matrices (α1, . . . ,αd) and
(β1, . . . ,βd)T . Then, we have

softmax(
QKT

√
d

) = (e1, . . . , en)softmax(A/
√
d)(e1, . . . , en)T (5)

where the matrix A is equal to (α1, . . . ,αd)(β1, . . . ,βd)T . Therefore, the attention representation
can be written as follows:

softmax(
QKT

√
d

)V = (e1, e2, . . . , en) softmax(A/
√
d)(ξ1, ξ2, . . . , ξd)

= (e1, e2, . . . , en)M

(6)

where the matrix M is equal to softmax(A/
√
d)(ξ1, ξ2, . . . , ξd). The softmax(A/

√
d) is to

normalize the coefficient matrices of Q and K. It turns out that the output of the attention function [8]
can be represented by a linear combination of the set of basic vectors.

After the proof, it is helpful to describe the basic idea. First, we consider that the self-attention function
can be linearly represented by a set of orthogonal basis vectors, when the input of softmax function
is the product of two coefficient matrices, (α1,α2, . . . ,αd) and (β1,β2, . . . ,βd)T , respectively.
Second, in constructing the multi-head mechanism, the matrices of basis vectors (e1, e2, . . . , en) can
be shared.

C Corollary 1

Under the same conditions as in Theorem 3.1 and the value of N is equal to the value of d, the
Single-block attention representation Eq. 5 (in the paper) can reconstruct the Scaled Dot-Product
attention in Eq. 2 (in the paper) by the summing over the tensor (i.e., the output of Single-block
attention function) according to the second index. It holds that:

Attention(Q,K, V )i,m =

N∑
j=1

AttenTD(G;Q,K, V )i,j,m, (7)

where i, j and m are the indices of the Single-block attention output (i.e., a 3-order tensor).
AttenTD(·) is the function of the Single-block attention based on Tucker decomposition. i and m
are the indices of outputs (i.e., a matrix) from Eq. 2 (in the paper).

Proof. In Theorem B, we have proved the results about the attention function can be represented by
a linear combination of basis vectors. Therefore, we can represent the self-attention function in Eq. 2
(in the paper) by the form as follows:

Attention(Q,K, V ) = ΘQKTV (8)

where Θ is a normalization factor matrix, which can be used to replace the use of a sofmax function.
We assume that Θ contains all the non-zero elements of the core tensor G. The self-attention in Eq. 2
(in the paper) can be re-written as follows:

Xi,m =

N∑
k=1

R∑
r=1

Θi,mQi,rKk,rVk,m (9)

where N is the length of a sentence, Xi,m = Attention(Q,K, V )i,m is the entry of the output from
the self-attention, and R is equal to d. Here the core tensor G is same as that in Eq. 7 (in the paper).
Then, the Single-block attention (a 3-order tensor) can be represented as follows:

Ai,j,m =

R∑
p

R∑
q

R∑
r

Gp,q,rQi,pKj,pVm,r (10)
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Figure 1: Tensor A is a 3-order tensor, which represents the Single-block attention in the left. Ai,j,k

is the entry of the tensor A. In the right, the graph represents that the summing of tensor slices which
is from the tensor splitting in index j. This graph can help us to understand the main content of
corollary C.
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Figure 2: A diagram about a comparison of parameters between multi-linear attention and multi-head
attention.

where A is a 3-order tensor, which is equal to AttenTD(G;Q,K, V ). Accordingly, Ai,j,m is a
entry in tensor A and is equal to AttentionTDi,j,m in Eq. 7. Next, we aim to prove Eq. 7 can be
established. Therefore, we need to establish the relation between Eq. 10 and Eq. 9. Since the core
tensor G is a special tensor (i.e., diagonal tensor), Eq. 10 can be written as follows:

Ai,j,m =

R∑
r=1

Gr,r,rQi,rKj,rVm,r (11)

After that, we can compute the attention representation through adding to model k. For better
understanding, we give the graph representation in Figure 1.

Xi,m =

N∑
j=1

R∑
r=1

GrrrQi,rKj,rVm,r

The corollary then holds.

D Compression Ratio about Multi-Linear Attention

In order to compute the compression ratio, we need to compare multi-linear attention with multi-head
attention. The comparison chart has been given in Figure 2.

In Figure 2, each Linear function in multi-head attention is about a weight matrix W ∈ Rdmodel×d,
and all weight matrices in multi-head attention are different. In multi-linear attention, three weight
matrices are used and h (a number) weight vectors are used. Through the analysis about Figure 2, the
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compression ratio is computed as follows.

compression ratio =
3× h× dmodel × d

3× dmodel × d+ h× d

=
3× h× dmodel

3× dmodel + h

(12)

In practice, h is equal to 8 and d is equal to 512. The compression ratio approximates 8 in this case.
In our work, the dimension of vector Gr is set as R which is smaller than d, where d is the dimension
of attention matrix.

