
A Deferred theorem statements
In this section, we state the theorems that were omitted in Section 3.3 due to lack of space. First, we
start by stating the ReLU-like version of Theorem 3.4:
Corollary A.1. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. For an L-layer
FNN with ReLU(-like) activation (σR), assume that there exist indices l1, . . . , lm ∈ [L − 2] that
satisfies

• lj + 1 < lj+1 for j ∈ [m− 1],

• 4
∑m
j=1

⌊
dlj−rj

4

⌋ ⌊
dlj+1−rj

4dy

⌋
≥ N , where rj = dy1 {j > 1}+ 1 {j < m}, for j ∈ [m],

• dk ≥ dy + 1 for all k ∈
⋃
j∈[m−1][lj + 2 : lj+1 − 1].

• dk ≥ dy for all k ∈ [lm + 2 : L− 1],
where 1 {·} is 0-1 indicator function. Then, there exists θ such that yi = fθ(xi) for all i ∈ [N].

The idea is that anything that holds for hard-tanh activation holds for ReLU networks that has double
the width. One difference to note is that the number of nodes needed for “propagating” input and
output information (the circle and diamond nodes in Figure 2) has not doubled. This is because
merely propagating the information without nonlinear distortion can be done with a single ReLU-like
activation.

The next corollaries are special cases for classification. One can check that with L = 4 and m = 2
(hence l1 = 1 and l2 = 3), these boil down to Proposition 3.2.
Corollary A.2. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. Assume that
yi ∈ {0, 1}dy is the one-hot encoding of dy classes. For an L-layer FNN with hard-tanh activation
(σH), assume that there exist indices l1, . . . , lm ∈ [L− 1] (m ≥ 2) that satisfies

• lj + 1 < lj+1 for j ∈ [m− 1],

• 4
m−1∑
j=1

⌊
dlj−rj

2

⌋ ⌊
dlj+1−rj

2

⌋
≥ N , where rj = 1 {j > 1}+1 {j < m− 1}, for j ∈ [m−1],

• dlm ≥ 2dy ,

• dk ≥ 2 for all k ∈
⋃
j∈[m−2][lj + 2 : lj+1 − 1].

• dk ≥ dy for all k ∈ [lm + 1 : L− 1].
Then, there exists θ such that yi = fθ(xi) for all i ∈ [N].
Corollary A.3. Consider any dataset {(xi, yi)}Ni=1 that satisfies Assumption 3.1. Assume that
yi ∈ {0, 1}dy is the one-hot encoding of dy classes. For an L-layer FNN with ReLU(-like) activation
(σR), assume that there exist indices l1, . . . , lm ∈ [L− 1] (m ≥ 2) that satisfies

• lj + 1 < lj+1 for j ∈ [m− 1],

• 4
m−1∑
j=1

⌊
dlj−rj

4

⌋ ⌊
dlj+1−rj

4

⌋
≥ N , where rj = 1 {j > 1}+1 {j < m− 1}, for j ∈ [m−1],

• dlm ≥ 4dy ,

• dk ≥ 2 for all k ∈
⋃
j∈[m−2][lj + 2 : lj+1 − 1].

• dk ≥ dy for all k ∈ [lm + 1 : L− 1].
Then, there exists θ such that yi = fθ(xi) for all i ∈ [N].

The proof of Corollaries A.2 and A.3 can be done by easily combining the ideas in proofs of
Proposition 3.2 and Proposition 3.4, hence omitted.

B Proof of Theorem 3.1
We prove the theorem by constructing a parameter θ that perfectly fits the dataset. We will prove the
theorem for hard-tanh (σH) only, because extension to ReLU-like (σR) is straightforward from its

13

5{16

1
2

4
3

1{4

8
7

5
6

9{16

13{16

9
10

12
11

1{8

1{12

16
15

13
14

2{7

y1

y8

y16
y9

1

y2

y7

y15
y10

11{14

4{5

y3

y6

y14
y11

15{16

1{3

y4

y5

y13
y12

10{15

8{9

16
3{6

7{10

1{2
12{13

6{11

14{16

Input Layer 2

Sum:

yi + 1

Layer 1

1 1

Figure 1. Illustration of the construction for d1 = d2 = 4. Each box corresponds to a hidden node with
hard-tanh activation. In each hidden node, the numbers written in the three parts are indices of data
points that are clipped to −1 at output (left), those clipped to +1 (right), and those unchanged (center).
One can check for all indices that outputs of layer 2 sum to yi + 1.

definition. To convey the main idea more clearly, we first prove the theorem for dy = 1, and later
discuss how to extend to dy > 1.

For a data point xi, the corresponding input and output of the l-th hidden layer is written as zl(xi)
and al(xi), respectively. Moreover, zlj(xi) and alj(xi) denote the input and output of the j-th node of
the l-th hidden layer. For weight matrices W l, we will denote its (j, k)-th entry as W l

j,k, its j-th
row asW l

j,:, and its j-th column asW l
:,j . Similarly, blj denote the j-th component of the bias vector

bl. To simplify notation, we will denote p := d1 and q := d2, for the rest of the proof. Assume for
simplicity that p is a multiple of 2, q is a multiple of 2, and pq = N .

B.1 Proof sketch
The proof consists of three steps, one for each layer. In this subsection, we will describe each step in
the following three paragraphs. Then, the next three subsections will provide the full details of each
step.

In the first step, we down-project all input data points to a line, using a random vector u ∈ Rdx .
Different xi’s are mapped to different uTxi’s, so we have N distinct uTxi’s on the line. Now
re-index the data points in increasing order of uTxi, and divide total N data points into p groups
with q points each. To do this, each row W 1

j,: of W 1 is chosen as uT multiplied by a scalar. We
choose the appropriate scalar for W 1

j,: and bias b1j , so that the input to the j-th hidden node in
layer 1, z1j (·), satisfies the following: (1) z1j (xi) ∈ (−1, 1) for indices i ∈ [jq − q + 1 : jq], and (2)
z1j (xi) ∈ (−1, 1)c for all other indices so that they are “clipped” by σH.

In the second step, for each hidden node in layer 2, we pick one point each from these p groups and
map their values to desired yi. More specifically, for k-th node in layer 2, we define an index set Ik

14

(with cardinality p) that contains exactly one element from each [jq − q + 1 : jq], and chooseW 2
k,:

and b2k such that z2k(xi) = yi for i ∈ Ik and z2k(xi) ∈ [−1, 1]c for i /∈ Ik. This is possible because
for each k, we are solving p linear equations with p+ 1 variables.

As we will see in the details, the first and second steps involve alternating signs and a carefully
designed choice of index sets Ik so that sum of output a2k(·) of each node in layer 2 becomes yi + 1.
Figure 1 shows a simple illustration for p = q = 4. With this choice, we can make the output fθ(xi)
become simply yi for all i ∈ [N], thereby perfectly memorizing the dataset.

