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Abstract

How well does a classic deep net architecture like AlexNet or VGG19 classify on a
standard dataset such as CIFAR-10 when its “width”— namely, number of channels
in convolutional layers, and number of nodes in fully-connected internal layers —
is allowed to increase to infinity? Such questions have come to the forefront in the
quest to theoretically understand deep learning and its mysteries about optimization
and generalization. They also connect deep learning to notions such as Gaussian
processes and kernels. A recent paper [Jacot et al., 2018] introduced the Neural
Tangent Kernel (NTK) which captures the behavior of fully-connected deep nets in
the infinite width limit trained by gradient descent; this object was implicit in some
other recent papers. An attraction of such ideas is that a pure kernel-based method
is used to capture the power of a fully-trained deep net of infinite width.
The current paper gives the first efficient exact algorithm for computing the ex-
tension of NTK to convolutional neural nets, which we call Convolutional NTK
(CNTK), as well as an efficient GPU implementation of this algorithm. This results
in a significant new benchmark for performance of a pure kernel-based method on
CIFAR-10, being 10% higher than the methods reported in [Novak et al., 2019],
and only 6% lower than the performance of the corresponding finite deep net
architecture (once batch normalization etc. are turned off). Theoretically, we also
give the first non-asymptotic proof showing that a fully-trained sufficiently wide
net is indeed equivalent to the kernel regression predictor using NTK.

1 Introduction

How well does a classic deep net architecture like AlexNet or VGG19 perform on a standard dataset
such as CIFAR-10 when its “width”— namely, number of channels in convolutional layers, and
number of nodes in fully-connected internal layers — is allowed to increase to infinity? Questions
about these “infinite limits” of deep nets have naturally emerged in the ongoing effort to understand
the power of deep learning. In mathematics it is often easier to study objects in the infinite limit. Fur-
thermore, the infinite limit could conceivably make sense in deep learning, since over-parametrization
seems to help optimization a lot and doesn’t hurt generalization much [Zhang et al., 2017]: deep
neural nets with millions of parameters work well even for datasets with 50k training examples. So
why not imagine nets whose width goes to infinity?
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Allowing width to go to infinity also connects deep learning in an interesting way with other areas of
machine learning. A single hidden-layer neural network with i.i.d. random parameters, in the limit
of infinite width, is a function drawn from a Gaussian process (GP) [Neal, 1996]. This model as
well as analogous ones with multiple layers [Lee et al., 2018, Matthews et al., 2018], convolutional
filters [Novak et al., 2019, Garriga-Alonso et al., 2019] and other architectures [Yang, 2019] make up
the GP view of deep learning. These correspond to infinitely wide deep nets whose all parameters are
chosen randomly (with careful scaling), and only the top (classification) layer is optimized.

From now on we will use weakly-trained nets to refer to nets whose layers receive random initial-
ization and only the top layer is trained by gradient descent. We use fully-trained to refer to nets
whose all parameters are trained by gradient descent. It has long been known that weakly-trained
convolutional nets have reasonable performance on MNIST and CIFAR-10. Weakly-trained nets that
are fully-connected instead of convolutional, can also be thought of as “multi-layer random kitchen
sinks,” which also have a long history.

Weakly-trained nets — whether of finite or infinite width — also define interesting kernels. Specifi-
cally, if f(θ,x) ∈ R denotes the output of the network on input x where θ denotes the parameters in
the network, andW is an initialization distribution over θ (usually Gaussian), then training just the
top layer with an `2 loss is equivalent to kernel regression for the following kernel:

ker (x,x′) = E
θ∼W

[f (θ,x) · f (θ,x′)], (1)

where x,x′ are two inputs. This kernel method makes sense when the width goes to infinity.

The objects of interest in this paper are not weakly-trained nets, but fully-trained nets. In the finite
case, analysis of optimization and generalization of fully-trained nets is of course an open problem.
One may also ask:

Can we understand the power of fully-trained nets whose width goes to infinity?

A priori this question doesn’t seem any easier than the finite case, and empirical evaluation seems
computationally infeasible due to the infinite limit. They also do not correspond to a kernel method
in any obvious way.

Recent papers suggest that neural nets whose width greatly exceeds the number of training data points
can rapidly reduce training error to 0 via gradient descent, and under some conditions, the trained
net also exhibits good generalization [Du et al., 2019, 2018b, Li and Liang, 2018, Allen-Zhu et al.,
2018a,b, Zou et al., 2018, Arora et al., 2019, Cao and Gu, 2019]. Extra-wideness plays a crucial
role in the proof: it is shown that as width increases, training causes increasingly smaller changes
(in a proportionate sense) in the parameters. This raises the possibility that as one increases the
width to infinity, a certain limiting behavior can emerge even in the fully-trained net. A recent paper
by Jacot et al. [2018] isolated a notion implicit in the above papers, which they called the Neural
Tangent Kernel (NTK). They suggested — via a proof that is slightly heuristic — that this fixed kernel
characterizes the behavior of fully-connected infinite width neural networks whose layers have been
trained by gradient descent. The NTK is different from the Gaussian process kernels discussed earlier,
and is defined using the gradient of the output of the randomly initialized net with respect to its
parameters, i.e.,

ker (x,x′) = E
θ∼W

〈
∂f(θ,x)

∂θ
,
∂f(θ,x′)

∂θ

〉
. (2)

Here, the gradient ∂f(θ,x)
∂θ appears from considering gradient descent, as will be explained in Section 3.

One may also generalize the NTK to convolutional neural nets, and we call the corresponding kernel
Convolutional Neural Tangent Kernel (CNTK).

Though NTK and CNTK are defined by an infinite limit, a recent paper [Lee et al., 2019] attempted
to understand their properties via a finite approximation of the infinite limit kernel by Monte Carlo
methods. However, as will be shown in Section B, using random features generated from practically
sized nets can degrade the performance a lot. It was still open what is the full power of exact CNTK
on modern datasets. This is a challenging question especially for CNTK with pooling operations,
since when convolution with pooling is involved, it was believed that exact computation of kernels
(for either convolutional Gaussian process kernel or CNTK) is infeasible for large datasets like
CIFAR-10 [Novak et al., 2019].
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Our contributions. We give an exact and efficient dynamic programming algorithm to compute
CNTKs for ReLU activation (namely, to compute ker (x,x′) given x and x′). Using this algorithm
— as well as implementation tricks for GPUs — we can settle the question of the performance of
fully-trained infinitely wide nets with a variety of architectures. For instance, we find that their
performance on CIFAR-10 is within 5% of the performance of the same architectures in the finite case
(note that the proper comparison in the finite case involves turning off batch norm, data augmentation,
etc., in the optimization). In particular, the CNTK corresponding to a 11-layer convolutional net
with global average pooling achieves 77% classification accuracy. This is 10% higher than the best
reported performance of a Gaussian process with fixed kernel on CIFAR-10 [Novak et al., 2019].8

Furthermore, we give a more rigorous, non-asymptotic proof that the NTK captures the behavior of a
fully-trained wide neural net under weaker condition than previous proofs. We also experimentally
show that the random feature methods for approximating CNTK in earlier work do not compute good
approximations, which is clear from their much worse performance on CIFAR.

1.1 Notation

We use bold-faced letters for vectors, matrices and tensors. For a vector a, let [a]i be its i-th entry; for
a matrixA, let [A]i,j be its (i, j)-th entry; for a 4th-order tensor T , let [A]ij,i′j′ be its (i, j, i′, j′)-th
entry. Let I be the identity matrix, and [n] = {1, 2, . . . , n}. Let ei be an indicator vector with i-th
entry being 1 and other entries being 0, and let 1 denote the all-one vector. We use � to denote the
entry-wise product and ⊗ to denote the tensor product. We use 〈·, ·〉 to denote the standard inner
product. We use diag(·) to transform a vector to a diagonal matrix. We use σ (·) to denote the
activation function, such as the rectified linear unit (ReLU) function: σ (z) = max{z, 0}, and σ̇ (·)
to denote the derivative of σ (·). Denote by N (µ,Σ) the Gaussian distribution with mean µ and
covariance Σ.

2 Related Work

From a Gaussian process (GP) viewpoint, the correspondence between infinite neural networks and
kernel machines was first noted by Neal [1996]. Follow-up work extended this correspondence
to more general shallow neural networks [Williams, 1997, Roux and Bengio, 2007, Hazan and
Jaakkola, 2015]. More recently, this was extended to deep and convolutional neural networks [Lee
et al., 2018, Matthews et al., 2018, Novak et al., 2019, Garriga-Alonso et al., 2019] and a variety of
other architectures [Yang, 2019]. However, these kernels, as we discussed in Section 1, represent
weakly-trained nets, instead of fully-trained nets.

Beyond GPs, the connection between neural networks and kernels is also studied in the compositional
kernel literature. Cho and Saul [2009] derived a closed-form kernel formula for rectified polynomial
activations, which include ReLU as a special case. Daniely et al. [2016] proposed a general framework
to transform a neural network to a compositional kernel and later Daniely [2017] showed for
sufficiently wide neural networks, stochastic gradient descent can learn functions that lie in the
corresponding reproducing kernel Hilbert space. However, the kernels studied in these works still
correspond to weakly-trained neural networks.

This paper is inspired by a line of recent work on over-parameterized neural networks [Du et al., 2019,
2018b, Du and Hu, 2019, Li and Liang, 2018, Allen-Zhu et al., 2018b,a, Zou et al., 2018, Cao and Gu,
2019]. These papers established that for (convolutional) neural networks with large but finite width,
(stochastic) gradient descent can achieve zero training error. A key component in these papers is
showing that the weight matrix at each layer is close to its initialization. This observation implies that
the kernel defined in Equation (2) is still close to its initialization. Arora et al. [2019] explicitly used
this observation to derive generalization bounds for two-layer over-parameterized neural networks.
Chizat and Bach [2018] argued that these results in the kernel regime may be too simple to be able to
explain the success of deep learning, while on the other hand, out results show that CNTK is at least
able to perform well on tasks like CIFAR-10 classification. Also see the survey Fan et al. [2019] for
recent advance in deep learning theory.

8We only consider fixed kernels defined without using the training data. We do not compare to methods that
tune the kernels using training data [Van der Wilk et al., 2017] or use a neural network to extract features and
then applying a kernel method on top of them [Mairal et al., 2014].
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Jacot et al. [2018] derived the exact same kernel from kernel gradient descent. They showed that
if the number of neurons per layer goes to infinity in a sequential order, then the kernel remains
unchanged for a finite training time. They termed the derived kernel Neural Tangent Kernel (NTK).
We follow the same naming convention and name its convolutional extension Convolutional Neural
Tangent Kernel (CNTK). Later, Yang [2019] derived a formula of CNTK as well as a mechanistic
way to derive NTK for different architectures. Comparing with [Yang, 2019], our CNTK formula has
a more explicit convolutional structure and results in an efficient GPU-friendly computation method.
Recently, Lee et al. [2019] tried to empirically verify the theory in [Jacot et al., 2018] by studying the
linearization of neural nets. They observed that in the first few iterations, the linearization is close
to the actual neural net. However, as will be shown in Section B, such linearization can decrease
the classification accuracy by 5% even on a “CIFAR-2" (airplane V.S. car) dataset. Therefore, exact
kernel evaluation is important to study the power of NTK and CNTK.

3 Neural Tangent Kernel

In this section we describe fully-connected deep neural net architecture and its infinite width limit,
and how training it with respect to the `2 loss gives rise to a kernel regression problem involving
the neural tangent kernel (NTK). We denote by f(θ,x) ∈ R the output of a neural network where
θ ∈ RN is all the parameters in the network and x ∈ Rd is the input.9 Given a training dataset
{(xi, yi)}ni=1 ⊂ Rd × R, consider training the neural network by minimizing the squared loss over
training data: `(θ) = 1

2

∑n
i=1 (f(θ,xi)− yi)2

. The proof of the following lemma uses simple
differentiation and appears in Section C.

Lemma 3.1. Consider minimizing the squared loss `(θ) by gradient descent with infinitesimally
small learning rate: dθ(t)

dt = −∇`(θ(t)). Let u(t) = (f(θ(t),xi))i∈[n] ∈ Rn be the network
outputs on all xi’s at time t, and y = (yi)i∈[n] be the desired outputs. Then u(t) follows the
following evolution, where H(t) is an n × n positive semidefinite matrix whose (i, j)-th entry is〈
∂f(θ(t),xi)

∂θ ,
∂f(θ(t),xj)

∂θ

〉
:

du(t)

dt
= −H(t) · (u(t)− y). (3)

The statement of Lemma 3.1 involves a matrixH(t). Below we define a deep net architecture whose
width is allowed to go to infinity, while fixing the training data as above. In the limit, it can be
shown that the matrixH(t) remains constant during training i.e., equal toH(0). Moreover, under a
random initialization of parameters, the random matrixH(0) converges in probability to a certain
deterministic kernel matrix H∗ as the width goes to infinity, which is the Neural Tangent Kernel
ker(·, ·) (Equation (2)) evaluated on the training data. If H(t) = H∗ for all t, then Equation (3)
becomes

du(t)

dt
= −H∗ · (u(t)− y). (4)

Note that the above dynamics is identical to the dynamics of kernel regression under gradient flow,
for which at time t→∞ the final prediction function is (assuming u(0) = 0)

f∗(x) = (ker(x,x1), . . . , ker(x,xn)) · (H∗)−1y. (5)

In Theorem 3.2, we rigorously prove that a fully-trained sufficiently wide ReLU neural network is
equivalent to the kernel regression predictor (5) on any given data point.

Fully-connected deep neural net and its infinite width limit. Now we define a fully-connected
neural net formally. Let x ∈ Rd be the input, and denote g(0)(x) = x and d0 = d for notational
convenience. We define an L-hidden-layer fully-connected neural network recursively:

f (h)(x) = W (h)g(h−1)(x) ∈ Rdh , g(h)(x) =

√
cσ
dh
σ
(
f (h)(x)

)
∈ Rdh , h = 1, 2, . . . , L,

(6)

9For simplicity, we only consider a single output here. The generalization to multiple outputs is straightfor-
ward.
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whereW (h) ∈ Rdh×dh−1 is the weight matrix in the h-th layer (h ∈ [L]), σ : R→ R is a coordinate-

wise activation function, and cσ =
(
Ez∼N (0,1)

[
σ (z)

2
])−1

. The last layer of the neural network
is

f(θ,x) = f (L+1)(x) = W (L+1) · g(L)(x)

= W (L+1) ·
√
cσ
dL
σ

(
W (L) ·

√
cσ
dL−1

σ

(
W (L−1) · · ·

√
cσ
d1
σ
(
W (1)x

)))
,

whereW (L+1) ∈ R1×dL is the weights in the final layer, and θ =
(
W (1), . . . ,W (L+1)

)
represents

all the parameters in the network.