Low-rank Approximation for Model Compression In the paper, we have described that our method
combines two compression ideas, namely low-rank approximation and parameters sharing. Parameters
sharing can be understood through the description of Figure 2. In Multi-linear attention, the idea
of low-rank decomposition also has the function of model compression. We have proved that the
Single-block attention can re-construct an one-head self-attention in Transformer. In order to obtain
the representation of a tensorized attention, we adopt the tensor splitting and the concat function.
After that, we consider that each tensor slice from tensor splitting approximates the output of the self-
attention function Eq. 2 (in the paper). When we only focus on the idea of low-rank approximation,
the compression ratio can be computed by the form, N×d

N×N , where N is the length of a sequence, d is
the dimension of a matrix (also namely hidden size). N is smaller than d, normally.

Through combining the ideas of parameters sharing and low-rank approximation, by formally
considering the rank R, the compression ratio of Multi-linear attention model can be computed as
follows:

compression ratioR =
3× h× dmodel × d

3× dmodel × d+R× h
, (13)

where R is the rank of the core tensor G. The compression ratio will be larger when R is smaller.
This compression ratioR is the compression ratio associated with R. R need to be set in practice.
In experiments, R can be set to 18, which is smaller than dmodel.

E Experiment

E.1 Partial Structure about Tensorized Transformer

in the paper, the multi-linear attention is proposed. In order to show that the process of incorporating
multi-linear attention into Transformer, Figure 3 gives out some information about the structure.

E.2 Experimental Details in Language Modeling

Now, we report some details of experiments as a relevant supplementary material. Firstly, we
use three weight matrices W q,W k and W v to linearly project the queries, keys and values. The
outputs from the linear projections can be shared by h times, where h is the number of core tensors
in our background (i.e., core-1(h=1), core-2(h=2)). We use Block Term Tensor decomposition
(BTD) to construct a new representation, namely Multi-linear attention, which is a 3-order tensor.
For incorporating the proposed attention into the architecture of Transformer, we split the 3-order
tensor, and then concat each matrix from the tensor. For other layers, we use the same structure as
vanilla-Transformer.

Hardware

We trained our model on one machine with 2 NVIDIA P40 GPUs. For our base models, the
hyperparameters are described in Table 1. In addition, we set the dropout=0.3 in all datasets. The
model is trained using 30 epochs in three datasets (PTB, WikiText-103 and One-Billion).

Optimizer We used the Adam optimizer and vary the learning rate over the course of training.
The vary formula [8] is followed in our work. We also used the warmup_steps = 4000. Label
Smoothing is employed with the value ε=0.1.
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Figure 3: A diagram which is about the incorporating of multi-linear attention in partial Transformer
structure. The parameters are shared in the constructing of each single-block attention.

Table 1: The hyperparameters in the Tensorized Transformers model

Datasets dhead dff h L dk dv Test PPL

PTB 256 2100 2 3 40 40 49.8
WikiText-103 256 2100 2 6 40 40 18.9
One-Billion 1024 2100 2 6 40 40 19.5

E.3 Experiment Details in Neural Machine Translation

The Tensorized Transformer also has been applied to Neural Machine Translation task. In this
experiment, we use the same setup with Transformer [8], and replace the multi-head attention with
the proposed multi-linear attention in the encoder structure. In the decoder structure, we still use the
multi-head attention for verifying the effectiveness of encoding a sentence. The model is trained in 1
NVIDA P40 GPUs.

E.4 Experimental comparison

For a more detailed comparison, we design these experiments as follows. In this section, we mainly
show the experimental results on two language modeling datasets, i.e., PTB and WikiText-103. We
show the value of perplexity, as well as FLOPs2 correspondingly.

Model PTB WikiText-103
Params FLOPS Test PPL Params FLOPS Test PPL

Transformer-XL [3] 24M 11.5B 59.1 257M 996.5B 18.3
Tensorized Transformer 24M 5.4B 52.7 257M 312.0B 21.2
Transformer-XL [3] – – – 151M 126.5B 24.0
Tensorized Transformer – – – 151M 83.4B 18.8
Transformer-XL [3] 12M 4.5B 87.8 85.5M 22.0B 34.8
Tensorized Transformer 12M 0.75B 57.9 85.5M 17.3B 20.9

Table 2: Experimental comparisons on PTB and WikiText-103.

2FLOPs:The number of floating-point operations
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Table 3: The same hyperparameters in Tensorized Transformers and Transformer-XL, N is the length
of sequence, and L is the number of layers.