B.2 Input to layer 1: down-project and divide
First, recall from Assumption 3.1 that all xi’s are distinct. This means that for any pair of data points
xi and xi′ , the set of vectors u ∈ Rdx satisfying uTxi = uTxi′ has measure zero. Thus, if we
sample any u from some distribution (e.g., Gaussian), u satisfies uTxi 6= uTxi′ for all i 6= i′ with
probability 1. This is a standard proof technique also used in other papers; please see e.g., Huang [22,
Lemma 2.1].

We choose any such u, and without loss of generality, re-index the data points in increasing order
of uTxi: uTx1 < uTx2 < · · · < uTxN . Now define ci := uTxi for all i ∈ [N], and additionally,
c0 = c1 − δ and cN+1 = cN + δ, for any δ > 0.

Now, we are going to defineW 1 and b1 such that the input to the j-th (j ∈ [p]) hidden node in layer 1
has z1j (xi) ∈ (−1, 1) for indices i ∈ [jq − q + 1 : jq], and z1j (xi) ∈ (−1, 1)c for any other points.
We also alternate the order of data points, which will prove useful in later steps. More concretely, we
define the j-th row ofW 1 and j-th component of b1 to be

W 1
j,: = (−1)j−1

4

cjq + cjq+1 − cjq−q − cjq−q+1
uT ,

b1j = (−1)j
cjq + cjq+1 + cjq−q + cjq−q+1

cjq + cjq+1 − cjq−q − cjq−q+1
.

When j is odd, it is easy to check that z1j (·) satisfies

− 1 < z1j (xjq−q+1) < · · · < z1j (xjq) < +1,

z1j (xi) < −1 for i ≤ jq − q,
z1j (xi) > +1 for i > jq,

so that the output a1j (·) satisfies

− 1 < a1j (xjq−q+1) < · · · < a1j (xjq) < +1, (1)

a1j (xi) = −1 for i ≤ jq − q, (2)

a1j (xi) = +1 for i > jq. (3)
When j is even, by a similar argument:

+ 1 > a1j (xjq−q+1) > · · · > a1j (xjq) > −1, (4)

a1j (xi) = +1 for i ≤ jq − q, (5)

a1j (xi) = −1 for i > jq. (6)

B.3 Layer 1 to 2: place at desired positions
At each node of layer 2, we will show how to place p points at the right position, and the rest of
points in the clipping region. After that, we will see that adding up all node outputs of layer 2 gives
yi + 1 for all i.

For k-th hidden node in layer 2 (k ∈ [q]), define a set
Ik := {k, 2q + 1− k, 2q + k, 4q + 1− k, . . . , pq + 1− k}.

Note that |Ik| = p. Also, let us denote the elements of Ik as ik,1, . . . , ik,p in increasing order. For
example, ik,1 = k, ik,2 = 2q + 1− k, and so on. We can see that ik,j ∈ [jq − q + 1 : jq].

For each k, our goal is to constructW 2
k,: and b2k so that the input to the k-th node of layer 2 places

data points indexed with i ∈ Ik to the desired position yi ∈ [−1, 1], and the rest of data points i /∈ Ik
outside [−1, 1].

15

Case 1: odd k. We first describe how to constructW 2
k,: and b2k for odd k’s. First of all, consider

data points xik,j
’s in Ik. We want to choose parameters so that the input to the k-th node is equal to

yik,j
’s:

z2k(xik,j
) =

∑p

l=1
W 2

k,la
1
l (xik,j

) + b2k = yik,j
,

for all j ∈ [p]. This is a system of p linear equations with p+ 1 variables, which can be represented
in a matrix-vector product form:

Mk

[
(W 2

k,:)
T

b2k

]
=

yik,1

...
yik,p

 , (7)

where the (j, l)-th entry of matrix Mk ∈ Rp×(p+1) is defined by a1l (xik,j
) for j ∈ [p] and l ∈ [p],

and (j, p+ 1)-th entries are all equal to 1.

With the matrix Mk defined from the above equation, we state the lemma whose simple proof is
deferred to Appendix H for better readability:

Lemma B.1. For any k ∈ [q], the matrix Mk ∈ Rp×(p+1) satisfies the following properties:
1. Mk has full column rank.

2. There exists a vector ν ∈ null(Mk) such that the first p components of ν are all strictly
positive.

Lemma B.1 implies that for any yik,1
, . . . , yik,p

, there exist infinitely many solutions (W 2
k,:, b

2
k) for

(7) of the form µ+ αν, where µ is any particular solution satisfying the linear system and α is any
scalar. This means that by scaling α, and we can make W 2

k,: as large as we want, without hurting
z2k(xi) = yi for i ∈ Ik.

It is now left to make sure that any other data points i /∈ Ik have z2k(xi) ∈ [−1, 1]c. As we will show,
this can be done by making α > 0 sufficiently large.

Now fix any odd j ∈ [p], and consider ik,j ∈ Ik, and recall ik,j ∈ [jq − q + 1 : jq]. Fix any other
i ∈ [jq − q + 1 : ik,j − 1]. By Eqs (2), (3), (5) and (6), the output of l-th node in layer 1 (l 6= j) is
the same for i and ik,j : a1l (xi) = a1l (xik,j

).

In contrast, for a1j (·), we have a1j (xi) < a1j (xik,j
) (1). Since z2k(xik,j

) =
∑
lW

2
k,la

1
l (xik,j

) + b2k =

yik,j
, large enough W 2

k,j > 0 will make z2k(xi) < −1, resulting in a2k(xi) = −1; the output for
xi is clipped. A similar argument can be repeated for i ∈ [ik,j + 1 : jq], so that for large enough
W 2

k,j > 0,

a2k(xi) = −1, ∀i ∈ [jq − q + 1 : ik,j − 1]

a2k(xi) = +1, ∀i ∈ [ik,j + 1 : jq].

Similarly, for even j ∈ [p], largeW 2
k,j > 0 will make

a2k(xi) = +1, ∀i ∈ [jq − q + 1 : ik,j − 1]

a2k(xi) = −1, ∀i ∈ [ik,j + 1 : jq].

Summarizing, for large enoughW 2
k,: > 0 (achieved by making α > 0 large), the output of the k-th

node of layer 2 satisfies a2k(xi) = yi, ∀i ∈ Ik, and

a2k(xi) = −1, ∀i ∈
⋃

j∈[0:p]
j even

[ik,j + 1 : ik,j+1 − 1], (8)

a2k(xi) = +1, ∀i ∈
⋃

j∈[p]
j odd

[ik,j + 1 : ik,j+1 − 1], (9)

where ik,0 := 0 and ik,p+1 := N + 1 for all k ∈ [q].

16

Case 2: even k. For even k’s, we can repeat the same process, except that we push α < 0 to
large negative number, so thatW 2

k,: < 0 is sufficiently large negative. By following a very similar
argument, we can make the output of the k-th node of layer 2 satisfy a2k(xi) = yi, ∀i ∈ Ik, and

a2k(xi) = +1, ∀i ∈
⋃

j∈[0:p]
j even

[ik,j + 1: ik,j+1 − 1], (10)

a2k(xi) = −1, ∀i ∈
⋃

j∈[p]
j odd

[ik,j + 1 : ik,j+1 − 1]. (11)

B.4 Layer 2 to output: add them all
Quite surprisingly, adding up a2k(xi) for all k ∈ [q] gives yi + 1 for all i ∈ [N]. To prove this, first
observe that the index sets I1, I2, . . . , Iq form a partition of [N]. So, proving

∑q
l=1 a

2
l (xik,j

) =
yik,j

+ 1 for all j ∈ [p] and k ∈ [q] suffices.