We initialize all the weights to be i.i.d. N (0, 1) random variables, and consider the limit of large
hidden widths: d1, d2, . . . , dL → ∞. The scaling factor

√
cσ/dh in Equation (6) ensures that the

norm of g(h)(x) for each h ∈ [L] is approximately preserved at initialization (see [Du et al., 2018b]).
In particular, for ReLU activation, we have E

[∥∥g(h)(x)
∥∥2
]

= ‖x‖2 (∀h ∈ [L]).

Recall from [Lee et al., 2018] that in the infinite width limit, the pre-activations f (h)(x) at every
hidden layer h ∈ [L] has all its coordinates tending to i.i.d. centered Gaussian processes of covariance
Σ(h−1) : Rd × Rd → R defined recursively as: for h ∈ [L],

Σ(0)(x,x′) = x>x′,

Λ(h)(x,x′) =

(
Σ(h−1)(x,x) Σ(h−1)(x,x′)
Σ(h−1)(x′,x) Σ(h−1)(x′,x′)

)
∈ R2×2,

Σ(h)(x,x′) = cσ E
(u,v)∼N(0,Λ(h))

[σ (u)σ (v)] .

(7)

To give the formula of NTK, we also need to define a derivative covariance:

Σ̇(h)(x,x′) = cσ E
(u,v)∼N(0,Λ(h))

[σ̇(u)σ̇(v)] . (8)

The final NTK expression for the fully-connected neural network is

Θ(L)(x,x′) =

L+1∑
h=1

(
Σ(h−1)(x,x′) ·

L+1∏
h′=h

Σ̇(h′)(x,x′)

)
, (9)

where we let Σ̇(L+1)(x,x′) = 1 for convenience. We refer readers to Section D for the derivation of
this formula. Rigorously, for ReLU activation, we have the following theorem that gives a concrete
bound on the hidden widths that is sufficient for convergence to the NTK at initialization:
Theorem 3.1 (Convergence to the NTK at initializatoin). Fix ε > 0 and δ ∈ (0, 1). Suppose
σ (z) = max(0, z) and minh∈[L] dh ≥ Ω(L

14

ε4 log(L/δ)). Then for any inputs x,x′ ∈ Rd0 such that
‖x‖ ≤ 1, ‖x′‖ ≤ 1, with probability at least 1− δ we have:∣∣∣∣〈∂f(θ,x)

∂θ
,
∂f(θ,x′)

∂θ

〉
−Θ(L)(x,x′)

∣∣∣∣ ≤ ε.
The proof of Theorem 3.1 is given in Section E. Theorem 3.1 improves upon previous results [Jacot
et al., 2018, Yang, 2019] that also established similar convergence in the following sense:

1. Previous results are asymptotic, i.e., they require the widths to go to infinity, while Theorem 3.1
gives a non-asymptotic bound on the required layer widths.

2. Jacot et al. [2018] required sequential limit, i.e., d1, . . . , dL go to infinity one by one, and Yang
[2019] let d1, . . . , dL go to infinity at the same rate. On the other hand, Theorem 3.1 only requires
minh∈[L] dh to be sufficiently large, which is the weakest notion of limit.

Equivalence between wide neural net and kernel regression with NTK. Built on Theorem 3.1,
we can further incorporate the training process and show the equivalence between a fully-trained
sufficiently wide neural net and the kernel regression solution using the NTK, as described in
Lemma 3.1 and the discussion after it.
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Recall that the training data are {(xi, yi)}ni=1 ⊂ Rd × R, and H∗ ∈ Rn×n is the NTK evaluated
on these training data, i.e., [H∗]i,j = Θ(L)(xi,xj). Denote λ0 = λmin (H∗). For a testing point
xte ∈ Rd, we let kerntk(xte,X) ∈ Rn be the kernel evaluated between the testing point and n
training points, i.e., [kerntk(xte,X)]i = Θ(L)(xte,xi). The prediction of kernel regression using
NTK on this testing point is fntk (xte) = (kerntk (xte,X))

>
(H∗)

−1
y.

Since the above solution corresponds to the linear dynamics in Equation (4) with zero initialization, in
order to establish equivalence between neural network and kernel regression, we would like the initial
output of the neural network to be small. Therefore, we apply a small multiplier κ > 0, and let the final
output of the neural network be fnn(θ,x) = κf (θ,x) . We let fnn(xte) = limt→∞ fnn(θ(t),xte)
be the prediction of the neural network at the end of training.

The following theorem establishes the equivalence between the fully-trained wide neural network
fnn and the kernel regression predictor fntk using the NTK.
Theorem 3.2 (Equivalence between trained net and kernel regression). Suppose σ (z) =
max(0, z), 1/κ = poly(1/ε, log(n/δ)) and d1 = d2 = · · · = dL = m with m ≥
poly(1/κ, L, 1/λ0, n, log(1/δ)). Then for any xte ∈ Rd with ‖xte‖ = 1, with probability at
least 1− δ over the random initialization, we have

|fnn(xte)− fntk(xte)| ≤ ε.

The proof of Theorem 3.2 is given in Section F. We remark that one can generalize our proof to more
advanced architectures, such as convolutinal neural network, ResNet, etc.

Theorem 3.2 is, to our knowledge, the first result that rigorously shows the equivalence between a
fully-trained neural net and a deterministic kernel predictor. Compared with similar results by [Jacot
et al., 2018, Lee et al., 2019], our bound is non-asymptotic whereas theirs are asymptotic. Compared
with [Arora et al., 2019, Allen-Zhu et al., 2018b,a, Du et al., 2019, 2018b, Li and Liang, 2018, Zou
et al., 2018], our theorem is a more precise characterization of the learned neural network. That is, the
prediction is essentially a kernel predictor. Therefore, to study the properties of over-parameterized
nets, such as their generalization power, it is sufficient to study the corresponding NTK.

While this theorem only gives guarantee for a single point, using a union bound, we can show that
this guarantee holds for (exponentially many) finite testing points. Combing this with the standard
analysis of hold-out validation set, we can conclude that a fully-trained wide neural net enjoys the
same generalization ability as its corresponding NTK.

4 Convolutional Neural Tangent Kernel

In this section we study convolutional neural nets (CNNs) and their corresponding CNTKs. We study
two architectures, vanilla CNN and CNN with global average pooling (GAP). In this section we
define vanilla CNN and present its corresponding CNTK formula. The derivation of this formula is
deferred to Section G. We present the definition of CNN with GAP and its CNTK in Section H.

To formally define CNNs, we first introduce some notation. We let P be the width and Q be the
height of the image. We use q ∈ Z+ to denote the filter size. In practice, q = 1, 3, or 5. We use
standard zero padding and set stride size to be 1 to make sure the input of each layer has the same size.
For a convolutional filter w ∈ Rq×q and an image x ∈ RP×Q, the convolution operator is defined as

[w ∗ x]ij =

q−1
2∑

a=− q−1
2

q−1
2∑

b=− q−1
2

[w]a+ q+1
2 ,b+ q+1

2
[x]a+i,b+j for i ∈ [P ], j ∈ [Q]. (10)

Equation (10) shows that patch [w ∗ x]ij depends on [x]i− q−1
2 :i+ q−1

2 ,j− q−1
2 :j+ q−1

2
. Our CNTK

formula also relies on this dependency. For (i, j, i′, j′) ∈ [P ]× [Q]× [P ]× [Q], define

Dij,i′j′
= {(i+ a, j + b, i′ + a′, j′ + b′) ∈ [P ]× [Q]× [P ]× [Q] | −(q − 1)/2 ≤ a, b, a′, b′ ≤ (q − 1)/2} .

Lastly, for a tensor T ∈ RP×Q×P×Q, we denote by [T ]Dij,i′j′ ∈ Rq×q×q×q a sub-tensor and we let
tr (T ) =

∑
i,j Tij,ij .
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A vanilla CNN consisting of L convolution layers and one fully-connected layer is formally defined
as follows:

• Let x(0) = x ∈ RP×Q×C(0)

be the input image where C(0) is the number of channels.
• For h = 1, . . . , L, β = 1, . . . , C(h), the intermediate outputs are defined as

x̃
(h)
(β) =

C(h−1)∑
α=1

W
(h)
(α),(β) ∗ x

(h−1)
(α) , x

(h)
(β) =

√
cσ

C(h) × q × q
σ
(
x̃

(h)
(β)

)
,

where eachW (h)
(α),(β) ∈ Rq×q is a filter with standard Gaussian initialization.

• The final output is defined as f(θ,x) =
∑C(L)

α=1

〈
W

(L+1)
(α) ,x

(L)
(α)

〉
where W (L+1)

(α) ∈ RP×Q is a
weight matrix with standard Gaussian initialization.

For this architecture, using the same reasoning as in Section D, we obtain the following convolutional
neural tangent kernel formula. The details are provided in Section G.

CNTK formula. We let x,x′ be two input images.

• For α = 1, . . . , C(0), (i, j, i′, j′) ∈ [P ]× [Q]× [P ]× [Q], define

K
(0)
(α) (x,x′) = x(α) ⊗ x′(α) and

[
Σ(0)(x,x′)

]
ij,i′j′

=

C(0)∑
α=1

tr

([
K

(0)
(α)(x,x

′)
]
Dij,i′j′

)
.

• For h ∈ [L],
– For (i, j, i′, j′) ∈ [P ]× [Q]× [P ]× [Q], define

Λ
(h)
ij,i′j′(x,x

′) =

( [
Σ(h−1)(x,x)

]
ij,ij

[
Σ(h−1)(x,x′)

]
ij,i′j′[

Σ(h−1) (x′,x)
]
i′j′,ij

[
Σ(h−1) (x′,x′)

]
i′j′,i′j′

)
∈ R2×2.

– DefineK(h)(x,x′), K̇(h)(x,x′) ∈ RP×Q×P×Q: for (i, j, i′, j′) ∈ [P ]× [Q]× [P ]× [Q],[
K(h)(x,x′)

]
ij,i′j′

=
cσ
q2
· E

(u,v)∼N
(
0,Λ

(h)

ij,i′j′ (x,x
′)
) [σ (u)σ (v)] , (11)

[
K̇(h)(x,x′)

]
ij,i′j′

=
cσ
q2
· E

(u,v)∼N
(
0,Λ

(h)

ij,i′j′ (x,x
′)
) [σ̇ (u) σ̇ (v)] . (12)

– Define Σ(h)(x,x′) ∈ RP×Q×P×Q: for (i, j, i′, j′) ∈ [P ]× [Q]× [P ]× [Q],[
Σ(h)(x,x′)

]
ij,i′j′

=tr

([
K(h)(x,x′)

]
Dij,i′j′

)
.

Note that Σ(x,x′) and Σ̇(x,x′) share similar structures as their NTK counterparts in Equations (7)
and (8). The only difference is that we have one more step, taking the trace over patches. This step
represents the convolution operation in the corresponding CNN. Next, we can use a recursion to
compute the CNTK:

1. First, we define Θ(0)(x,x′) = Σ(0)(x,x′).
2. For h = 1, . . . , L− 1 and (i, j, i′, j′) ∈ [P ]× [Q]× [P ]× [Q], we define[

Θ(h)(x,x′)
]
ij,i′j′

= tr

([
K̇(h)(x,x′)�Θ(h−1)(x,x′) +K(h)(x,x′)

]
Dij,i′j′

)
.

3. For h = L , we define Θ(L)(x,x′) = K̇(L)(x,x′)�Θ(L−1)(x,x′) +K(L)(x,x′).
4. The final CNTK value is defined as tr

(
Θ(L)(x,x′)

)
.

In Section H we give the CNTK formula for CNNs with GAP, which is similar to vanilla CNNs. To
compute the CNTK matrix corresponding to a CNN with GAP that has L convolution layers and one
fully-connected layer on n samples, the time complexity is O(n2P 2Q2L). Previous work assumed
that directly computing convolutional kernel (with pooling) exactly is computationally infeasible,
and thus resorted to approximations like Monte Carlo sampling [Novak et al., 2019]. We are able to
scale the exact CNTK computation to the full CIFAR-10 dataset and 20-layer CNN with GAP. We
present our efficient computation approach in Section I.
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Depth CNN-V CNTK-V CNTK-V-2K CNN-GAP CNTK-GAP CNTK-GAP-2K

3 59.97% 64.47% 40.94% 63.81% 70.47% 49.71%

4 60.20% 65.52% 42.54% 80.93% 75.93% 51.06%

6 64.11% 66.03% 43.43% 83.75% 76.73% 51.73%

11 69.48% 65.90% 43.42% 82.92% 77.43% 51.92%

21 75.57% 64.09% 42.53% 83.30% 77.08% 52.22%

Table 1: Classification accuracies of CNNs and CNTKs on the CIFAR-10 dataset. CNN-V represents
vanilla CNN and CNTK-V represents the kernel corresponding to CNN-V. CNN-GAP represents
CNN with GAP and CNTK-GAP represents the kernel correspondong to CNN-GAP. CNTK-V-2K
and CNTK-GAP-2K represent training CNTKs with only 2,000 training data.

5 Experiments

We evaluate the performances of CNNs and their corresponding CNTKs on the CIFAR-10 dataset.
The implementation details are in Section A. We also compare the performances between CNTKs and
their corresponding random features. Due to space limit, we defer these results on random features to
Section B.

Results. We test two types of architectures, vanilla CNN and CNN with global average pooling
(GAP), as described in Sections 4 and H. We also test CNTKs with only 2,000 training data to
see whether their performances are consistent with CNTKs and CNNs using the full training set.
The results are summarized in Table 1. Notice that in Table 1, depth is the total number of layers
(including both convolution layers and fully-connected layers).

Several comments are in sequel. First, CNTKs are very powerful kernels. The best kernel, 11-layer
CNTK with GAP, achieves 77.43% classification accuracy on CIFAR-10. This results in a significant
new benchmark for performance of a pure kernel-based method on CIFAR-10, being 10% higher
than methods reported in [Novak et al., 2019].

Second, we find that for both CNN and CNTK, depth can affect the classification accuracy. This
observation demonstrates that depth not only matters in deep neural networks but can also affect the
performance of CNTKs.