Datasets Model dhead dmodel N L dropout Test PPL

PTB Transformer-XL 40 256 30 3 0.3 81.2
PTB Tensorized Transformer 40 256 30 3 0.3 50.2

WikiText-103 Transformer-XL 40 256 80 6 0.1 34.86
WikiText-103 Tensorized Transformer 40 256 80 6 0.1 19.9
One-Billion Transformer-XL 40 1024 100 6 0.1 43.6
One-Billion Tensorized Transformer 40 1024 100 6 0.1 26.7

To further compare the experimental results under the same size of parameters between Tensorized
Transformer and the baseline model (i.e., Transformer-XL), we add some experiments in Table 2. In
our paper, we use the Tensorized Transformer of 12M on PTB dataset and the Tensorized Transformer
of 85.5M on WikiText-103 dataset. To achieve the same size, i.e., 12M for Transformer-XL on PTB,
we can reduce the dimensions of Q,K, V from 40 to 26. To achieve Transformer-XL of 85.5M, we
reduce the dimensions of word embedding from 512 to 256. The experimental results are shown in
Table 2. Our model gets better results and the lower FLOPS than Transformer-XL.

On the other hand, we can also increase the parameters of Tensorized Transformer to reach the
parameters reported by Transformer-XL on PTB and WikiText-103 datasets. On PTB dataset, we can
increase the number of layers from 3 to 7 to get the Tensorized Transformer of 24M. On WikiText-103
dataset, we increase the number of layers from 6 to 11 and the length of sequence from 80 to 120 to
get the Tensorized Transformer of 257M. We can increase the number of layers from 6 to 8 and the
length of sequence from 80 to 100 to get the Tensorized Transformer of 151M. After that, Tensorized
Transformer achieves better results and lower FLOPS than Transformer-XL. These results are shown
in Table 2.

In addition, we also carry out experiments when Transformer-XL has the same hyperparameters with
Tensorized Transformer. Experimental results are shown in Table 3. Table 3 shows that our model can
get the better results than Transformer-XL. Besides, on two datasets (i.e., PTB and WiliText-103), we
also try to train our model (Tensorized Transformer) using larger dimension of word embedding (i.e.,
dmodel). If dmodel is larger than 256 on PTB dataset and larger than 512 on WikiText-103 dataset,
the overfitting will occur. For the overfitting problem, we will investigate it in our future work.

F Partial Code

The project have been achieved by pytorch. In this section, we give the partial code which is about
our methods, i.e., Sing-block attention and Multi-linear attention. First, the class of Single-block
attention is given as follows.

import torch
import torch.nn as nn
import torch.nn.init as init
import numpy as np

class SingleBlockAttention(nn.Module):
’’’Single block attention’’’
def __init__(self, Rank):

super(SingleBlockAttention, self).__init__()
self.softmax = nn.Softmax()
self.R = Rank

def forward(self, q, k, v, mb_size,d):
self.core = nn.Parameter(torch.FloatTensor(np.random.rand(self.R)))
N = v.size(1)
self.core = self.softmax(self.R)
core_tensor = torch.zeros(N,d,N).cuda()
for i in range(self.R):

cores_tensor[i][i][i] = self.core[i]
full_matrixs = []

6



for i in range(mb_size):
full_matrix_1 = torch.einsum(’pqk, ip,jq,kr->ijr’, [core_tensor, q[i],

k[i], v[i]]).contiguous()
full_matrixs.append(torch.sum(full_matrix_1, dim=1))

output = torch.stack(full_matrixs).cuda().float()
return output

Each Single block attention is a component of Multi-linear attention. Based on the Single block
attention, the Multi-linear attention can be given as follows.

class MultiLinearAttention(nn.Module):

’’’ MultiLinearAttention ’’’

def __init__(self, h, Rank, d, dropout=0.1):
super(MultiLinearAttention, self).__init__()
self.n_head = h # h is equal to 2 in our model
self.d_k = d
self.d_v = d
self.w_q = nn.Parameter(torch.FloatTensor(d_model, d_k))
self.w_k = nn.Parameter(torch.FloatTensor(d_model, d_k))
self.w_v = nn.Parameter(torch.FloatTensor(d_model, d_v))
self.Tattention = SingleCoreAttention(Rank)
self.layer_norm = LayerNormalization(Rank)
self.proj = Linear(self.n_head*d, Rank)
self.dropout = nn.Dropout(dropout)
init.xavier_normal_(self.w_q)
init.xavier_normal_(self.w_k)
init.xavier_normal_(self.w_v)

def forward(self, q, k, v):

d_k, d_v = self.d_k, self.d_v
n_head = self.n_head
residual = q
mb_size, len_q, d_model = q.size()
mb_size, len_k, d_model = k.size()
mb_size, len_v, d_model = v.size()
q_s = q.repeat(1, 1).view(-1, d_model)
k_s = k.repeat(1, 1).view(-1, d_model)
v_s = v.repeat(1, 1).view(-1, d_model)
if n_head > 1:
output_1 = self.Tattention(q_s, k_s, v_s, mb_size,d_v)
output_2 = self.Tattention(q_s, k_s, v_s, mb_size,d_v)
output = (output_1+output_2)*0.5

else:
ouput = self.Tattention(q_s, k_s, v_s, mb_size,d_v)

# project back to residual size
outputs = self.proj(outputs)
outputs = self.dropout(outputs)
return self.layer_norm(outputs + residual)
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