By the definition of ik,1 = k, ik,2 = 2q + 1− k, ik,3 = 2q + k, . . . , ik,p−1 = (p− 2)q + k, ik,p =
pq + 1− k, we can see the following chains of inequalities:

jq − q + 1 = i1,j < i2,j < · · · < iq,j = jq for j odd,
jq − q + 1 = iq,j < · · · < i2,j < i1,j = jq for j even.

Fix any k ∈ [q], and any odd j ∈ [p]. From the above chains of inequalities, we can observe that

ik,j ∈ [il,j + 1 : il,j+1 − 1] if l < k,

ik,j ∈ [il,j−1 + 1 : il,j − 1] if l > k.

Now, for xik,j
, we will sum up a2l (xik,j

) for l ∈ [q]. First, for 1 ≤ l < k, we have ik,j ∈ [il,j + 1 :
il,j+1 − 1]. Since j is odd, from Eqs (9) and (11),

a2l (xik,j
) =

{
+1 for odd l < k,

−1 for even l < k.

Similarly, for k < l ≤ w, we have ik,j ∈ [il,j−1 + 1 : il,j − 1]. Since j is odd, from Eqs (8) and (10),

a2l (xik,j
) =

{
−1 for odd l > k,

+1 for even l > k.

Then, the sum over l 6= k always results in +1, so∑q

l=1
a2l (xik,j

) = yik,j
+
∑

l 6=k
a2l (xik,j

) = yik,j
+ 1.

For any fixed even j ∈ [p], we can similarly prove the same thing. We have

ik,j ∈ [il,j−1 + 1 : il,j − 1] if l < k,

ik,j ∈ [il,j + 1 : il,j+1 − 1] if l > k,

for even j. From this point, the remaining steps are exactly identical to the odd case.

Now that we know
∑q
l=1 a

2
l (xi) = yi + 1, we can choose W 3 = 1Tq and b3 = −1 so that

fθ(xi) = yi. This finishes the proof of Theorem 3.1 for dy = 1.

B.5 Proof for dy > 1

The proof for dy > 1 is almost the same. Assume that p := d1 is a multiple of 2, q := d2 is a
multiple of 2dy, and pq = Ndy. Now partition the nodes in the 2nd layer into dy groups of size
q/dy. For each of the dy groups, we can do the exact same construction as done in dy = 1 case, to
fit each coordinate of yi perfectly. This is possible because we can share a1(xi) for fitting different
components of yi.

17

C Proof of Proposition 3.2
For the proof, we will abuse the notation slightly and let yi ∈ [dy] denote the class that xi belongs to.
The idea is simple: assign distinct real numbers ρ1, . . . , ρdy to each of the dy classes, define a new
1-dimensional regression dataset {(xi, ρyi)}Ni=1, and do the construction in Theorem 3.1 up to layer 2
for the new dataset. Then, we have

∑d2
l=1 a

2
l (xi) = ρyi + 1, as seen in the proof of Theorem 3.1.

Now, at layer 3, consider the following “gate” activation function σG, which allows values in (−1,+1)
to “pass,” while blocking others. This can be implemented with two σH’s or four σR’s:

σG(t) :=

t+ 1 −1 ≤ t ≤ 0,

−t+ 1 0 ≤ t ≤ 1,

0 otherwise.
= 1

2 (σH(2t+ 1) + σH(−2t+ 1)).

For each class j ∈ [dy], we can choose appropriate parameters to implement a gate that allows ρj to
“pass” the gate, while blocking any other ρj′ , j′ 6= j. The output of the gate is then connected to the
j-th output node of the network. This way, we can perfectly recover the one-hot representation for
each data point.

D Proof of Theorem 3.3
Our proof is based on the idea of counting the number of pieces of piecewise linear functions by
Telgarsky [44]. Consider any vector u ∈ Rdx , and define the following dataset: xi = iu, yi = (−1)i,
for all i ∈ [N].

With piecewise linear activation functions, the network output fθ(x) is also a piecewise affine function
of x. If we define f̄θ(t) := fθ(tu), f̄θ(t) must have at least N − 1 linear pieces to be able to fit the
given dataset {(xi, yi)}Ni=1. We will prove the theorem by counting the maximum number of linear
pieces in f̄θ(t).

We will use the following lemma, which is a slightly improved version of Telgarsky [44, Lemma 2.3]:
Lemma D.1. If g : R 7→ R and h : R 7→ R are piecewise linear with k and l linear pieces,
respectively, then g+h is piecewise linear with at most k+ l− 1 pieces, and g ◦h is piecewise linear
with at most kl pieces.

For proof of the lemma, please refer to Telgarsky [44].

Consider the output of layer 1 ā1(t) := a1(tu), restricted for x = tu. For each j ∈ [d1], ā1j (·) has
at most p pieces. The input to layer 2 is a weighted sum of ā1j (·)’s, so each z̄2k(t) := z2k(tu) has
(p − 1)d1 + 1 pieces, resulting in maximum p(p − 1)d1 + p pieces in the corresponding output
ā2k(t). Again, the weighted sum of d2 such ā2k(·)’s have at most (p(p − 1)d1 + p − 1)d2 + 1 =
p(p− 1)d1d2 + (p− 1)d2 + 1 pieces.

From this calculation, we can see that the output of a 2-layer network has at most (p − 1)d1 + 1
pieces, and a 3-layer network has p(p− 1)d1d2 + (p− 1)d2 + 1. If these number of pieces are strictly
smaller than N − 1, the network can never perfectly fit the given dataset.

E Proof of Proposition 3.4
For Proposition 3.4, we will use the network from Theorem 3.1 as a building block to construct the
desired parameters. The parameters we construct will result in a network illustrated in Figure 2.
Please note that the arrows are drawn for nonzero parameters only, and all the missing arrows just
mean that the parameters are zero. We are not using a special architecture; we are still in the full
connected network regime.

In the proof of Theorem 3.1, we down-projected xi’s to uTxi =: ci, and fitted c1, . . . , cN to
corresponding y1, . . . , yN . Then, what happens outside the range of the dataset? Recall from
Section B.2 that we defined c0 := c1 − δ and cN+1 := cN + δ for δ > 0 and constructed W 1

and b1 using them. If we go back to the proof of Theorem 3.1, we can check that if uTx ≤ c0 or
uTx ≥ cN+1, a2k(x) = −1 for odd k’s and +1 for even k’s, resulting in

∑q
k=1 a

2
k(x) = 0 for all

such x’s. For a quick check, consider imaginary indices 0 and 17 in Figure 1 and see which sides
(left or right) of the 2nd-layer hidden nodes they will be written.