Third, the global average pooling operation can significantly increase the classification accuracy by
8% - 10% for both CNN and CNTK. Based on this finding, we expect that many techniques that
improve the performance of neural networks are in some sense universal, i.e., these techniques can
also benefit kernel methods.

Fourth, we find that there is still a 5% - 6% performance gap between CNTKs and CNNs. Since
CNTKs exactly correspond to infinitely wide CNNs, this performance gap implies that finite width
has its benefits. Therefore, it is likely that recent theoretical work on over-parameterization that
operates in the NTK regime cannot fully explain the success of neural networks yet, and we believe it
is an interesting open problem to characterize this gap.

Potential application in neural architecture search. Finally, we find that performances of CNTK-
V-2Ks and CNTK-GAP-2Ks are highly correlated to their CNN-V, CNTK-V, CNN-GAP and CNTK-
GAP counterparts. Again we see CNTK-GAP-2Ks outperform CNTK-V-2Ks by a large margin
(about 8% - 9%). One potential application of this observation is to guide neural architecture search.
We can compute the kernel on a small training data, test it on a validation set, and choose neural
network architectures based on the performance of this small kernel on the validation set. We leave
large scale experiments of this idea for future work.

6 Conclusion

By giving the first practical algorithm for computing CNTKs exactly, this paper allows investigation
of the behavior of infinitely wide (hence infinitely over-parametrized) deep nets, which turns out to
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not be much worse than that of their finite counterparts. We also give a fully rigorous proof that a
sufficiently wide net is approximately equivalent to the kernel regression predictor, thus yielding a
powerful new off-the-shelf kernel. We leave it as an open problem to understand the behavior of
infinitely wide nets with features such as Batch Normalization or Residual Layers. Of course, one
can also hope that the analysis of infinite nets provides rigorous insight into finite ones.
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A Experiment Details

Setup. Due to efficiency considerations, for all experiments, we use no data augmentation. Tricks
like batch normalization, dropout, weight decay, etc. are not used for proper comparison. We fix the
filter q to be 3 and stride to be 1. We use zero padding to make sure the number of patches keeps
unchanged after each convolutional layer. We set the number of convolution layers to be 2, 3, 5, 10,
or 20. For both CNNs and CNTKs, we use the quadratic loss as the objective function.

Following Novak et al. [2019], for a label c ∈ {1, . . . , 10}, we use −0.1 · 1 + ec as its encoding. For
example, if the class label is 3, we use (−0.1,−0.1, 0.9,−0.1, . . . ,−0.1) as its encoding. During
training time, we calculate (H∗)−1Y , whereH∗ is the CNTK matrix on inputs, and the i-th row of
Y ∈ Rn×10 is the encoding of the label of the i-th data. During testing time, for a test data point xte,
we calculate

f∗(xte) = (ker(xte,x1), . . . , ker(xte,xn)) · (H∗)−1Y

and choose the class with largest value as the prediction.

The architecture of CNNs is as described in Section 4 and Section H. We set the number of the
channels of the network as 1024 and κ as 0.05. To train CNNs, we use stochastic gradient descent
(SGD) with fixed learning rate. We report the best average performance over 3 trials among the
different learning rate chosen from {0.1, 1, 10}. The test accuracy is measured by taking average of
the 10 epochs after reaching full training accuracy except the depth-3 vanilla CNN, which couldn’t
attain full training accuracy within 3000 epochs for all learning rates

Our neural networks are trained using the PyTorch package, using (possibly multiple) NVIDIA
Tesla V100 GPUs. We calculate the kernel values using the CuPy10 package. For time-consuming
operations, we write native CUDA codes to speed up the calculation. All experiments are performed
on Amazon Web Services (AWS).

B Additional Experiments on Random Features

We verify the importance of using the exact kernels instead of the approximated ones from random
features (as done in [Lee et al., 2019]). The random features are generated by taking the gradient of
the randomly initialized CNNs with respect to the weight matrices. For all CNNs we set the number
of channels to be 128. We compare the performances of the exact kernels and the random kernels
on a CIFAR-2 dataset, i.e., the first two class in CIFAR-10. For each kernel generated by random
features, we test 10 times and report the median. The results are summarized in Table 2.

Depth RF from Vanilla CNTK Vanilla CNTK RF for CNTK-GAP CNTK-GAP

3 87.25% 92.15% 51.10% 71.05%

4 87.78% 92.80% 52.85% 94.50%

6 88.73% 93.10% 53.98% 95.25%

11 87.80% 93.05% 56.55% 95.40%

21 85.35% 91.95% 90.65% 95.70%

Table 2: Classification accuracies of random kernels generated from random features and exact
CNTKs on CIFAR-2.

Note that even on the simple CIFAR-2 dataset, random features have much worse accuracies than
exact kernels by a large margin. This experiment demonstrates the importance of using the exact
kernels instead of approximated ones.

10https://cupy.chainer.org.
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C Proof of Lemma 3.1

Proof of Lemma 3.1. The parameters θ evolve according to the differential equation

dθ(t)

dt
= −∇`(θ(t)) = −

n∑
i=1

(f(θ(t),xi)− yi)
∂f(θ(t),xi)

∂θ
, (13)

where t ≥ 0 is a continuous time index. Under Equation (13), the evolution of the network output
f(θ(t),xi) can be written as

df(θ(t),xi)

dt
= −

n∑
j=1

(f(θ(t),xj)− yj)
〈
∂f(θ(t),xi)

∂θ
,
∂f(θ(t),xj)

∂θ

〉
, ∀i ∈ [n]. (14)

Since u(t) = (f(θ(t),xi))i∈[n] ∈ Rn is the network outputs on all xi’s at time t, and y = (yi)i∈[n]

is the desired outputs, Equation (14) can be written more compactly as

du(t)

dt
= −H(t) · (u(t)− y), (15)

where H(t) ∈ Rn×n is a kernel matrix defined as [H(t)]i,j =
〈
∂f(θ(t),xi)

∂θ ,
∂f(θ(t),xj)

∂θ

〉
(∀i, j ∈

[n]).

D NTK Derivation

In this section we derive NTK for the fully-connected neural net defined in Section 3.

First we explain how the Gaussian process covariance in Equation (7) is obtained. The intuition is
that

[
f (h+1)(x)

]
i

=
∑dh
j=1

[
W (h+1)

]
i,j

[
g(h)(x)

]
j

is a centered Gaussian process conditioned on

f (h) (∀i ∈ [dh+1]), with covariance

E
[[
f (h+1)(x)

]
i
·
[
f (h+1)(x′)

]
i

∣∣∣f (h)
]

=
〈
g(h)(x), g(h)(x′)

〉
=
cσ
dh

dh∑
j=1

σ

([
f (h)(x)

]
j

)
σ

([
f (h)(x′)

]
j

)
,

(16)

which converges to Σ(h)(x,x′) as dh →∞ given that each
[
f (h)

]
j

is a centered Gaussian process

with covariance Σ(h−1). This yields the inductive definition in Equation (7).

Recall that we need to compute the value that
〈
∂f(θ,x)
∂θ , ∂f(θ,x′)

∂θ

〉
converges to at random initializa-

tion in the infinite width limit. We can write the partial derivative with respect to a particular weight
matrixW (h) in a compact form:

∂f(θ,x)

∂W (h)
= b(h)(x) ·

(
g(h−1)(x)

)>
, h = 1, 2, . . . , L+ 1,

where

b(h)(x) =

{
1 ∈ R, h = L+ 1,√

cσ
dh
D(h)(x)

(
W (h+1)

)>
b(h+1)(x) ∈ Rdh , h = 1, . . . , L,

(17)

D(h)(x) = diag
(
σ̇
(
f (h)(x)

))
∈ Rdh×dh , h = 1, . . . , L. (18)

Then, for any h ∈ [L+ 1], we can compute〈
∂f(θ,x)

∂W (h)
,
∂f(θ,x′)

∂W (h)

〉
=

〈
b(h)(x) ·

(
g(h−1)(x)

)>
,b(h)(x′) ·

(
g(h−1)(x′)

)>〉
=
〈
g(h−1)(x), g(h−1)(x′)

〉
·
〈
b(h)(x),b(h)(x′)

〉
.

12



Note that we have established in Equation (16) that〈
g(h−1)(x), g(h−1)(x′)

〉
→ Σ(h−1) (x,x′) .

For the other factor
〈
b(h)(x),b(h)(x′)

〉
, from Equation (17) we get〈

b(h)(x),b(h)(x′)
〉

=

〈√
cσ
dh
D(h)(x)

(
W (h+1)

)>
b(h+1)(x),

√
cσ
dh
D(h)(x′)

(
W (h+1)

)>
b(h+1)(x′)

〉
.

(19)

AlthoughW (h+1) and bh+1(x) are dependent, the Gaussian initialization ofW (h+1) allows us to
replaceW (h+1) with a fresh new sample W̃ (h+1) without changing its limit: (This is made rigorous
for ReLU activation in Theorem 3.1.)〈√

cσ
dh
D(h)(x)

(
W (h+1)

)>
b(h+1)(x),

√
cσ
dh
D(h)(x′)

(
W (h+1)

)>
b(h+1)(x′)

〉
≈
〈√

cσ
dh
D(h)(x)

(
W̃ (h+1)

)>
b(h+1)(x),

√
cσ
dh
D(h)(x′)

(
W̃ (h+1)

)>
b(h+1)(x′)

〉
→ cσ
dh

tr
(
D(h)(x)D(h)(x′)

)〈
b(h+1)(x),b(h+1)(x′)

〉
→Σ̇(h) (x,x′)

〈
b(h+1)(x),b(h+1)(x′)

〉
.

Applying this approximation inductively in Equation (19), we get〈
b(h)(x),b(h)(x′)

〉
→

L∏
h′=h

Σ̇(h′)(x,x′).

Finally, since
〈
∂f(θ,x)
∂θ , ∂f(θ,x′)

∂θ

〉
=
∑L+1
h=1

〈
∂f(θ,x)
∂W (h) ,

∂f(θ,x′)
∂W (h)

〉
, we obtain the final NTK expression

for the fully-connected neural network:

Θ(L)(x,x′) =

L+1∑
h=1

(
Σ(h−1)(x,x′) ·

L+1∏
h′=h

Σ̇(h′)(x,x′)

)
.

E Proof of Theorem 3.1

E.1 Notation and Some Properties of ReLU

Definition E.1 (k-homogeneous function). A function f : R→ R is said to be k-homogeneous, if
f(λx) = λkf(x) for all x ∈ R, λ > 0.

Definition E.2. Let S+ be the set of positive semi-definite kernels over Rd, that is

S+ =

{
K : Rd × Rd → R

∣∣∣∣∀N ∈ N,x1, . . .xN ∈ Rd, c1, . . . , cN ∈ R,
∑N

i=1

∑N

j=1
cicjK(xi, xj) ≥ 0.

}
Let σ : R→ R be the activation function, and Tσ : S+ → S+ be the operator induced by σ,

∀x,x′ ∈ Rd, Tσ(K)(x,x′) = cσ E
(u,v)∼N(0,K|x,x′)

[σ (u)σ (v)] ,

where K|x,x′ ∈ R2×2, K|x,x′ =

[
K(x,x) K(x,x′)
K(x′,x) K(x′,x′)

]
.
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For convenience, we use tσ(Σ) to denote cσ E(u,v)∼N (0,Σ) [σ (u)σ (v)], and define t̂σ(ρ) as

t̂σ(ρ) = cσ E
(u,v)∼Σ′

[σ (u)σ (v)] , with Σ′ =

[
1 ρ
ρ 1

]
When σ is k-homogeneous function, we have

tσ(Σ) = cσ (Σ11Σ22)
k
2 E

(u,v)∼N (0,Σ′)
[σ (u)σ (v)] with Σ′ =

[
1 Σ12√

Σ11Σ22
Σ12√

Σ11Σ22
1

]
.

Thus tσ(Σ) can be written as cσ (Σ11Σ22)
k
2 t̂( Σ12√

Σ11Σ22
),

Fact E.1 (Some facts about σ (z) = max(0, z) and Tσ).

1. For all activation function σ, tσ

([
1 1
1 1

])
= 1.

2. For all 1-homogeneous activation σ, t̂σ(1) = 1 and tσ

([
a a
a a

])
= ak .

3. For σ (z) = max(0, z), t̂σ(ρ) =

√
1−ρ2+ρ arcsin ρ

π + x
2 , t̂σ̇(ρ) = 1

2 + arcsin ρ
π and cσ =

cσ̇ = 2.
Lemma E.1 (Uniform Continuity of arcsin z).

1. For any −π2 ≤ y
′ ≤ y ≤ π

2 , sin y − sin y′ ≥ 2 sin2 y−y′
2 .

2. sin y ≥ 2y
π , ∀y ∈ [0, π2 ].

3. arcsin is uniform continuous: for every ε ∈ R+, |z−z′| < 2ε2

π2 ⇒ | arcsin z−arcsin z′| < ε.

4. For σ (z) = max(0, z), t̂σ̇ is uniform continuous: for every ε ∈ R+, |z − z′| < 2ε2 ⇒
|t̂σ̇ (z)− t̂σ̇ (z′) | < ε.

Proof of Lemma E.1. (1). From −π2 ≤ y′ ≤ y′ ≤ π
2 we know −π

2 + y−y′
2 ≤ y+y′

2 ≤ π
2 −

y−y′
2 ,

which implies that cos(y+y′

2 ) ≥ sin(y−y
′

2 ). Thus,

sin y sin y′ = 2 cos
y + y′

2
sin

y − y′

2
≥ 2 sin2 y − y′

2
.

(2). Note that
(

sin y
y

)′
= y cos y−sin y

y2 = cos y
y2 (y − tan y) < 0, sin y

y is decreasing on [0, π2 ]. Thus
sin y
y ≥ 1

π
2

= 2
π , ∀y ∈ [0, π2 ].

(3). Let y, y′ ∈ [−π2 ,
π
2 ], such that sin y = z, sin y′ = z′. W.l.o.g., we assume y′ < y, z′ < z.

Combing (1) and (2), we have z − z′ = sin y − sin y′ ≥ 2 sin2 y−y′
2 ≥ 2(y−y′)2

π2 . Thus z − z′ ≤
2ε2

π2 =⇒ arcsin z − arcsin z′ = y − y′ ≤ ε.

Recall the definition in Equation (7) and (8), we have

Σ(0)(x,x′) = x>x′,

Λ(h)(x,x′) = Σ(h−1)
∣∣∣
x,x′

=

(
Σ(h−1)(x,x) Σ(h−1)(x,x′)
Σ(h−1)(x′,x) Σ(h−1)(x′,x′)

)
∈ R2×2,

Σ(h)(x,x′) = cσ E
(u,v)∼N(0,Λ(h))

[σ (u)σ (v)] ,

Σ̇(h)(x,x′) = cσ E
(u,v)∼N(0,Λ(h))

[σ̇(u)σ̇(v)]
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for h = 1, . . . , L.

For σ (z) = max(z, 0), we have

Σ(h)(x,x) = ‖x‖2 , ∀0 ≤ h ≤ L.

LetD = D(x,x′) = D(h)(x)D(h)(x′) is a 0-1 diagonal matrix. We define the following events:

• Ah (x,x′, ε1) :=
{∣∣g(h)(x(0))>g(h)(x)−Σ(h)(x(0),x)

∣∣ ≤ ε1}, ∀0 ≤ h ≤ L

• Ah (x,x′, ε1) = Ah (x,x, ε1) ∩ Ah (x,x′, ε1) ∩ Ah (x′,x′, ε1);

• A (x,x′, ε1) =
⋃L
h=0A

h
(ε1).

• Bh (x,x′, ε2) =
{∣∣∣〈b(h)(x),b(h)(x′)

〉
−
∏L
h=h Σ̇(h)(x,x′)

∣∣∣ < ε2

}
;

• Bh (x,x′, ε2) = Bh (x,x, ε2) ∩ Bh (x,x′, ε2) ∩ Bh (x′,x′, ε2);

• B (x,x′, ε2) =
⋃L+1
h=1 B

h
(ε2);

• C (x,x′, ε3) = {|f(θ,x)| ≤ ε3, |f(θ,x′)| ≤ ε3};

• Dh (x,x′, ε4) =

{
|2 tr(D(x,x′))

dh
− Σ̇(h)(x,x′)| < ε4

}
;

• Dh (x,x′, ε4) = Dh (x,x, ε4) ∩ Dh (x,x′, ε4) ∩ Dh (x′,x′, ε1);

• D (x,x′, ε4) =
⋃L+1
h=1 D

h
(ε4).

For simplicity, we will omit x,x′ when there’s no ambiguity. For events A,B, we define the event
A ⇒ B as ¬A ∧ B.
Lemma E.2. P [A ⇒ B] ≥ P [B | A] .

Proof. P [A ⇒ B] = P [¬A ∧ B] = 1 − P [A ∨ ¬B] = 1 − P [¬B | A]P [A] ≥ 1 − P [¬B | A] =
P [B | A].

For matrix A, define the projection matrix for the column space of A, ΠA := AA† and the
orthogonal projection matrix Π⊥A = I−AA†. For two random variablesX and Y , X d

==A Y means
X is equal to Y in distribution conditioned on the σ-algebra generated by A.
Lemma E.3. Let w ∼ N (0, Id),G ∈ Rd×k be some fixed matrix, and random vector F = w>G,
then conditioned on the value of F , w remains gaussian in the null space of the row space of G.
Mathematically, it means

Π⊥Gw
d

==F=w>GΠ⊥Gw̃,

where w̃ ∼ N (0, Id) is a fresh i.i.d. copy of w.

Proof. This lemma is straightforward when Π⊥G is a diagonal matrix.

In general, letG = UG′, where U ∈ Rd×d is orthogonal and Π⊥G′ is diagonal. Now we have

Π⊥Gw = UΠ⊥G′U
>w

d
==F=(U>w)>G′ UΠ⊥G′U

>w̃,= Π⊥Gw̃

where we used the fact that ifw ∼ N (0, Id), then for any orthogonalU ,Uw ∼ N (0, Id) twice.

E.2 Proof Sketch

Theorem 3.1 (Convergence to the NTK at initializatoin). Fix ε > 0 and δ ∈ (0, 1). Suppose
σ (z) = max(0, z) and minh∈[L] dh ≥ Ω(L

14

ε4 log(L/δ)). Then for any inputs x,x′ ∈ Rd0 such that
‖x‖ ≤ 1, ‖x′‖ ≤ 1, with probability at least 1− δ we have:∣∣∣∣〈∂f(θ,x)

∂θ
,
∂f(θ,x′)

∂θ

〉
−Θ(L)(x,x′)

∣∣∣∣ ≤ ε.
15



Proof. Recall that Θ(L)(x,x′) =
∑L+1
h=1

(
Σ(h−1)(x,x′) ·

∏L+1
h′=h Σ̇(h′)(x,x′)

)
, thus it suffices to

show that w.p. 1− δ, for every 0 ≤ h ≤ L, it holds that∣∣∣∣∣
〈
∂f(θ,x)

∂W (h)
,
∂f(θ,x′)

∂W (h)

〉
− Σ(h−1)(x,x′) ·

L+1∏
h′=h

Σ̇(h′)(x,x′)

∣∣∣∣∣ ≤ ε

L+ 1
,

which is a direct consequence of Theorem E.2

Theorem E.1 (Corollary 16 in [Daniely et al., 2016]). Let σ (z) = max(0, z), z ∈ R and
[W (h)]ij

i.i.d.∼ N (0, 1), ∀h ∈ [L], i ∈ [dh+1], j ∈ [dh], there exist constants c1,c2, such that if

c1
L2 log( 8L

δ )
ε2 ≤ min

1≤h≤L
dh and ε ≤ min(c2,

1
L ), then for any fixed x,x′ ∈ Rd0 , ‖x‖ , ‖x′‖ ≤ 1, we

have w.p. ≥ 1− δ , ∀0 ≤ h ≤ L, ∀(x(1),x(2)) ∈ {(x,x), (x,x′), (x′,x′)},∣∣∣g(h)(x(2))>g(h)(x(1))−Σ(h)(x(2),x(1))
∣∣∣ ≤ ε.

In other words, if minh∈[L] dh ≥ c1
L2 log( Lδ1

)

ε21
, ε1 ≤ min(c2,

1
L ), then for fixed x,x′,

P
[
A (ε1)

]
≥ 1− δ1.

Theorem E.2. Let σ (z) = max(0, z), z ∈ R, if [W (h)]ij
i.i.d.∼ N(0, 1), ∀h ∈ [L + 1], i ∈

[dh+1], j ∈ [dh], there exist constants c1,c2, such that if minh∈[L] dh ≥ c1
L2 log(Lδ )

ε4 , ε ≤ c2
L , then

for any fixed x,x′ ∈ Rd0 , ‖x‖ , ‖x′‖ ≤ 1,we have w.p. 1 − δ, ∀0 ≤ h ≤ L, ∀(x(1),x(2)) ∈
{(x,x), (x,x′), (x′,x′)},∣∣∣g(h)(x(2))>g(h)(x(1))−Σ(h)(x(2),x(1))

∣∣∣ ≤ ε2

2
,

and ∣∣∣∣∣〈b(h)(x(1)),b(h)(x(2))
〉
−

L∏
h′=h

Σ̇(h′)(x(1),x(2))

∣∣∣∣∣ < 3Lε.

In other words, if minh∈[L] dh ≥ c1
L2 log( Lδ1

)

ε41
, ε1 ≤ c2

L , then for fixed x,x′,

P
[
A
(
ε21
8

)∧
B (3Lε1)

]
≥1− δ

Note that for cσ = 2 for σ (z) = max(0, z), by definition of b(h), we have〈
b(h)(x),b(h)(x′)

〉
=

2

dh
b(h+1)(x)>W (h+1)D(h)(x)D(h)(x′)

(
W (h+1)

)>
b(h+1)(x′).

Intuitively, when dh is large, we can replaceW (h+1) by a fresh i.i.d copy W̃ with a small difference
by Õ( 1√

dh
) as below. Similar techniques are used in [Yang, 2019].〈

b(h)(x),b(h)(x′)
〉

=
2

dh
b(h+1)(x)>W (h+1)D(h)(x)D(h)(x′)

(
W (h+1)

)>
b(h+1)(x′)

≈ 2

dh
b(h+1)(x)>W̃D(h)(x)D(h)(x′)W̃>b(h+1)(x′)

≈tr

(
2

dh
D(h)(x)D(h)(x′)

)
b(h+1)(x)>b(h+1)(x′)

≈Σ̇(h)(x(1),x(2))

L∏
h′=h+1

Σ̇(h′)(x(1),x(2))

(20)

The proof is based on a careful control of the following events.
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Lemma E.4.

P
[
AL
(
ε21/2

)
=⇒ C

(
2

√
log

4

δ3

)]
≥ 1− δ3, ∀ε1 ∈ [0, 1], δ3 ∈ (0, 1).

Lemma E.5.

P

Ah+1 (
ε21/2

)
=⇒ Dh

ε1 +

√
2 log 6

δ4

dh

 ≥ 1− δ4, ∀ε1 ∈ [0, 1], δ4 ∈ (0, 1).

Lemma E.6.

P

A (ε21/2) =⇒ D

ε1 +

√
2 log 6L

δ4

minh dh

 ≥ 1− δ4, ∀ε1 ∈ [0, 1], δ4 ∈ (0, 1).

Proof. Apply union bound on Lemma E.5.

Lemma E.7. There exists constant C,C ′ ∈ R, for any ε2, ε3, ε4 ∈ [0, 1], we have

P

AL (ε21/2)∧Bh+1
(ε2)

∧
C (ε3)

∧
Dh (ε4) =⇒ Bh

ε2 +
C ′ε3√
dh

+ 2ε4 + C

√
log 1

δ2

dh

 ≥ 1− δ2

Proof of Theorem E.2. We will use induction on Lemma E.7 to prove Theorem E.2. In the statement
of Theorem E.1, we set δ1 = δ

4 , ε1 = ε2

8 , for some c1, c2, we have

P
[
AL
(
ε2/8

)]
≥ 1− δ/4 (21)

In the statement of Lemma E.6, we set δ4 = δ2
4 , and ε1 = ε

2 . Note that for c1 large enough√
2 log 24L

δ

minh dh
≤ ε

2 and thus we have

P
[
A
(
ε2/8

)
⇒ D (ε)

]
≥ P

A (ε2/8)⇒ D
ε/2 +

√
2 log 24L

δ

minh dh

 ≥ 1− δ/4 (22)

In the statement of Lemma E.4, we set δ3 = δ
4 , and ε1 = ε2

8 , we have

P

[
AL
(
ε2/8

)
⇒ C

(
2

√
log

16

δ

)]
≥ 1− δ/4 (23)

Using union bound on Equation (21),(22),(23), we have

P

[
AL
(
ε2/8

)∧
C

(
2

√
log

16

δ

)∧
D (ε)

]
≥ 1− 3δ

4
(24)

Now we will begin the induction argument. First of all, note that P
[
BL+1

(0)
]

= 1 by definition.

For 1 ≤ h ≤ L in the statement of Lemma E.7, we set ε2 = 3(L+ 1− h)ε, ε3 = 3
√

log 16
δ , ε2 = ε,

δ4 = δ
4L . Note that for c1 large enough, C

√
log 1

δ2

dh
+ C ′

√
log L

δ2

dh
< ε. Thus we have

P

Bh+1
((3L− 3h)ε)

∧
C
(

3

√
log

16

δ2

)∧
Dh (ε)⇒ Bh

(3L+ 2− 3h)ε+ C

√
log 1

δ

dh
+ 3C ′

√
log 16

δ

dh


≥P
[
Bh+1

((3L− 3h)ε)
∧
C
(

3

√
log

16

δ2

)∧
Dh (ε)⇒ Bh ((3L+ 3− 3h)ε)

]
≥1− δ

4L
(25)
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Using union bound again on Equation (24) and Equation (25) for every h in {1, 2, . . . , L}, we have

P
[
AL
(
ε2/8

)∧
C (ε)

∧
D (ε)

∧
B (3Lε)

]
≥P

[
AL
(
ε2/8

)∧
C (ε)

∧
D (ε)

L∧
h=1

Bh (3(L+ 1− h)ε)

]
≥1−

(
1− P

[
AL
(
ε2/8

)∧
C (ε)

∧
D (ε)

])
−

L∑
h=1

(
1− P

[
Bh+1

((3L− 3h)ε)
∧
C (ε)

∧
Dh (ε)⇒ Bh ((3L+ 3− 3h)ε)

])
≥1− δ

(26)

E.3 Proof of Lemma E.4

Lemma E.4.

P
[
AL
(
ε21/2

)
=⇒ C

(
2

√
log

4

δ3

)]
≥ 1− δ3, ∀ε1 ∈ [0, 1], δ3 ∈ (0, 1).

Proof. For fixed g(L)(x), f(θ,x) = W (L+1)g(L)(x)
d

==N(0,
∥∥g(L)(x)

∥∥2
. Thus by subgaus-

sian concentration[cite], we know w.p. ≥ 1 − δ over the randomness of W (L+1), |f(θ,x)| ≤√
2 log 2

δ

∥∥g(L)(x)
∥∥.

For ε1 ≤ 1, we have ε21/2 < 1, which implies
∥∥g(L)(x)

∥∥2 ≤ 1 +
ε21
2 ≤ 2, and thus taking union

bound over x,x′, we have w.p. ≥ 1− δ, |f(θ,x)| ≤ 2
√

log 2
δ ,|f(θ,x′)| ≤ 2

√
log 2

δ .

P
[
AL
(
ε21/2

)
⇒ C

(
2

√
log

4

δ3

)]
≥ P

[
C
(

2

√
log

4

δ3

)
| AL

(
ε21/2

)]
≥ 1− δ

E.4 Proof of Lemma E.5

Lemma E.5.

P

Ah+1 (
ε21/2

)
=⇒ Dh

ε1 +

√
2 log 6

δ4

dh

 ≥ 1− δ4, ∀ε1 ∈ [0, 1], δ4 ∈ (0, 1).

Lemma E.8. Define G(h)(x,x′) =

[
g(h)(x)>g(h)(x) g(h)(x)>g(h)(x′)
g(h)(x′)>g(h)(x) g(h)(x′)>g(h)(x′)

]
, we have for every

1 ≤ h ≤ L,

∥∥∥G(h)(x,x′)−Λ(h)(x,x′)
∥∥∥
∞
≤ ε2

2
⇒
∣∣∣tσ̇ (G(h)(x,x′)

)
− tσ̇

(
Λ(h)(x,x′)

)∣∣∣ ≤ ε, ∀0 ≤ ε ≤ 1.