18

Input

Fit

N1

points

l1 l1+1

Fit

N2

points

l2 l2+1

Fit

N3

points

l3 l3+1 Output

dx

dy

Figure 2. Illustration of network parameter construction in Proposition 3.4. The circle/diamond nodes
represent those carrying input/output information, respectively. The rectangular blocks are groups of
nodes across two layers whose parameters are constructed from Theorem 3.1 to fit data points.

Now consider partitioning N data points into m subsets of cardinalities N1, . . . , Nm in the following
way. We first down-project the data to get uTxi’s, and re-index data points in increasing order of
uTxi’s. The first N1 points go into the first subset, the next N2 to the second, and so on. Then,
consider constructing m separate networks (by Theorem 3.1) such that each network fits each subset,
except that we let b3 = 0. As seen above, the sum of the outputs of all these m networks will be
yi + 1, for all i ∈ [N]. Thus, by fitting subsets of dataset separately and summing together, we can
still memorize N data points.

The rest of the proof can be explained using Figure 2. For simplicity, we assume that
• For all j ∈ [m], dlj − rj is a multiple of 2, and dlj+1 − rj is a multiple of 2dy ,
•
∑m
j=1(dlj − rj)(dlj+1 − rj) = Ndy ,

• dk = 1 for all k ∈ [l1 − 1],
• dk = dy + 1 for all k ∈

⋃
j∈[m−1][lj + 2 : lj+1 − 1],

• dk = dy for all k ∈ [lm + 2 : L− 1].
Also, let Nj := (dlj − rj)(dlj+1 − rj)/dy for j ∈ [m].

From the input layer to layer 1, we down-project xi’s using a random vector u, and scaleW 1 := uT

and choose b1 appropriately so that W 1xi + b1 ∈ (−1,+1) for all i ∈ [N]. As seen in the circle
nodes in Figure 2, this “input information” will be propagated up to layer lm − 1 to provide input
data needed for fitting.

At layer lj − 1, the weights and bias into the rectangular block across layers lj–(lj + 1) is selected
in the same way as Section B.2. Inside each block, the subset of Nj data points are fitted using the
construction of Theorem 3.1, but this time we fit to yi−1

2 instead of yi, in order to make sure that
output information is not clipped by hard-tanh. The output of (lj + 1)-th layer nodes in the block are
added up and connected to diamond nodes in layer lj + 2. For the Nj data points in the subset, the
input to the diamond nodes will be yi+1

2 (instead of yi + 1), and 0 for any other data points. As seen
in Figure 2, this output information is propagated up to the output layer.

After fitting all m subsets, the output value of diamond nodes at layer L− 1 is yi+1
2 , for all i. We

can scale and shift this value at the output layer and get yi = fθ(xi).

F Proofs of Theorem 4.1 and Corollary 4.2

F.1 Proof of Theorem 4.1

The key observation used in the proof is that due to the general position assumption, if we pick any
dx data points in the same class, then there always exists an affine hyperplane that contains exactly

19

these dx points. This way, we can pick dx data points per hidden node and “push” them far enough to
specific directions (depending on the classes), so that the last hidden layer can distinguish the classes
based on the location of data points.

We use Nk to denote the number of data points in class k ∈ [dy]. Also, for k ∈ [dy], let xmax
(k) be the

maximum value of the k-th component of xi over all i ∈ [N]. Also, let ek be the k-th standard unit
vector in Rdx .

Now, consider the gate activation function σG, which was also used in the proof of Proposition 3.2
(Appendix C). This activation allows values in (−1,+1) to “pass,” while blocking others. This can
be implemented with two hard-tanh (σH) functions or four ReLU-like (σR) functions:

σG(t) :=

t+ 1 −1 ≤ t ≤ 0,

−t+ 1 0 ≤ t ≤ 1,

0 otherwise.
= 1

2 (σH(2t+ 1) + σH(−2t+ 1)).

Up to layer L− 1, for now we will assume that the activation at the hidden nodes is σG. We will later
count the actual number of hard-tanh or ReLU-like nodes required.

For class k ∈ [dy], we use dNk

dx
e gate hidden nodes for class k. Each hidden node picks and pushes dx

data points in class k far enough to the direction of ek. Each data point is chosen only once. Suppose
that the hidden node is the j-th hidden node in l-th layer (l ∈ [L− 1], j ∈ [dl]). Pick dx data points
in class k that are not yet “chosen,” then there is an affine hyperplane uTx+ c = 0 that contains only
these points.

Using the activation σG, we can make the hidden node have output 1 for the chosen dx data points
and 0 for all remaining data points. This can be done by setting the incoming parameters

U l
j,: = αuT , blj = αc,

where α > 0 is a big enough positive constant so that |α(uTxi+c)| > 1 and thus σG(α(uTxi+c)) =
0 for all unpicked data points xi. Then, choose the outgoing parameters

V l
:,j = βek, c

l = 0

where β > 0 will be specified shortly. Notice that since each data point is chosen only once, the dx
data points were never chosen previously. Therefore, for these dx data points, we have

hj(xi) = xi, for j ∈ [l − 1], and

hj(xi) = xi + βek, for j ∈ [l : L− 1],

because they will never be chosen again by other hidden nodes. We choose big enough β to make
sure that the k-th component of hl(xi) (i.e., hlk(xi)) is bigger than xmax

(k) + 1. We also determine β
carefully so that adding βek does not break the general position assumption. The values of β that
breaks the general position lie in a set of measure zero, so we can sample β from some suitable
continuous random distribution to avoid this.

After doing this to all data points, hL−1(xi) satisfies the following property: For xi’s that are in class
k, hL−1k (xi) ≥ xmax

(k) + 1, and for xi’s that are not in class k, hL−1k (xi) ≤ xmax
(k) .

At layer L, by assumption we have dL ≥ dy in case of hard-tanh ResNet. We assume dL = dy for
simplicity, and choose

UL =
[
2 · Idy×dy 0dy×(dx−dy)

]
, bL =

−2xmax

(1) − 1

−2xmax
(2) − 1

...
−2xmax

(dy)
− 1

 ,
then by clipping of hard-tanh, for xi in class k, the k-th component of σ(ULhL−1(xi) + bL) is +1
and all the other components are −1. Now, by choosing

V L =
1

2
· Idy×dy , cL =

1

2
1dy ,

20

we can recover the one-hot representation: gθ(xi) = yi, for all i ∈ [N]. For ReLU-like ResNets, we
can do the same job by using dL = 2dy .

Finally, let us count the number of hidden nodes used, for layers up to L − 1. Recall that we use
dNk

dx
e gate activation nodes for class k. Note that the total number of gate activations used is bounded

above by
dy∑
k=1

⌈
Nk
dx

⌉
≤

dy∑
k=1

(
Nk
dx

+ 1

)
=
N

dx
+ dy,

and each gate activation can be constructed with two hard-tanh nodes or four ReLU-like nodes.
Therefore,

∑L−1
l=1 dl ≥ 2N

dx
+ 2dy and dL ≥ dy is the sufficient condition for a hard-tanh ResNet to

realize the above construction, and ReLU-like ResNets require twice as many hidden nodes.