Proof. For simplicity, we denoteG(h)(x,x′), Λ(h)(x,x′) byG,Λ respectively.

Since σ̇(z) = 1[z ≥ 0] is 0-homogeneous, we have

tσ̇ (G) =t̂σ̇

(
G12√
G11G22

)
=

1

2
+ arcsin

G12√
G11G22

tσ̇ (Λ) =t̂σ̇

(
Λ12√

Λ11Λ22

)
=

1

2
+ arcsin

Λ12√
Λ11Λ22

=
1

2
+ arcsin Λ12
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It is easy to verify that |
√
G11G22 − 1| ≤ ε2/2, and thus∣∣∣∣ G12√

G11G22

− Λ12

∣∣∣∣ ≤ ∣∣∣∣ G12√
G11G22

− Λ12√
G11G22

∣∣∣∣+|Λ12|
∣∣∣∣1− 1√

G11G22

∣∣∣∣ ≤ ε2/2

1− ε2/2
+

ε2/2

1− ε2/2
≤ 2ε2.

Thus, by Lemma E.1

|tσ̇ (G)− tσ̇ (Λ) | ≤
∣∣∣∣12 + arcsin

G12√
G11G22

− 1

2
+ arcsin Λ12

∣∣∣∣ ≤ ε.

Lemma E.9. For any 0 ≤ h ≤ L − 1, any fixed {W (i)}hi=1, w.p. 1 − δ over the randomness of
W (h+1) ∈ Rdh+1×dh , we have

∣∣∣∣2tr (D)

dh
− t̂σ̇

(
G(h)(x,x′)

)∣∣∣∣ <
√

2 log 2
δ

dh
.

Proof. Notice that E
[
2 tr(D)

dh

]
= t̂σ̇

(
G(h)(x,x′)

)
, the proof is completed by Chernoff Bound.

Proof of Lemma E.5. Note that Σ̇(h)(x,x′) = tσ′
(

Σ(h)
∣∣
x,x′

)
= t̂σ′

(
Λ(h)(x,x′)

)
.

Combining Lemma E.8 and Lemma E.9, we have for any (x,x′),

P

Dh
x,x′, ε1 +

√
2 log 6

δ

dh

 | Ah+1
(
x,x′, ε21/2

) ≥ 1− δ

3
.

Taking union bound over (x,x), (x,x′), (x′,x′) for the choice of (x,x′), we have

P

Ah+1 (
ε21/2

)
⇒ Dh

ε1 +

√
2 log 6

δ

dh

 ≥ P

Dh
ε1 +

√
2 log 6

δ

dh

 | Ah+1 (
ε21/2

) ≥ 1−δ

E.5 Proof of Lemma E.7

Lemma E.7. There exists constant C,C ′ ∈ R, for any ε2, ε3, ε4 ∈ [0, 1], we have

P

AL (ε21/2)∧Bh+1
(ε2)

∧
C (ε3)

∧
Dh (ε4) =⇒ Bh

ε2 +
C ′ε3√
dh

+ 2ε4 + C

√
log 1

δ2

dh

 ≥ 1− δ2

The proof of Lemma E.7 is based on the following 3 claims, Claim E.1, E.2 and E.3.

Claim E.1. If AL
(
ε21/2

)∧
Bh+1

(ε2)
∧
C (ε3)

∧
Dh (ε4), then we have∣∣∣∣∣2tr (D)

dh

〈
b(h)(x(2)),b(h)(x(1))

〉
−

L∏
h′=h

Σ̇(h′)(x(1),x(2))

∣∣∣∣∣ ≤ ε2 + 2ε4.
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Proof. ∣∣∣∣∣2tr (D)

dh

〈
b(h)(x(2)),b(h)(x(1))

〉
−

L∏
h′=h

Σ̇(h′)(x(1),x(2))

∣∣∣∣∣
≤
∣∣∣∣2tr (D)

dh
− Σ̇(h)(x(1),x(2))

∣∣∣∣ · ∣∣∣〈b(h)(x(2)),b(h)(x(1))
〉∣∣∣

+
∣∣∣Σ̇(h)(x(1),x(2))

∣∣∣ · ∣∣∣∣∣〈b(h)(x(2)),b(h)(x(1))
〉
−

L∏
h′=h+1

Σ̇(h′)(x(1),x(2))

∣∣∣∣∣
≤2ε4 + ε2

For any fixed h, letG = [g(h)(x) g(h)(x′)],

Claim E.2. w.p. ≥ 1 − δ2
2 , if AL

(
ε21/2

)∧
Bh+1

(ε2)
∧
C (ε3)

∧
Dh (ε4), then we have for any

(x(1),x(2)) ∈ {(x,x), (x,x′), (x′,x′)},∣∣∣∣ 2

dh
b(h+1)(x(1))>W (h+1)Π⊥GDΠ⊥G

(
W (h+1)

)>
b(h+1)(x(2))− 2tr (D)

dh

〈
b(h)(x(2)),b(h)(x(1))

〉∣∣∣∣
≤16

√
log 6

δ2

dh
.

As a by-product, for any x(1) ∈ {x,x′}, we have√
2

dh

∥∥∥b(h+1)(x(1))>W (h+1)Π⊥GD
∥∥∥ ≤ 4

√
log 6

δ2

dh
.

Lemma E.10 (Gaussian chaos of order 2 [Boucheron et al., 2013]). Let ξ ∼ N(0, In) be an
n-dimensional unit gaussian random vector,A ∈ Rn×n be a symmetric matrix, then for any t > 0,

P
[∣∣ξ>Aξ − E

[
ξ>Aξ

]∣∣ > 2 ‖A‖F
√
t+ 2 ‖A‖2 t

]
≤ 2 exp(−t).

Or,

P
[∣∣ξ>Aξ − E

[
ξ>Aξ

]∣∣ > t
]
≤ 2 exp

(
− t2

4(‖A‖2F ) + ‖A‖2 t

)
.

Proof of E.2. It suffices to prove this claim conditioned on every possible realization of

{b(h+1)(x(1)),b(h+1)(x(2)),f (h)(x(1)),f (h)(x(2))}.

Recall thatG =
[
g(h)(x(1)) g(h)(x(2))

]
, we further define F =

[
f (h)(x(1)) f (h)(x(2))

]
. Applying

Lemma E.3 on each row ofW h+1, we have

W (h+1)Π⊥G
d

==F=W (h+1)G W̃Π⊥G, (27)

where W̃ is an iid copy ofW (h+1).

Note that [b(h+1)(x)>W̃ b(h+1)(x(1))>W̃ ]> ∈ R2dh follows a joint zero-mean gaussian dis-

tribution with covariance matrix Σ =

[
b11In b12In
b21In b22In

]
, where bij = b(h)(x(i))>b(h)(x(j)), for

i, j = 1, 2. In other words, there existsM ∈ R2dh×2dh , s.t. MM> = Σ, and

[b(h+1)(x)>W̃ b(h+1)(x(1))>W̃ ]>
d

==Mξ,

where ξ ∼ N(0, I2dh).
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Thus conditioned on {b(h+1)(x(1)),b(h+1)(x(2)), g(h)(x(1)), g(h)(x(2))}, we have

b(h+1)(x(1))>W (h+1)Π⊥GDΠ⊥G

(
W (h+1)

)>
b(h+1)(x(2))

d
== b(h+1)(x(1))>W̃Π⊥GDΠ⊥G

(
W̃
)>

b(h+1)(x(2))

d
== ([Idh 0]Mξ)

>
Π⊥GDΠ⊥G ([0 Idh ]Mξ)

d
==

1

2
ξ>M>

[
0 Π⊥GDΠ⊥G

Π⊥GDΠ⊥G 0

]
Mξ.

Now we are ready to prove Claim E.1 by applying Lemma E.10. Let A =

1
2M

>
[

0 Π⊥GDΠ⊥G
Π⊥GDΠ⊥G 0

]
M , we have

E
[
ξ>Aξ

]
= tr (A) =

1

2
tr

([
0 Π⊥GDΠ⊥G

Π⊥GDΠ⊥G 0

]
Σ

)
= b12tr

(
Π⊥GDΠ⊥GIn

)
= b12tr

(
DΠ⊥G

)
.

Note that by definition Π⊥G = Idh −ΠG, and rank(ΠG) ≤ 2, we have

tr
(
DΠ⊥G

)
= tr (D(I −ΠG)) = tr (D)− tr (DΠG) = tr (D)− tr (ΠGDΠG) .

Since 0 � D � Idh , we have 0 ≤ tr (ΠGDΠG) ≤ 2, and thus b12(tr (D) − 2) ≤ E
[
ξ>Aξ

]
≤

b12tr (D) . For the upper bound of spectrum, note that ‖M‖22 = ‖Σ‖2 =

∥∥∥∥[b11 b12

b21 b22

]∥∥∥∥
2

≤

b11 + b12, and 0 � Π⊥G,D � Idh , we have

‖A‖2 ≤
1

2
‖M‖22

∥∥Π⊥GDΠ⊥G
∥∥

2
≤ 1

2
‖M‖22

∥∥Π⊥G
∥∥

2
‖D‖2

∥∥Π⊥G
∥∥

2
≤ b11 + b22

2
≤
√

2,

and

‖A‖F ≤
√

2dh ‖A‖2 =

√
2dh(b11 + b22)

2
≤ 2
√
dh.

Thus by Lemma E.10 with t = log 6
δ2

we have w.p. 1− δ2
6 ,

1

dh

∣∣ξ>Aξ − E
[
ξ>Aξ

]∣∣ ≤ 1

dh

(
2 ‖A‖F

√
t+ 2 ‖A‖2 t

)
= 4

√
log 6

δ2

dh
+ 2
√

2
log 6

δ2

dh
..

Thus we have∣∣∣∣ 2

dh
b(h+1)(x(1))>W (h+1)Π⊥GDΠ⊥G

(
W (h+1)

)>
b(h+1)(x(2))− 2tr (D)

dh

〈
b(h)(x(2)),b(h)(x(1))

〉∣∣∣∣
≤ 2

dh

∣∣ξ>Aξ − E
[
ξ>Aξ

]∣∣+

∣∣∣∣2E [ξ>Aξ]− 2tr (D)

dh

〈
b(h)(x(2)),b(h)(x(1))

〉∣∣∣∣
≤8

√
log 6

δ2

dh
+ 4
√

2
log 6

δ2

dh
+

4b12

dh
≤ 14

√
log 6

δ2

dh
+

4(1 + ε2)

dh
(2
√

2 ≤ 3 ∧ log
6

δ2
≤ dh)

≤16

√
log 6

δ2

dh
(ε2 ≤ 1 ∧

√
dh log 6 ≥ 4).
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The main part of the claim is completed by taking union bound over (x,x), (x,x′), (x′,x′). For the
by-product, let x(2) = x(1), and we have√

2

dh

∥∥∥b(h+1)(x(1))>W (h+1)Π⊥GD
∥∥∥

≤

√∣∣∣∣ 2

dh
b(h+1)(x(1))>W (h+1)Π⊥GDΠ⊥G

(
W (h+1)

)>
b(h+1)(x(2))

∣∣∣∣
≤

√√√√√2tr (D)

dh

〈
b(h)(x(2)),b(h)(x(1))

〉
+

16

√
log 6

δ2

dh

2

≤

√√√√√4 +

16

√
log 6

δ2

dh

2

≤2 + 4

√
log 6

δ2

dh
≤ 6 (log

6

δ2
≤ dh)

Claim E.3. w.p. ≥ 1− δ2
2 , if AL

(
ε21/2

)∧
Bh+1

(ε2)
∧
C (ε3)

∧
Dh (ε4), then∥∥∥∥ΠG

(
W (h+1)

)>
b(h+1)(x)

∥∥∥∥ ≤ 2

√
log

8

δ2
+
√

2ε3,

∥∥∥∥ΠG

(
W (h+1)

)>
b(h+1)(x′)

∥∥∥∥ ≤ 2

√
log

8

δ2
+
√

2ε3.

Proof. It suffices to prove the claim for x. We will denote x by x, g(h)(x) by g(h) and b(h+1)(x)
by b(h+1). We also define Πg as gg>, and ΠG/g = ΠG − Πg. Clearly, ΠG/g is still a projection
matrix of rank 0 or 1.

Since
∥∥∥ΠG

(
W (h+1)

)>
b(h+1)(x)

∥∥∥ ≤ ∥∥∥Πg

(
W (h+1)

)>
b(h+1)

∥∥∥+
∥∥∥ΠG/g

(
W (h+1)

)>
b(h+1)

∥∥∥,
it suffices to bound these two terms separately.

Recall b(h+1) is defined as the gradient of f(θ,x) with respect to the pre-activation of layer h+ 1,
fh+1, thus if we view g as a function g(h),W (h+1), . . . ,W (L+1), by the rule of back propagation,
we have

∂g(g(h),W (h+1), . . . ,W (L+1))

∂g(h)
= (b(h+1))>W (h+1).

Note that relu is 1-homogeneous, namely ∀λ ∈ R+, σ (λz) = λσ (z), the whole network is also
1-homogeneous in g(h). In other words, we have

f(g(h),W (h+1), . . . ,W (L+1))

=
∂f(λg(h),W (h+1), . . . ,W (L+1))

∂λ

∣∣∣∣
λ=1

=

〈
∂f(λg(h),W (h+1), . . . ,W (L+1))

∂λg(h)

∣∣∣∣
λ=1

,
∂λg(h)

∂λ

∣∣∣∣
λ=1

〉
=

〈
∂g(g(h),W (h+1), . . . ,W (L+1))

∂g(h)
, g(h)

〉
=(g(h))>

(
W (h+1)

)>
b(h+1)

By definition of Πg , we have∥∥∥∥Πg

(
W (h+1)

)>
b

∥∥∥∥ =

∥∥∥∥∥g(h)(g(h))>∥∥g(h)
∥∥2

(
W (h+1)

)>
b(h+1))

∥∥∥∥∥ =

∣∣∣∣∣ (g(h))>∥∥g(h)
∥∥ (W (h+1)

)>
b(h+1))

∣∣∣∣∣ =
|f(θ,x)|∥∥g(h)

∥∥ .
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Note that g(h)(x(0))>g(h)(x) ≥ 1− ε21/2 ≥ 1
2 , we have∥∥∥∥Πg

(
W (h+1)

)>
b

∥∥∥∥ =
|f(θ,x)|∥∥g(h)

∥∥ ≤ √2ε3.

For the second term ΠG/g

(
W (h+1)

)>
b(h+1), note that conditioned on

g(h),fh = 1√
dh+1

W (h+1)g(h) and all {W (h)})L+1
h′ (thus b(h+1)), by Lemma E.3,

ΠG/g(W (h+1))
d

== ΠG/gW̃ , where W̃ is an iid copy of W (h+1). Thus if rank(ΠG/g) = 1,
suppose ΠG/g = uu> for some unit vector u, we have∥∥∥∥ΠG/g

(
W (h+1)

)>
b(h+1)

∥∥∥∥ =

∣∣∣∣u> (W (h+1)
)>
b(h+1)

∣∣∣∣ d
==

∣∣∣∣u> (W̃)>
b(h+1)

∣∣∣∣ d
== |t|,

where t ∼ N(0,
∥∥b(h+1)

∥∥). Hence w.p. ≥ 1 − δ2/4 over the randomness of W (L),∥∥∥ΠG/g

(
W (h+1)

)>
b(h+1)

∥∥∥ ≤√2 log 8
δ2

∥∥b(h+1)
∥∥ ≤√2 log 8

δ2
≤ 2
√

log 8
δ2

(ε2 < 1).

If rank(ΠG/g) = 0, then
∥∥∥ΠG/g

(
W (h+1)

)>
b(h+1)

∥∥∥ = 0 < 2
√

log 8
δ2

. Thus w.p. ≥ 1− δ2
4 ,∥∥∥∥ΠG

(
W (h+1)

)>
b(h+1)(x)

∥∥∥∥ ≤ ∥∥∥∥Πg

(
W (h+1)

)>
b(h+1)

∥∥∥∥+

∥∥∥∥ΠG/g

(
W (h+1)

)>
b(h+1)

∥∥∥∥ ≤ 2

√
log

8

δ2
+
√

2ε3.

Thus by assumption log 8
δ2
≤ dh, we have 2

√
log 8

δ2
+
√

2ε3 ≤ 2
√
dh +

√
2 ≤ 3

√
2dh.

Wrapping things up, by combining Claim E.2 and Claim E.3, we have w.p. ≥ 1− δ2, for any pair of
(x(1),x(2)) ∈ {(x,x), (x,x′), (x′,x′))},∣∣∣∣ 2

dh
b(h+1)(x(1))>

(
W (h+1)

)
D(h)(x(1))D(h)(x(2))

(
W (h+1)

)>
b(h+1)(x(2))−

2

dh
b(h+1)(x(1))>W (h+1)Π⊥GDΠ⊥G

(
W (h+1)

)>
b(h+1)(x(2))

∣∣∣∣
≤
∥∥∥∥ 2

dh
b(h+1)(x(1))>W (h+1)ΠGD

∥∥∥∥ · ∥∥∥∥DΠ⊥G

(
W (h+1)

)>
b(h+1)(x(2))

∥∥∥∥
+

∥∥∥∥ 2

dh
b(h+1)(x(1))>W (h+1)Π⊥GD

∥∥∥∥ · ∥∥∥∥DΠG

(
W (h+1)

)>
b(h+1)(x(2))

∥∥∥∥
+

∥∥∥∥ 2

dh
b(h+1)(x(1))>W (h+1)ΠG

∥∥∥∥ · ∥∥∥∥ΠG

(
W (h+1)

)>
b(h+1)(x(2))

∥∥∥∥
≤

12
√

2

√
ln 8

δ2

dh
+ 12ε3

+

12
√

2

√
ln 8

δ2

dh
+ 12ε3

+

12
√

2

√
ln 8

δ2

dh
+ 12ε3


=36

√
2 ln 8

δ2

dh
+ 36ε3.

(28)

Using Equation (28) together with Claim E.1 and Claim E.2, we’ve finished the proof for Lemma E.7.

F Proof of Theorem 3.2

In this section, we prove Theorem 3.2. At a high level, our proof first reduces the bounding the
perturbation on the prediction to bounding perturbations on the kernel values between each pair of
training points and between the testing point and each training point. We use the following notations.
We letX ∈ Rn×d be the training data. We define kert(xte,X) ∈ Rn as

[kert (xte,X)]i =

〈
∂f (θ(t),xte)

∂θ
,
∂f (θ(t),xi)

∂θ

〉
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i.e., the kernel induced from the gradient of the prediction with respect to the parameters of the neural
network at time t.

We also use the following notations for NTK. We letH∗ ∈ Rn×n be the fixed kernel matrix defined
in Equation (4). We let kerntk (xte,X) ∈ Rn be the kernel values between xte and each training
data. Note with this notation, we can write

fntk(xte) = kerntk(xte,x)> (H∗)
−1
y. (29)

We prove a lemma to reduce the prediction perturbation bound to the kernel perturbation bound.
Lemma F.1 (Kernel Value Perturbation ⇒ Prediction Perturbation). Fix εH ≤ 1

2λ0. Suppose
|fnn(θ(0),xi)| ≤ εinit for i = 1, . . . , n and |fnn (θ(0),xte)| ≤ εinit and ‖unn(0)− y‖2 =
O (
√
n). Furthermore, if for all t ≥ 0 ‖kerntk(xte,X)− kert(xte,X)‖2 ≤ εtest and

‖H∗ −H(t)‖2 ≤ εH , then we have

|fntk(xte)− fnn(xte)| ≤ O
(
εinit +

√
n

λ0
εtest +

√
n

λ2
0

log

(
n

εHλ0κ

)
εH

)
.

Proof. Our proof relies a careful analysis on the trajectories induced by gradient flows for optimizing
the neural network and the NTK predictor.

Note while Equation (29) is a closed-form formula, we can rewrite it in an integral form using the
following observations. For any x ∈ Rd, we let φ(x) be the feature map induced by NTK. Note the
expression in Equation (29) can be rewritten as fntk(xte) = κφ(xte)

>βntk where βntk satisfies

min
β
‖β‖2

such that κφ(xi)
>β = yi for i = 1, . . . , n.

The solution to this program can written as applying gradient flow on

min
β

n∑
i=1

1

2n

(
κφ(xi)

>β − yi
)2

with initialization β(0) = 0. We use β(t) to denote this parameter at time t trained by gradient flow
and fntk (xte,β(t)) be the predictor for xte at time t. With these notations, we rewrite

fntk(xte) =

∫ ∞
t=0

dfntk(β(t),xte)

dt
dt

where we have used the fact that the initial prediction is 0. Now we take a closer look at the time
derivative:

dfntk(β(t),xte)

dt
=

〈
∂f(β(t),xte)

∂β(t)
,
dβ(t)

dt

〉
=

〈
∂f(β(t),xte)

∂β(t)
,−∂L(β(t), {xi}ni=1)

∂β(t)

〉
=− 1

n

〈
∂f(β(t),xte)

∂β(t)
,

n∑
i=1

(untk,i(t)− yi)
∂f(β(t),xi)

β(t)

〉

=− 1

n

〈
κφ(xte),

n∑
i=1

(untk,i(t)− yi)κφ (xi)

〉

=− κ2

n
kerntk(xte,X)> (untk(t)− y)

where untk,i(t) = fntk(β(t),xi) and untk(t) ∈ Rn with [untk(t)]i = untk,i(t). Similarly, for the
NN predictor, we can obtain a time derivative of the same form.

dfnn(θ(t),xte)

dt
=κ

〈
∂f(θ(t),xte)

∂θ(t)
,
dθ(t)

dt

〉
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=κ

〈
∂f(θ(t),xte)

∂θ(t)
,−∂L(θ(t), {xi}ni=1)

∂θ(t)

〉
=− κ2

n

〈
∂f(θ(t),xte)

∂θ(t)
,

n∑
i=1

(unn,i(t)− yi)
∂f(θ(t),xi)

θ(t)

〉

=− κ2

n
kert(xte,X)> (unn(t)− y)

We thus we analyze the difference between the NN predictor and NTK predictor via this integral form

|fnn(xte)− fntk (xte)|

=

∣∣∣∣fnn(θ(0),xte) +

∫ ∞
t=0

(
dfnn(θ(t),xte)

dt
− dfntk(β(t),xte)

dt

)
dt

∣∣∣∣
= |fnn (θ(0),xte)|+

∣∣∣∣−κ2

n

∫ ∞
t=0

(
kert(xte,X)>(unn(t)− y)− kerntk(xte,X)>(untk(t)− y)

)
dt

∣∣∣∣
≤εinit +

κ2

n

∣∣∣∣∫ ∞
t=0

(kert(xte,X)− kerntk(xte,X))
>

(unn(t)− y)dt

∣∣∣∣
+
κ2

n

∣∣∣∣∫ ∞
t=0

kerntk(xt,X)>(unn(t)− untk(t))dt

∣∣∣∣
≤εinit + κ2 max

0≤t≤∞
‖kert(xte,X)− kerntk(xte,X)‖2

∫ ∞
t=0

‖unn(t)− y‖2 dt

+ κ2 max
0≤t≤∞

‖kerntk(xte,X)‖2
∫ ∞
t=0

‖unn(t)− untk(t)‖2 dt

≤εinit + κ2εtest

∫ ∞
t=0

‖unn(t)− y‖2 dt+ κ2 max
0≤t≤∞

‖kerntk(xte,X)‖2
∫ ∞
t=0

‖unn(t)− untk(t)‖2 dt

For the second term, recall ‖H∗ −H(t)‖2 ≤ εH by our assumption so λmin (H(t)) ≥ 1
2λ0. Using

this fact we know ‖unn(t)− y‖2 ≤ exp(−κ
2

2 λ0t) ‖unn(0)− y‖2. Therefore, we can bound∫ ∞
0

‖unn(t)− y‖2 dt =

∫ ∞
t=0

exp(−κ
2

2
λ0t) ‖unn(0)− y‖2 dt = O

( √
n

κ2λ0

)
.

To bound
∫∞
t=0
‖unn(t)− untk(t)‖2, we observe that unn(t) → y and untk(t) → y with linear

convergence rate. Therefore, we can choose some t0 = C
λ0κ2 log

(
n

εHλ0κ

)
so that∫ ∞

t0

‖unn(t)− untk(t)‖2 dt

≤
∫ ∞
t0

‖unn(t)− y‖2 dt+

∫ ∞
t0

‖untk(t)− y‖2 dt

≤O
(

1

λ0κ2
(‖unn(t0)− y‖2 + ‖untk(t0)− y‖2)

)
≤O

(√
n

λ0κ
exp

(
−λ0κ

2t0
))

≤O(εH).

Thus it suffices to bound∫ t0

t=0

‖unn(t)− untk(t)‖2 dt ≤ t0 max
0≤t≤t0

‖unn(t)− untk(t)‖2 .

First observe that

‖unn(t)− untk(t)‖2

25



≤‖unn(0)‖2 +

∫ t

τ=0

∥∥∥∥d (unn(τ)− untk(τ))

dτ

∥∥∥∥
2

dτ

≤εinit
√
n+

∫ t

τ=0

∥∥∥∥d (unn(τ)− untk(τ))

dτ

∥∥∥∥
2

dτ.

Note
d (unn(t)− untk(t))

dt

=− κ2H(t) (unn(t)− y) + κ2H∗ (untk(t)− y)

=− κ2H∗ (unn(t)− untk(t)) + κ2 (H∗ −H(t)) (unn(t)− y)

Since H∗ is positive semidefinite, −H∗ (ũ(t)− u(t)) term only makes ‖ũ(t)− u(t)‖2 smaller.
Therefore, we have

‖unn(t)− untk(t)‖2 ≤κ
2

∫ t

τ=0

‖unn(τ)− y‖2 ‖H(t)−H∗‖2

≤tκ2 ‖unn(0)− y‖2 εH
≤O

(
tκ2
√
nεH

)
.

Therefore, we have∫ t0

t=0

‖unn(t)− untk(t)‖2 dt ≤ O
(
t20
√
nκ2εH

)
= O

( √
n

λ2
0κ

2
log

(
n

εHλ0κ

)
εH

)
.

Lastly, we put things together and get

|fntk(xte)− fnn(xte)| ≤ O
(
εinit + εtest

√
n

λ0
+

√
n

λ2
0

log

(
n

εHλ0κ

)
εH

)
.

Proof of Theorem 3.2. By Lemma F.1, the problem now reduces to (i) choose κ small enough to
make εinit = O(ε) and (ii) show when the width is large enough then εH and εtest are both O(ε).
For (i), based on Theorem E.1 and the union bound, we can just choose κ = O

(
ε

log(n/δ)

)
to make

εinit = O(ε) with probability 1− δ. For (ii), we will use Theorem 3.1 and Lemma F.2 below, and
then apply the union bound.

F.1 Kernel Perturbation During Training

In this subsection we prove the following lemma.
Lemma F.2 (Kernel Perturbation Bound During Training). Fix ω ≤ poly(1/L, 1/n, 1/ log(1/δ), λ0).
Suppose we set m ≥ poly(1/ω) and κ ≤ 1. Then with probability at least 1 − δ over random
initialization, we have for all t ≥ 0, for any (x,x′) ∈ {x1, . . . ,xn,xte} × {x1, . . . ,xn,xte}

|kert (x,x′)− ker0 (x,x′)| ≤ ω

Recall for any fixed x and x′, Theorem 3.1 shows |ker0(x,x′)− kerntk(x,x′)| ≤ ε if m is large
enough. The next lemma shows we can reduce the problem of bounding the perturbation on the
kernel value to the perturbation on the gradient.

Lemma F.3 (Gradient Perturbation⇒ Kernel Perturbation). If
∥∥∥∂f(θ(t),x)

∂θ − ∂f(θ(0),x)
∂θ

∥∥∥ ≤ ε and∥∥∥∂f(θ(t),x′)
∂θ − ∂f(θ(0),x′)

∂θ

∥∥∥ ≤ ε, we have

|kert(x,x
′)− ker0(x,x′)| ≤ O (ε)

Proof. By the proof of Theorem 3.1, we know
∥∥∥∂f(θ(0),x)

∂θ

∥∥∥
2

= O (1). Then we can just use triangle
inequality.
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Now we proceed to analyze the perturbation on the gradient. Note we can focus on the perturbation
on a single sample x because we can later take a union bound. Therefore, in the rest of this section,
we drop the dependency on a specific sample. We use the following notations in this section. Recall
W (1), . . . ,W (L+1) ∼ N (0, I) and we denote4W (1), . . . ,4W (L+1) the perturbation matrices.
We let W̃ (h) = W (h) +4W (h). We let g̃(0) = g(0) = x and for h = 1, . . . , L we define

z(h) =

√
2

m
W (h)g(h−1), g(h) = σ

(
z(h)

)
,

z̃(h) =

√
2

m
W̃ (h)g̃(h−1), g̃(h) = σ

(
z̃(h)

)
.