F.2 Proof of Corollary 4.2

The main idea of the proof is exactly the same. We use dNk

dx
e gate activation nodes for class k, and

choose dx data points in the same class per each hidden node. When the hidden node is the j-th node
in the hidden layer and the chosen points are from class k, we choose

W 2
:,j = ek, b

2 = 0.

This way, one can easily recover the one-hot representation and achieve fθ(xi) = yi.

G Proof of Theorem 5.1

The outline of the proof is as follows. Recall that we write θ(t) as θ∗ + ξ(t). By the chain rule, we
have

∇θR(θ∗ + ξ(t)) =
1

N

N∑
i=1

`′(fθ∗+ξ(t)(xi); yi)∇θfθ∗+ξ(t)(xi).

If ξ(t) is small enough, the terms `′(fθ∗+ξ(t)(xi); yi) and ∇θfθ∗+ξ(t)(xi) can be expressed in terms
of perturbation on `′(fθ∗(xi); yi) and∇θfθ∗(xi), respectively (Lemma G.1). We then use the lemma
and prove each statement of the theorem.

We first begin by introducing more definitions and symbols required for the proof. As mentioned
in the main text, we’ll abuse the notation θ to mean the concatenation of vectorizations of all the
parameters (W l, bl)Ll=1. To simplify the notation, we define `i(θ) := `(fθ(xi); yi). Same thing
applies for derivatives of `: `′i(θ) := `′(fθ(xi); yi), and so on.

Now, for each data point i ∈ [N] and each layer l ∈ [L− 1], define the following diagonal matrix:

J lθ(xi) := diag(
[
σ′(zl1(xi)) · · · σ′(zldl(xi))

]
) ∈ Rdl×dl ,

where σ′ is the derivative of the activation function σ, wherever it exists.

Now consider a memorizing global minimum θ∗. As done in the main text, we will express any
other point θ as θ = θ∗ + ξ, where ξ is the vectorized version of perturbations. By assumption, R(·)
is differentiable at θ∗; this means that J lθ∗(xi) are well-defined at θ∗ for all data points and layers
l ∈ [L − 1]. Moreover, since σ is piecewise linear, there exists a small enough positive constant
ρc such that for any ξ satisfying ‖ξ‖ ≤ ρc, the slopes of activation functions stay constant, i.e.,
J lθ∗+ξ(xi) = J lθ∗(xi) for all i ∈ [N] and l ∈ [L− 1].

Now, as in the main text, define vectors νi := ∇θfθ∗(xi) for all i ∈ [N]. We can then express
ξ as the sum of two orthogonal components ξ‖ and ξ⊥, where ξ‖ ∈ span({νi}Ni=1) and ξ⊥ ∈
span({νi}Ni=1)⊥. We also define Pν to be the projection matrix onto span({νi}Ni=1); note that
ξ‖ = Pνξ.

Using the fact that perturbations are small, we can calculate the deviation of network output fθ∗+ξ(xi)
from fθ∗(xi), and use Taylor expansion of ` and `′ to show the following lemma, whose proof is
deferred to Appendix I.

21

Lemma G.1. For any given memorizing global minimum θ∗ of R(·), there exist positive constants
ρs (≤ ρc), C1, C2, C3, C4, and C5 such that, if ‖ξ‖ ≤ ρs, the following holds for all i ∈ [N]:

`i(θ
∗ + ξ)− `i(θ∗) ≤ C1(C2‖ξ‖‖+ C3‖ξ‖2)2,

`′i(θ
∗ + ξ) = `′′i (θ∗)νTi ξ‖ +Ri(ξ),

∇θfθ∗+ξ(xi) = νi + µi(ξ),

where the remainder/perturbation terms satisfy
|Ri(ξ)| ≤ C4‖ξ‖2, and ‖µi(ξ)‖ ≤ C5‖ξ‖.

Besides the constants defined in Lemma G.1, define
C6 := max

i∈[N]
`′′i (θ∗)‖νi‖.

Also, it will be shown in the proof of Lemma G.1 that C2 := maxi∈[N] ‖νi‖. Given Lemma G.1, we
are now ready to prove Theorem 5.1.

Let us first consider the case where all νi’s are zero vectors, so span({νi}Ni=1) = {0}. For such a
pathological case, ξ(0)‖ = 0, so the condition ‖ξ(t)‖ ‖ ≥ τ‖ξ

(t)‖2 is violated at t∗ = 0 for any positive
τ . By Lemma G.1,

`i(θ
∗ + ξ(0))− `i(θ∗) ≤ C1C

2
3‖ξ

(0)‖4,
as desired; for this case, Theorem 5.1 is proved with ρ := ρs, C := C1C

2
3 .

For the remaining case where span({νi}Ni=1) 6= {0}, let H :=
∑N
i=1 `

′′
i (θ∗)νiν

T
i , and define λmin

and λmax to be the smallest and largest strictly positive eigenvalues of H , respectively. We will show
that Theorem 5.1 holds with the following constant values:

τ :=
16C2C4N

λmin
,

ρ :=
1

2
min

{
ρs,

λminC2

16C2C5C6N + λminC5

}
.

γ := min

{
8B log 2

λmin
,
λminB

2λ2maxE
2

}
,

λ :=
λmin

4B
,

C := 16C1(C2τ + C3)2.

Firstly, as we saw in the previous case, if ‖ξ(t)‖ ‖ ≥ τ‖ξ(t)‖2 is violated at t∗ = 0, we immediately
have

`i(θ
∗ + ξ(0))− `i(θ∗) ≤ C1(C2τ + C3)2‖ξ(0)‖4 ≤ C‖ξ(0)‖4.

Now suppose ‖ξ(t)‖ ‖ ≥ τ‖ξ‖
2 is satisfied up to some iterations, so t∗ > 0. We will first prove that as

long as (k + 1)E ≤ t∗, we have

‖ξ(kE+E)
‖ ‖ ≤ (1− ηλ)‖ξ(kE)

‖ ‖.
To simplify the notation, we will prove this for k = 0; as long as (k+ 1)E ≤ t∗, the proof extends to
other values of k.

Using Lemma G.1, we can write the gradient estimate g(t) at θ(t) = θ∗ + ξ(t) as:

g(t) =
1

B

∑
i∈B(t)

`′i(θ
∗ + ξ(t))∇θfθ∗+ξ(t)(xi)

=
1

B

∑
i∈B(t)

(
`′′i (θ∗)νTi ξ

(t)
‖ +Ri(ξ

(t))
)(

νi + µi(ξ
(t))
)

=

(
1

B

∑
i∈B(t)

`′′i (θ∗)νiν
T
i

)
ξ
(t)
‖ +

1

B

∑
i∈B(t)

(
`′′i (θ∗)νTi ξ

(t)
‖ µi(ξ

(t)) +Ri(ξ
(t))(νi + µi(ξ

(t)))
)

︸ ︷︷ ︸
=:ζ(t)

.