For h = 1, . . . , L, i = 1, . . . ,m, we denote

[D(h)]ii =1

{[
W (h)

]
i,:
g(h−1) ≥ 0

}
[D̃(h)]ii =1

{[
W̃ (h)

]
i,:
g̃(h−1) ≥ 0

}
.

Remark F.1. Note z(h) =
√

2
mf

(h). Here we use z(h) instead of f (h) for the ease of presentation.

For convenience, we also define

4D(h) = D̃(h) −D(h).

Recall the gradient toW (h) is:

∂f(θ,x)

∂W (h)
= b(h)

(
g(h−1)

)>
Similarly, we have

∂f(θ,x)

∂W̃ (h)
= b̃(h)

(
g̃(h−1)

)>
where

b̃(h) =

1 if h = L+ 1√
2
mD̃

(h)
(
W̃ (h+1)

)>
b̃(h+1) Otherwise

.

This gradient formula allows us to bound the perturbation on 4g(h) , g̃(h) − g(h) and 4b(h) ,
b̃(h) − b(h) separately. The following lemmas adapted from [Allen-Zhu et al., 2018b] show with high
probability over the initialization, bounding the perturbation on4g(h) and4b(h) can be reduced to
bounding the perturbation on weight matrices.
Lemma F.4 (Adapted from Lemma 5.2 in [Allen-Zhu et al., 2018b]). Suppose

ω ≤ poly (1/n, λ0, 1/L, 1/ log(m), ε, 1/ log(1/δ)) .

Then with probability at least 1 − δ over random initialization, if
∥∥4W (h)

∥∥
2
≤
√
mω for all

h = 1, . . . , L, we have
∥∥4g(h)

∥∥
2

= O(ωL5/2
√

logm) for all h = 1, . . . , L.

Remark F.2. While Allen-Zhu et al. [2018b] did not consider the perturbation on W (1), by scru-
tinizing their proof, it is easy to see that the perturbation bounds still hold even if there is a small
perturbation onW (1).

The next lemma bounds the backward vector, adapted from
Lemma F.5 (Adapted from Lemma 5.7 in [Allen-Zhu et al., 2018b]). Suppose

ω ≤ poly (1/n, λ0, 1/L, 1/ log(m), ε, 1/ log(1/δ)) .

Then with probability at least 1 − δ over random initialization,if
∥∥4W (h)

∥∥
2
≤
√
mω for all

h = 1, . . . , L+ 1, we have for all h = 1, . . . , L+ 1,
∥∥∥b̃(h) − b(h)

∥∥∥
2

= O
(
ω1/3L2

√
logm

)
.
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Remark F.3. While Allen-Zhu et al. [2018b] did not consider the perturbation on W (L+1), by
scrutinizing their proof, it is easy to see that the perturbation bounds still hold even if there is a small
perturbation onW (L+1).

Combing these two lemmas and the result for the initialization (Theorem 3.1), we have the following
“gradient-Lipschitz" lemma.
Lemma F.6. Suppose ω ≤ poly (1/n, λ0, 1/L, 1/ log(m), ε, 1/ log(1/δ)) . Then with probability at
least 1− δ over random initialization, if

∥∥4W (h)
∥∥

2
≤
√
mω for all h = 1, . . . , L+ 1, we have for

all h = 1, . . . , L+ 1:∥∥∥∥b̃(h)
(
g̃(h−1)

)>
− b(h)

(
g(h−1)

)>∥∥∥∥
F

= O
(
ω1/3L5/2

√
logm

)
Proof. We use the triangle inequality to bound the perturbation∥∥∥∥b̃(h)

(
g̃(h−1)

)>
− b(h)

(
g(h−1)

)>∥∥∥∥
F

≤
∥∥∥∥b̃(h)

(
g̃(h−1)

)>
− b(h)

(
g̃(h−1)

)>∥∥∥∥
F

+

∥∥∥∥b(h)
(
g̃(h−1)

)>
− b(h)

(
g(h−1)

)>∥∥∥∥
F

≤
∥∥∥∥4b(h)

(
g(h−1) +4g(h−1)

)>∥∥∥∥
F

+

∥∥∥∥b(h)
(
4g(h−1)

)>∥∥∥∥
F

=O
(
ω1/3L5/2

√
logm

)
.

The following lemma shows for given weight matrix, if we have linear convergence and other weight
matrices are only perturbed by a little, then the given matrix is only perturbed by a little as well.
Lemma F.7. Fix h ∈ [L + 1] and a sufficiently small ω ≤
poly (1/n, λ0, 1/L, 1/ log(m), ε, 1/ log(1/δ), κ) . Suppose for all t ≥ 0, ‖unn(t)− y‖2 ≤
exp

(
− 1

2κ
2λ0t

)
‖unn(0)− y‖2 and

∥∥∥W (h′)(t)−W (h′)(0)
∥∥∥
F
≤ ω

√
m for h′ 6= h. Then if

m ≥ poly (1/ω) we have with probability at least 1− δ over random initialization, for all t ≥ 0∥∥∥W (h)(t)−W (h)(0)
∥∥∥
F

= O

(√
n

λ0

)
≤ ω
√
m.

Proof. We let C,C0, C1, C2, C3 > 0 be some absolute constants.∥∥∥W (h)(t)−W (h)(0)
∥∥∥
F

=

∥∥∥∥∫ t

0

dW (h)(τ)

dτ
dτ

∥∥∥∥
F

=

∥∥∥∥∫ t

0

∂L(θ(τ))

∂W (h)(τ)
dτ

∥∥∥∥
F

=

∥∥∥∥∥
∫ t

0

1

n

n∑
i=1

(ui(τ)− yi)
∂fnn(θ(τ),xi)

∂W (h)
dτ

∥∥∥∥∥
F

≤ 1

n
max

0≤τ≤t

n∑
i=1

∥∥∥∥∂fnn(θ(τ),xi)

∂W (h)

∥∥∥∥
F

∫ t

0

‖unn(τ)− y‖2 dτ

≤ 1

n
max

0≤τ≤t

n∑
i=1

∥∥∥∥∂fnn(θ(τ),xi)

∂W (h)

∥∥∥∥
F

∫ t

0

exp
(
−κ2λ0τ

)
dτ ‖unn(0)− y‖2

≤ C0√
nλ0

max
0≤τ≤t

n∑
i=1

∥∥∥∥∂fnn(θ(τ),xi)

∂W (h)

∥∥∥∥
F
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≤ C0√
nκ2λ0

max
0≤τ≤t

n∑
i=1

(∥∥∥∥∂fnn(θ(0),xi)

∂W (h)

∥∥∥∥
F

+

∥∥∥∥∂fnn(θ(τ),xi)

∂W (h)
− ∂fnn(θ(0),xi)

∂W (h)

∥∥∥∥
F

)

≤ C1√
nλ0

max
0≤τ≤t

n∑
i=1

(∥∥∥∥∂fnn(θ(0),xi)

∂W (h)

∥∥∥∥
F

+

∥∥∥∥∂fnn(θ(τ),xi)

∂W (h)
− ∂fnn(θ(0),xi)

∂W (h)

∥∥∥∥
F

)
≤C2

√
n

λ0
+
C1
√
n

λ0
max

0≤τ≤t

(∥∥∥∥∂fnn(θ(τ),xi)

∂W (h)
− ∂fnn(θ(0),xi)

∂W (h)

∥∥∥∥
F

)
.

The last step we used
∥∥∥∂fnn(θ(0),xi)

∂W (h)

∥∥∥
F

= O(1). Suppose there exists t such that∥∥W (h)(t)−W (h)(0)
∥∥
F
> ω
√
m. Denote

t0 = argmint≥0

{∥∥∥W (h)(t)−W (h)(0)
∥∥∥
F
> ω
√
m.
}
.

For any t < t0, we know for all h′ ∈ [L + 1],
∥∥∥W (h′)(t)−W (h′)(0)

∥∥∥
2
≤ ω
√
m. Therefore, by

Lemma F.6, we know ∥∥∥∥∂fnn(θ(t),xi)

∂W (h)
− ∂fnn(θ(0),xi)

∂W (h)

∥∥∥∥
F

= Cω1/3L5/2.

Therefore, using the fact that ω is sufficiently small we can bound∥∥∥W (h)(t0)−W (h)(0)
∥∥∥
F
≤ C3

√
n

λ0
.

Since we also know m is sufficiently large to make ω
√
m > C3

√
n

λ0
, we have a contradiction.

The next lemma shows if all weight matrices only have small perturbation, then we still have linear
convergence.
Lemma F.8. Suppose ω = poly (1/n, λ0, 1/L, 1/ log(m), ε, 1/ log(1/δ), κ) . Suppose for all t ≥ 0∥∥W (h)(t)−W (h)(0)

∥∥
F
≤ ω
√
m for h ∈ [L + 1]. Then if m = poly (1/ω), we have with

probability at least 1− δ over random initialization, for all t ≥ 0

‖unn(t)− y‖2 ≤ exp

(
−1

2
κ2λ0t

)
‖unn(0)− y‖2 .

Proof. Under this assumption and the result of initialization, we know for all t ≥ 0, λmin (H(t)) ≥
1
2λ0. This in turn directly imply the linear convergence result we want.

Lastly, with these lemmas at hand, using an argument similar to [Du et al., 2019], we can show during
training, weight matrices do not move by much.
Lemma F.9. Let ω ≤ poly(ε, L, λ0, 1/ log(m), 1/ log(1/δ), κ, 1/n). If m ≥ poly(1/ω), then with
probability at least 1− δ over random initialization, we have for all t ≥ 0, for all h ∈ [L+ 1] we
have ∥∥∥W (h)(t)−W (h)(0)

∥∥∥
F
≤ ω
√
m

and

‖unn(t)− y‖2 ≤ exp

(
−1

2
κ2λ0t

)
‖unn(0)− y‖2 .

Proof. Let

t0 = argmint

{
∃h ∈ [L+ 1],

∥∥∥W (h)(t)−W (h)(0)
∥∥∥
F
> ω
√
m

or ‖unn(t)− y‖2 > exp

(
−1

2
κ2λ0t

)
‖unn(0)− y‖2

}
.
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We analyze case by case. Suppose at time t0,
∥∥W (h)(t0)−W (h)(0)

∥∥
F
> ω
√
m. By Lemma F.7,

we know there exists some 0 ≤ t1 < t0 such that either there exists h′ 6= h such that∥∥∥W (h′)(t1)−W (h′)(0)
∥∥∥
F
> ω
√
m

or

‖unn(t1)− y‖2 > exp

(
−1

2
κ2λ0t1

)
‖unn(0)− y‖2 .

However, this violates the minimality of t0. For the other case, if

‖unn(t0)− y‖2 > exp

(
−1

2
κ2λ0t0

)
‖unn(0)− y‖2 ,

By Lemma F.8, we know there exists t1 < t0 such that there exists h ∈ [L+ 1],∥∥∥W (h)(t1)−W (h)(0)
∥∥∥
F
> ω
√
m.

However, again this violates the minimality of t0.

Now we can finish the proof of Lemma F.2.

Proof of Lemma F.2. By Lemma F.9, we know for t → ∞,
∥∥W (h)(t)−W (h)(0)

∥∥
F
≤ O (ω

√
m)

for if ω is sufficiently. Applying Lemma F.6, we know we only have a small perturbation on the
gradient. Applying Lemma F.3, we know we only have small perturbation on kernel values.

G CNTK Derivation

In this section we derive CNTK for vanilla CNN. Given x ∈ RP×Q and (i, j) ∈ [P ]× [Q], we define

φij(x) = [x]i−(q−1)/2:i+(q−1)/2,j−(q−1)/2:j+(q−1)/2

i.e., this operator extracts the (i, j)-th patch. By this definition, we can rewrite the CNN definition:

• Let x(0) = x ∈ RP×Q×C(0)

be the input image where C(0) is the number of channels in the input
image.

• For h = 1, . . . ,H , β = 1, . . . , C(h), the intermediate outputs are defined as

[
x̃

(h)
(β)

]
ij

=

C(h−1)∑
α=1

〈
W

(h)
(α),(β),φij

(
x

(h−1)
(α)

)〉
, x

(h)
(β) =

√
cσ

C(h) × q × q
σ
(
x̃

(h)
(β)

)
where eachW (h)

(α),(β) ∈ Rq×q is a filter with Gaussian initialization.
• The final output is defined as

f(θ,x) =

C(L)∑
α=1

〈
W

(L)
(α) ,x

(L)
(α)

〉
whereW (L)

(α) ∈ RP×Q is a weight matrix with Gaussian initialization.

G.1 Expansion of CNTK

We expand Θ(L)(x,x′) to show we can write it as the sum of (L + 1) terms with each term
representing the inner product between the gradients with respect to the weight matrix of one layer.
We first define an linear operator

L : RP×Q×P×Q → RP×Q×P×Q

[L (M)]k`,k′`′ =
cσ
q2

tr
(

[M ]Dk`,k′`′

)
. (30)
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This linear operator is induced from convolutional operation. And here use zero padding, namely
when the subscription exceeds the range of [P ]× [Q]× [P ]× [Q], the value of the element is zero.

We also define I ∈ RP×Q×P×Q as the identity tensor, namely Ii,j,i′,j′ = 1{i = i′, j = j′}. And

Sum (M) =
∑

(i,j,i′,j′)∈[P ]×[Q]×[P ]×[Q]

Mi,j,i′,j′ .

The following property of L is immediate by definition: ∀M ,N ∈ RP×Q×P×Q, we have

Sum (M � L(N)) = Sum (L(M)�N) . (31)

With this operator, we can expand CNTK as (for simplicity we drop on x and x′)

Θ(L)

=tr
(
K̇(L) �Θ(H−1) +K(L)

)
=tr

(
K(L)

)
+ tr

(
K̇(L) � L

(
K(H−1)

))
+ tr

(
K̇(L) � L

(
K̇(H−1) �Θ(H−2)

))
= . . .

=

L∑
h=0

tr
(
K̇(L) � L

(
K̇(H−1)L

(
· · · K̇(h+1)L

(
K(h)

)
· · ·
))

.
)

Here for h = H , the term is just tr
(
K(L)

)
.