22

After the SGD update θ(t+1) ← θ(t) − ηg(t),

θ∗ + ξ
(t+1)
‖ + ξ

(t+1)
⊥ = θ∗ + ξ

(t)
‖ + ξ

(t)
⊥ − ηg

(t)

= θ∗ +

(
I − η

B

∑
i∈B(t)

`′′i (θ∗)νiν
T
i

)
ξ
(t)
‖ + ξ

(t)
⊥ − ηζ

(t).

Since η < γ ≤ B
λmax

, I − η
B

∑
i∈B(t) `′′i (θ∗)νiν

T
i is a positive semi-definite matrix with spectral

norm at most 1. Using the projection matrix Pν , we can write

ξ
(t+1)
‖ =

(
I − η

B

∑
i∈B(t)

`′′i (θ∗)νiν
T
i

)
ξ
(t)
‖ − ηPνζ

(t), (12)

ξ
(t+1)
⊥ = ξ

(t)
⊥ − η(I − Pν)ζ(t). (13)

Now, by Lemma G.1,

‖ζ(t)‖ ≤ 1

B

∑
i∈B(t)

(
‖`′′i (θ∗)νTi ξ

(t)
‖ µi(ξ

(t))‖+ ‖Ri(ξ(t))νi‖+ ‖Ri(ξ(t))µi(ξ(t))‖
)

≤C5C6‖ξ(t)‖‖ξ(t)‖ ‖+ C2C4‖ξ(t)‖2 + C4C5‖ξ(t)‖3.

Under the condition that ‖ξ(t)‖ ‖ ≥ τ‖ξ(t)‖2, where τ := 16C2C4N
λmin

, and also that ‖ξ(t)‖ ≤ ρ ≤
λminC2

16C2C5C6N+λminC5
,

‖ζ(t)‖ ≤ C2C4

τ
‖ξ(t)‖ ‖+

(
C5C6 +

C4C5

τ

)
‖ξ(t)‖‖ξ(t)‖ ‖

≤
(
λmin

16N
+

(
C5C6 +

λminC5

16C2N

)
‖ξ(t)‖

)
‖ξ(t)‖ ‖ ≤

λmin

8N
‖ξ(t)‖ ‖.

From this, we can see that

‖ξ(t+1)
‖ ‖ ≤ ‖ξ(t)‖ ‖+ η‖ζ(t)‖ ≤

(
1 +

ηλmin

8N

)
‖ξ(t)‖ ‖.

Noting that η < γ ≤ 8B log 2
λmin

,(
1 +

ηλmin

8N

)E
≤
(

1 +
log 2

E

)E
≤ 2,

so for 1 ≤ t ≤ E,

‖ζ(t)‖ ≤ λmin

8N
‖ξ(t)‖ ‖ ≤

λmin

8N

(
1 +

log 2

E

)t
‖ξ(0)‖ ‖ ≤

λmin

4N
‖ξ(0)‖ ‖.

Now, repeating the update rule (12) from t = 0 to E − 1, we get

ξ
(E)
‖ =

0∏
k=E−1

(
I − η

B
Hk

)
ξ
(0)
‖ − η

E−1∑
t=0

t+1∏
k=E−1

(
I − η

B
Hk

)
Pνζ

(t), (14)

where Hk :=
∑
i∈B(k) `′′i (θ∗)νiν

T
i . We are going to bound the norm of each term. For the second

term, we have∥∥∥∥∥
E−1∑
t=0

t+1∏
k=E−1

(
I − η

B
Hk

)
Pνζ

(t)

∥∥∥∥∥ ≤
E−1∑
t=0

‖ζ(t)‖ ≤ λminE

4N
‖ξ(0)‖ ‖ =

λmin

4B
‖ξ(0)‖ ‖. (15)

The first term is a bit tricker. Note first that
0∏

k=E−1

(
I − η

B
Hk

)
= I − η

B

E−1∑
k=0

Hk +
η2

B2

∑
j,k∈[0,E−1]

j<k

HkHj −
η3

B3

∑
i,j,k∈[0,E−1]

i<j<k

HkHjHi + · · · .

23

Recall the definitionH =
∑N
i=1 `

′′
i (θ∗)νiν

T
i =

∑E−1
k=0 Hk, and that λmin and λmax are the minimum

and maximum eigenvalues of H . Since Hk’s are positive semi-definite and H is the sum of Hk’s, the
maximum eigenvalue of Hk is at most λmax. Using this,∥∥∥∥∥

0∏
k=E−1

(
I − η

B
Hk

)
ξ
(0)
‖

∥∥∥∥∥ ≤
(

1− ηλmin

B
+

E∑
k=2

(
E

k

)(ηλmax

B

)k)
‖ξ(0)‖ ‖.

First note that for k ∈ [2, E − 1],
(
E
k+1

)
2
E ≤

(
E
k

)
, because

2

E
≤ k + 1

E − k
=

(k + 1)!(E − k − 1)!

k!(E − k)!
=

(
E
k

)(
E
k+1

) .
Since η < γ ≤ λminB

2λ2
maxE

2 ≤ B
λmaxE

, for k ∈ [2, E − 1] we have(
E

k + 1

)(ηλmax

B

)k+1

≤
(

E

k + 1

)
1

E

(ηλmax

B

)k
≤ 1

2

(
E

k

)(ηλmax

B

)k
,

which implies that

E∑
k=2

(
E

k

)(ηλmax

B

)k
≤ 2

(
E

2

)(ηλmax

B

)2
≤ η2E2λ2max

B2
≤ ηλmin

2B
.

Therefore, we have ∥∥∥∥∥
0∏

k=E−1

(
I − η

B
Hk

)
ξ
(0)
‖

∥∥∥∥∥ ≤
(

1− ηλmin

2B

)
‖ξ(0)‖ ‖.

Together with the bound on the second term (15), this shows that

‖ξ(E)
‖ ‖ ≤

(
1− ηλmin

4B

)
‖ξ(0)‖ ‖ = (1− ηλ) ‖ξ(0)‖ ‖,

which we wanted to prove.

We now have to prove that
‖ξ(E)‖ ≤ ‖ξ(0)‖+ ηλ‖ξ(0)‖ ‖.

Now, repeating the update rule (13) from t = 0 to E − 1, we get

ξ
(E)
⊥ = ξ

(0)
⊥ − η

E−1∑
t=0

(I − Pν)ζ(t). (16)

Thus, by combining equations (14) and (16),

‖ξ(E)‖ = ‖ξ(E)
‖ + ξ

(E)
⊥ ‖

≤

∥∥∥∥∥
0∏

k=E−1

(
I − η

B
Hk

)
ξ
(0)
‖ + ξ

(0)
⊥

∥∥∥∥∥+ η

E−1∑
t=0

∥∥∥∥∥
t+1∏

k=E−1

(
I − η

B
Hk

)
Pνζ

(t) + (I − Pν)ζ(t)

∥∥∥∥∥
≤‖ξ(0)‖+ η

E−1∑
t=0

‖ζ(t)‖ ≤ ‖ξ(0)‖+ η
λmin

4B
‖ξ(0)‖ ‖ = ‖ξ(0)‖+ ηλ‖ξ(0)‖ ‖.

It now remains to prove that ‖ξ(t
∗)‖ ≤ 2‖ξ(0)‖ ≤ 2ρ at the first iteration t∗ that ‖ξ(t)‖ ‖ ≥ τ‖ξ

(t)‖2
is violated. Let k∗ be the maximum k such that kE ≤ t∗.
From what we have shown so far,

‖ξ(k
∗E)‖ ≤ ‖ξ(0)‖+ ηλ

k∗−1∑
k=0

‖ξ(kE)
‖ ‖.

24

Also, for t in k∗E ≤ t < t∗ the condition ‖ξ(t)‖ ‖ ≥ τ‖ξ(t)‖2 is satisfied, so by the same argument

we have ‖ζ(t)‖ ≤ λmin

4N ‖ξ
(k∗E)
‖ ‖ for t ∈ [k∗E, t∗− 1]. Finally, by modifying equations (14) and (16)

a bit, we get

‖ξ(t
∗)‖ = ‖ξ(t

∗)
‖ + ξ

(t∗)
⊥ ‖

≤

∥∥∥∥∥
k∗E∏

k=t∗−1

(
I − η

B
Hk

)
ξ
(k∗E)
‖ + ξ

(k∗E)
⊥

∥∥∥∥∥+ η

t∗−1∑
t=k∗E

∥∥∥∥∥
t+1∏

k=t∗−1

(
I − η

B
Hk

)
Pνζ

(t) + (I − Pν)ζ(t)

∥∥∥∥∥
≤‖ξ(k

∗E)‖+ η

t∗−1∑
t=k∗E

‖ζ(t)‖ ≤ ‖ξ(k
∗E)‖+ η

λmin

4B
‖ξ(k

∗E)
‖ ‖ ≤ ‖ξ(0)‖+ ηλ

k∗∑
k=0

‖ξ(kE)
‖ ‖.

Finally, from ‖ξ(kE+E)
‖ ‖ ≤ (1− ηλ)‖ξ(kE)

‖ ‖,

‖ξ(t
∗)‖ ≤ ‖ξ(0)‖+ ηλ

k∗∑
k=0

(1− ηλ)k‖ξ(0)‖ ‖ ≤ ‖ξ
(0)‖+ ‖ξ(0)‖ ‖ ≤ 2‖ξ(0)‖.

H Proof of Lemma B.1

Recall that ik,j ∈ [jq − q + 1, jq]. Consider any l < j. Then, ik,j > lq, so by (3) and (6), we have
a1l (xik,j

) = (−1)l−1. Similarly, if we consider l > j, then ik,j ≤ lq − q, so it follows from (2) and
(5) that a1l (xik,j

) = (−1)l. This means that the entries (indexed by (j, l)) of Mk below the diagonal
are filled with (−1)l−1, and entries above the diagonal are filled with (−1)l. Thus, the matrix Mk

has the form

Mk =

a11(xik,1
) 1 −1 · · · −1 1 1

1 a12(xik,2
) −1 · · · −1 1 1

1 −1 a13(xik,3
) · · · −1 1 1

...
...

...
. . .

...
...

...
1 −1 1 · · · a1p−1(xik,p−1

) 1 1
1 −1 1 · · · 1 a1p(xik,p

) 1

.

To prove the first statement of Lemma B.1, consider adding the last column to every even l-th column
and subtracting it from every odd l-th column. Then, this results in a matrix

a11(xik,1
)− 1 2 −2 · · · −2 2 1

0 a12(xik,2
) + 1 −2 · · · −2 2 1

0 0 a13(xik,3
)− 1 · · · −2 2 1

...
...

...
. . .

...
...

...
0 0 0 · · · a1p−1(xik,p−1

)− 1 2 1
0 0 0 · · · 0 a1p(xik,p

) + 1 1

,

whose columns space is the same as Mk. It follows from a1j (xik,j
) ∈ (−1,+1) that Mk has full

column rank. This also implies that dim(null(Mk)) = 1.

For the second statement, consider subtracting (j + 1)-th row from j-th row, for j ∈ [p− 1]. This
results in

M̃k :=

a11(xik,1
)− 1 1− a12(xik,2

) 0 · · · 0 0 0
0 a12(xik,2

) + 1 −a13(xik,3
)− 1 · · · 0 0 0

0 0 a13(xik,3
)− 1 · · · 0 0 0

...
...

...
. . .

...
...

...
0 0 0 · · · a1p−1(xik,p−1

)− 1 1− a1p(xik,p
) 0

1 −1 1 · · · 1 a1p(xik,p
) 1

,

25

which has the same null space as Mk. Consider a nonzero vector ν ∈ null(M̃k), i.e., M̃kν = 0. Let
νl denote the l-th component of ν. One can see that ν1, . . . , νp are not all zero, because if νp+1 is the
only nonzero component, M̃kν = (0, 0, . . . , 0, νp+1)T 6= 0.

Assume without loss of generality that ν1 is strictly positive. Note that a11(xik,1
)−1 and 1−a12(xik,2

)

are both nonzero and the signs of a11(xik,1
)− 1 and 1− a12(xik,2

) are opposite. Then if follows from
(a11(xik,1

)− 1)ν1 + (1− a12(xik,2
))ν2 = 0 that ν2 is also strictly positive. Similarly, a12(xik,2

) + 1

and −a13(xik,3
)− 1 are both nonzero and have opposite signs, so ν3 > 0. Proceeding this way up to

νp, we can see that all νl, l ∈ [p], are strictly positive.

I Proof of Lemma G.1

We begin by introducing more definitions. For a matrix A ∈ Rm×n, let vec(A) ∈ Rmn be its
vectorization, i.e., columns of A concatenated as a long vector. Given matrices A and B, let A⊗B
denote their Kronecker product. Throughout the proof, we use θ and ξ to denote the concatenation of
vectorizations of all the parameters (W l, bl)Ll=1 and perturbations (∆l, δl)Ll=1:

θ :=

vec(WL)

bL

vec(WL−1)

bL−1

...
vec(W 1)
b1

, ξ :=

vec(∆L)

δL

vec(∆L−1)

δL−1

...
vec(∆1)
δ1

. (17)

In Section 2, we defined al(xi) to denote output of the l-th hidden layer when the network input is xi.
In order to make the dependence of parameters more explicit, we will instead write alθ(xi) in this
section. Also, for l ∈ [L− 1], define

Dl
θ(xi) := WLJL−1θ (xi)W

L−1 · · ·W l+1J lθ(xi) ∈ R1×dl , (18)

and for convenience in notation, let DL
θ (xi) := 1. It can be seen from standard matrix calculus that

[∇W lfθ(xi) ∇blfθ(xi)] = Dl
θ(xi)

T
[
al−1θ (xi)

T 1
]
, (19)

for all l ∈ [L]. Vectorizing and concatenating these partial derivatives results in

∇θfθ(xi) =

aL−1θ (xi)
1[

aL−2θ (xi)
1

]
⊗DL−1

θ (xi)
T

...[
xi
1

]
⊗D1

θ(xi)
T

. (20)

In order to prove the lemma, we first have to quantify how perturbations on the global minimum
affect outputs of the hidden layers and the network. Let θ∗ := (W l

∗, b
l
∗)
L
l=1 be the memorizing

global minimum, and let (∆l, δl)Ll=1 be perturbations on parameters, whose vectorization ξ satisfies
‖ξ‖ ≤ ρc. Then, for all l ∈ [L− 1], define ãlθ∗+ξ(·) to denote the amount of perturbation in the l-th
hidden layer output:

ãlθ∗+ξ(xi) := alθ∗+ξ(xi)− alθ∗(xi).
It is easy to check that

ã1θ∗+ξ(xi) = J1
θ∗(xi)(∆

1xi + δ1),

ãlθ∗+ξ(xi) = J lθ∗(xi)
(
∆lal−1θ∗ (xi) + δl + (W l

∗ + ∆l)ãl−1θ∗+ξ(xi)
)
.

26

Similarly, let f̃θ∗+ξ(·) denote the amount of perturbation in the network output. It can be checked
that

f̃θ∗+ξ(xi) := fθ∗+ξ(xi)− fθ∗(xi) = ∆LaL−1θ∗ (xi) + δL + (WL
∗ + ∆L)ãL−1θ∗+ξ(xi).

One can see that ã1θ∗+ξ(xi) only contains perturbation terms that are first-order in ξ: J1
θ∗(xi)(∆

1xi+

δ1). However, the order of perturbation accumulates over layers. For example,

ã2θ∗+ξ(xi) = J2
θ∗(xi)

(
∆2a1θ∗(xi) + δ2 + (W 2

∗ + ∆2)J1
θ∗(xi)(∆

1xi + δ1)
)

= J2
θ∗(xi)

(
∆2a1θ∗(xi) + δ2 +W 2

∗J
1
θ∗(xi)(∆

1xi + δ1)
)︸ ︷︷ ︸

first-order perturbation

+ J2
θ∗(xi)∆

2J1
θ∗(xi)(∆

1xi + δ1)︸ ︷︷ ︸
second-order perturbation

,

so ã2θ∗+ξ(xi) contains 1st–2nd order perturbations. Similarly, ãlθ∗+ξ(xi) has terms that are 1st–l-th
order in ξ, and f̃θ∗+ξ(·) perturbation terms from 1st order to L-th order.

Using the definition of Dl
θ(xi) from Eq (18), the collection of first order perturbation terms in

f̃θ∗+ξ(·) can be written as

f̃ 1
θ∗+ξ(xi) := ∆LaL−1θ∗ (xi) + δL +WL

∗ J
L−1
θ∗ (xi)(∆

L−1aL−2θ∗ (xi) + δL−1) + · · ·

=

L∑
l=1

Dl
θ∗(xi)(∆

lal−1θ∗ + δl)
(a)
= ∇θfθ∗(xi)T ξ

(b)
= νTi ξ‖

where (a) is an application of Taylor expansion of fθ(xi) at θ∗, which can also be directly checked
from explicit forms of ξ (17) and ∇θfθ∗(xi) (20). Equality (b) comes from the definition of ξ⊥ that
ξ⊥ ⊥ νi. We also define the collection of higher order perturbation terms:

f̃ 2+
θ∗+ξ(xi) := f̃θ∗+ξ(xi)− f̃ 1

θ∗+ξ(xi).

Now, from the definition of memorizing global minima, `′i(θ
∗) = 0 for all i ∈ [N]. Since `i is three

times differentiable, Taylor expansion of `i(·) at θ∗ gives

`i(θ
∗ + ξ)− `i(θ∗) =

1

2
`′′i (θ∗)(f̃θ∗+ξ(xi))

2 +
1

6
αi(f̃θ∗+ξ(xi))

3,

where αi = `′′′(fθ∗(xi) + βif̃θ∗+ξ(xi); yi) for some βi ∈ [0, 1]. For small enough ρs, f̃θ∗+ξ(xi) is
small enough and bounded, so there exists a constant C1 such that

`i(θ
∗ + ξ)− `i(θ∗) ≤ C1(f̃θ∗+ξ(xi))

2

for all i ∈ [N]. There also are constants C2 := maxi∈[N] ‖νi‖ and C3 such that

|f̃ 1
θ∗+ξ(xi)| ≤ C2‖ξ‖‖, and |f̃ 2+

θ∗+ξ(xi)| ≤ C3‖ξ‖2

for all i ∈ [N], therefore

`(fθ∗+ξ(xi); yi)− `(fθ∗(xi); yi) ≤ C1(C2‖ξ‖‖+ C3‖ξ‖2)2

holds for all i ∈ [N], as desired.

Now, consider the Taylor expansion of `′i at fθ∗(xi). Because `′i is twice differentiable and `′i(θ
∗) =

0,

`′i(θ
∗ + ξ) =`′′(θ∗)f̃θ∗+ξ(xi) +

1

2
α̂i(f̃θ∗+ξ(xi))

2

=`′′(fθ∗(xi); yi)f̃
1
θ∗+ξ(xi) + `′′(fθ∗(xi); yi)f̃

2+
θ∗+ξ(xi) +

1

2
α̂i(f̃θ∗+ξ(xi))

2︸ ︷︷ ︸
=:Ri(ξ)

=`′′(fθ∗(xi); yi)ν
T
i ξ‖ +Ri(ξ), (21)

where α̂i = 1
2`
′′′(fθ∗(xi) + β̂if̃θ∗+ξ(xi); yi) for some β̂i ∈ [0, 1]. The remainder term Ri(ξ)

contains all the perturbation terms that are 2nd-order or higher, so there is a constant C4 such that

|Ri(ξ)| ≤ C4‖ξ‖2

27

holds for all i ∈ [N].

In a similar way, we can see from Eq (20) that we can express ∇θfθ∗+ξ(xi) as the sum of νi :=
∇θfθ∗(xi) plus the perturbation µi(ξ):

∇θfθ∗+ξ(xi) = νi + µi(ξ),

where µi(ξ) contains all the perturbation terms that are 1st-order or higher. So, there exists a constant
C5 such that

‖µi(ξ)‖ ≤ C5‖ξ‖
holds for all i ∈ [N].

28

	Deferred theorem statements
	Proof of Theorem 3.1
	Proof sketch
	Input to layer 1: down-project and divide
	Layer 1 to 2: place at desired positions
	Layer 2 to output: add them all
	Proof for dy > 1

	Proof of Proposition 3.2
	Proof of Theorem 3.3
	Proof of Proposition 3.4
	Proofs of Theorem 4.1 and Corollary 4.2
	Proof of Theorem 4.1
	Proof of Corollary 4.2

	Proof of Theorem 5.1
	Proof of Lemma B.1
	Proof of Lemma G.1