In the following, we will show〈
∂f(θ,x)

∂W (h)
,
∂f(θ,x′)

∂W (h)

〉
≈tr

(
K̇(L) � L

(
K̇(H−1) � L

(
· · · K̇(h) � L

(
K(h−1)

)
· · ·
)))

=Sum
(
I � K̇(L) � L

(
K̇(H−1) � L

(
· · · K̇(h) � L

(
K(h−1)

)
· · ·
)))

.

which could be rewritten as the following by Property 31,

〈
∂f(θ,x)

∂W (h)
,
∂f(θ,x′)

∂W (h)

〉
≈ Sum

(
L
(
K(h−1)

)
� K̇(h) � L

(
K̇(h+1) · · · � L

(
I � K̇(L)

)
· · ·
))

.

G.2 Derivation

We first compute the derivative of the prediction with respect to one single filter.

∂f(θ,x)

∂W
(h)
(α),(β)

=

〈
∂f(θ,x)

∂x(β)
,

∂x
(h)
(β)

∂W
(h)
(α),(β)

〉

=
∑

(i,j)∈[P ]×[Q]

〈
∂f(θ,x)

[x
(h)
(β)]ij

,
∂[x

(h)
(β)]ij

∂W
(h)
(α),(β)

〉

=
∑

(i,j)∈[P ]×[Q]

∂f(θ,x)

[x
(h)
(β)]ij

√
cσ

C(h)q2
σ′
([
x̃

(h)
(β)

]
ij

)
φij(x

(h−1)
(α) ).

With this expression, we proceed to we compute the inner product between gradients with respect to
the h-th layer matrix

C(h−1)∑
α=1

C(h)∑
β=1

〈
∂f(θ,x)

∂W
(h)
(α),(β)

,
∂f(θ,x′)

∂W
(h)
(α),(β)

〉
(32)
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=
∑

(i,j,i′,j′)∈[P ]×[Q]×[P ]×[Q]

cσ
C(h)q2

C(h)∑
β=1

∂f(θ,x)

∂[x
(h)
(β)]ij

· ∂f(θ,x′)

∂[x
′(h)
(β) ]i′j′

(σ′([x̃(h)
(β)

]
ij

)
σ′
([
x̃
′(h)
(β)

]
i′j′

))

·

C(h−1)∑
α=1

〈
φij(x

(h−1)
(α) ), φi′j′(x

′(h−1)
(α) )

〉 .

Similar to our derivation to NTK, we can use the following approximationC(h−1)∑
α=1

〈
φij(x

(h−1)
(α) ), φi′j′(x

′(h−1)
(α) )

〉 ≈ tr

([
K(h−1)

]
Dij,i′j′

)
= L

(
K(h−1)

)
.

Thus it remains to show that ∀(i, j, i′, j′) ∈ [P ]× [Q]× [P ]× [Q],
C(h)∑
β=1

cσ
C(h)q2

∂f(θ,x)

∂[x
(h)
(β)]ij

· ∂f(θ,x′)

∂[x
′(h)
(β) ]i′j′

(σ′([x̃(h)
(β)

]
ij

)
σ′
([
x̃
′(h)
(β)

]
i′j′

))
≈
[
L
(
K̇(h+1) · · · � L

(
I � K̇(L)

)
· · ·
)
� K̇(h)

]
i,j,i′,j′

The key step of this derivation is the following approximation (Equation 33), which assumes for each

(i, j, i′, j′), ∂f(θ,x)

∂[x
(h)

(β)
]ij
· ∂f(θ,x′)

∂[x
′(h)
(β)

]i′j′
and σ′

([
x̃

(h)
(β)

]
ij

)
σ′
([
x̃
′(h)
(β)

]
i′j′

)
are independent. This is used

and made rigorous for ReLU activation and fully-connected networks in the proof of Theorem 3.1.
Yang [2019] gave a rigorous statement of this approximation in an asymptotic way for CNNs.

1

C(h)

C(h)∑
β=1

∂f(θ,x)

∂[x
(h)
(β)]ij

· ∂f(θ,x′)

∂[x
′(h)
(β) ]i′j′

(σ′([x̃(h)
(β)

]
ij

)
σ′
([
x̃
′(h)
(β)

]
i′j′

))

≈

 1

C(h)

C(h)∑
β=1

∂f(θ,x)

∂[x
(h)
(β)]ij

· ∂f(θ,x′)

∂[x
′(h)
(β) ]i′j′

 1

C(h)

C(h)∑
β=1

σ′
([
x̃

(h)
(β)

]
ij

)
σ′
([
x̃
′(h)
(β)

]
i′j′

) (33)

Note that

cσ
C(h)q2

C(h)∑
β=1

σ′
([
x̃

(h)
(β)

]
ij

)
σ′
([
x̃
′(h)
(β)

]
i′j′

)
≈
[
K̇(h) (x,x′)

]
ij,i′j′

,

the derivation is complete once we show

G(h)(x,x′,θ) :=
1

C(h)

C(h)∑
β=1

∂f(θ,x)

∂x
(h)
(β)

⊗ ∂f(θ,x′)

∂x
′(h)
(β)

≈ L
(
K̇(h+1) · · · � L

(
I � K̇(L)

)
· · ·
)
.

(34)

Now, we tackle the term
(
∂f(θ,x)

∂[x
(h)

(β)
]ij
· ∂f(θ,x′)

∂[x
′(h)
(β)

]i′j′

)
. Notice that

∂f(θ,x)

∂
[
x

(h)
(β)

]
ij

=
∑

(k,`)∈[P ]×[Q]

∂f(θ,x)

∂
[
x

(h+1)
(γ)

]
k`

∂
[
x

(h+1)
(γ)

]
k`

∂
[
x

(h)
(β)

]
ij

.

and for γ ∈ [C(h+1)] and (k, `) ∈ [P ]× [Q]

∂
[
x

(h+1)
(γ)

]
k`

∂
[
x

(h)
(β)

]
ij

=

{√
cσ

C(h+1)q2
σ′
([
x̃

(h+1)
(γ)

]
k`

) [
W

(h+1)
(β),(γ)

]
i−k+q−1,j−`+q−1

if (i, j) ∈ Dk`
0 otherwise

.
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We then have[
G(h)(x,x′,θ)

]
ij,i′j′

=
1

C(h)

C(h)∑
β=1

∂f(θ,x)

∂
[
x

(h)
(β)

]
ij

∂f(θ,x′)

∂
[
x
′(h)
(β)

]
i′j′

=
∑

k,`,k′,`′

cσ
C(h+1)q2

C(h+1)∑
γ=1

 ∂f(θ,x)

∂
[
x

(h+1)
(γ)

]
k`

∂f(θ,x′)

∂
[
x

(′h+1)
(γ)

]
k′`′

(σ′ ([x̃(h+1)
(γ)

]
k`

)
σ′
([
x̃′

(h+1)

(γ)

]
k′`′

))

· 1

C(h)

C(h)∑
β=1

1 {(i, j, i′, j′) ∈ Dk`,k′`′}
[
W

(h+1)
(β),(γ)

]
i−k+q−1,j−`+q−1

[
W

(h+1)
(β),(γ)

]
i′−k′+q−1,j′−`′+q−1

≈
∑

k,`,k′,`′

cσ
C(h+1)q2

C(h+1)∑
γ=1

 ∂f(θ,x)

∂
[
x

(h+1)
(γ)

]
k`

∂f(θ,x′)

∂
[
x

(′h+1)
(γ)

]
k′`′

(σ′ ([x̃(h+1)
(γ)

]
k`

)
σ′
([
x̃′

(h+1)

(γ)

]
k′`′

))
· 1 {(i, j, i′, j′) ∈ Dk`,k′`′ , i− k = i′ − k′, j − ` = j′ − `′}

≈
∑

k,`,k′,`′

 1

C(h+1)

C(h+1)∑
γ=1

∂f(θ,x)

∂
[
x

(h+1)
(γ)

]
k`

∂f(θ,x′)

∂
[
x

(′h+1)
(γ)

]
k′`′

 cσ
q2C(h+1)

C(h+1)∑
γ=1

σ′
([
x̃

(h+1)
(γ)

]
k`

)
σ′
([
x̃′

(h+1)

(γ)

]
k′`′

)
· 1 {(i, j, i′, j′) ∈ Dk`,k′`′ , i− k = i′ − k′, j − ` = j′ − `′}

≈
∑

k,`,k′,`′

 1

C(h+1)

C(h+1)∑
γ=1

∂f(θ,x)

∂
[
x

(h+1)
(γ)

]
k`

∂f(θ,x′)

∂
[
x

(′h+1)
(γ)

]
k′`′

[K̇(h+1) (x,x′)
]
`k,`′k′

· 1 {(i, j, i′, j′) ∈ Dk`,k′`′ , i− k = i′ − k′, j − ` = j′ − `′}

≈tr

([
G(h+1)(x,x′,θ)� K̇(h+1) (x,x′)

]
Dij,i′j′

)
(35)

where the first approximation is due to our initialization ofW (h+1). In other words, we’ve shown

G(h)(x,x′,θ) = L
(
G(h+1)(x,x′,θ)� K̇(h+1) (x,x′)

)
. (36)

Since we use a fully-connected weight matrix as the last layer, we haveG(L)(x,x′,θ) ≈ I .

Thus by induction with Equation 36, we have derived Equation 34, which completes the derivation of
CNTK.

For the derivation of CNTK-GAP, the only difference is due to the global average pooling layer(GAP),
G(L)(x,x′,θ) ≈ 1

Q2P 2 1⊗ 1, where 1⊗ 1 ∈ RP×Q×P×Q is the all one tensor.

H Formula of CNTK with Global Average Pooling

In this section we define CNN with global average pooling considered in this paper and its corre-
sponding CNTK formula.

CNN definition.

• Let x = x(0) ∈ RP×Q×C(0)

be the input image and C(0) is the number of initial channels.
• For h = 1, . . . , L, β = 1, . . . , C(h), the intermediate outputs are defined as

x̃
(h)
(β) =

C(h−1)∑
α=1

W
(h)
(α),(β) ∗ x

(h−1)
(α) , x

(h)
(β) =

√
cσ

C(h)×q(h)×q(h) σ
(
x̃

(h)
(β)

)
.

• The final output is defined as

f(θ,x) =

C(L)∑
α=1

W
(L+1)
(α)

 1

PQ

∑
(i,j)∈[P ]×[Q]

[
x

(L)
(α)

]
ij

 .
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where W (L+1)
(α) ∈ R is a scalar with Gaussian initialization.

Besides using global average pooling, another modification is that we do not train the first and the
layer. This is inspired by Du et al. [2018a] in which authors showed that if one applies gradient
flow, then at any training time t, the difference between the squared Frobenius norm of the weight
matrix at time t and that at initialization is same for all layers. However, note thatW (1) andW (L+1)

are special because they are smaller matrices compared with other intermediate weight matrices, so
relatively, these two weight matrices change more than the intermediate matrices during the training
process, and this may dramatically change the kernel. Therefore, we choose to fixW (1) andW (L+1)

to the make over-parameterization theory closer to practice.

CNTK formula. We let x,x′ be two input images. Note because CNN with global average pooling
and vanilla CNN shares the same architecture except the last layer, Σ(h)(x,x′), Σ̇(h)(x,x′) and
K(h)(x,x′) are the same for these two architectures. the only difference is in calculating the final
kernel value. To compute the final kernel value, we use the following procedure.

1. First, we define Θ(0)(x,x′) = 0. Note this is different from CNTK for vanilla CNN which uses
Σ(0) as the initial value because we do not train the first layer.

2. For h = 1, . . . , L− 1 and (i, j, i′, j′) ∈ [P ]× [Q]× [P ]× [Q], we define[
Θ(h)(x,x′)

]
ij,i′j′

= tr

([
K̇(h)(x,x′)�Θ(h−1)(x,x′) +K(h)(x,x′)

]
Dij,i′j′

)
.

3. For h = L, we define Θ(L)(x,x′) = K̇(L)(x,x′)�Θ(L−1)(x,x′).
4. Lastly, the final kernel value is defined as

1

P 2Q2

∑
(i,j,i′,j′)∈[P ]×[Q]×[P ]×[Q]

[
Θ(L)(x,x′)

]
ij,i′j′

.

Note that we ignoreK(L) comparing with the CNTK of CNN. This is because we do not train the
last layer. The other difference is we calculate the mean over all entries, instead of calculating
the summation over the diagonal ones. This is because we use global average pooling so the
cross-variances between every two patches will contribute to the kernel.

I Fast Computation for ReLU-Activated CNTK

In this section we present our approach to compute CNTK exactly. Notably, most computation
required by our new approach can be described as entry-wise operations over matrices and tensors,
which allows efficient implementations on GPUs.

Following the formulas in Sections 4 and H, the trickiest part is computing the expectation of the
post-activation output, i.e., Equations (11) and (12). These two expectations depend on (the same)
2× 2 matrices

[
Λ(h)(x,x′)

]
ij,i′j′

. To obtain faster implementations, our key observation is that if

the diagonal entries of
[
Λ(h)(x,x′)

]
ij,i′j′

are all ones and the activation function is ReLU, there are
closed-form formulas for the the corresponding expectations. To see this, let us suppose for now that

Λ =

(
1 λ
λ 1

)
for some |λ| ≤ 1. When the activation function σ (·) is ReLU, one can show that

E
(u,v)∼N (0,Λ)

[σ (u)σ (v)] =
λ(π − arccos(λ)) +

√
1− λ2

2π
(37)

and

E
(u,v)∼N (0,Λ)

[σ̇ (u) σ̇ (v)] =
π − arccos (λ)

2π
. (38)

Now we let

A(h) =

(
Σ(h−1)(x,x) Σ(h−1)(x,x′)
Σ(h−1) (x′,x) Σ(h−1) (x′,x′)

)
∈ R2PQ×2PQ.
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Here, we interpret Σ(h−1)(x,x), Σ(h−1)(x,x′), Σ(h−1) (x′,x) and Σ(h−1) (x′,x′) as matrices
of size PQ × PQ. If the diagonal entries of A(h) are all ones, then the diagonal entries of[
Λ(h)(x,x′)

]
ij,i′j′

are all ones for all possible (i, j, i′, j′) ∈ [P ] × [Q] × [P ] × [Q], in which

case we can calculate K(h)(x,x′) and K̇(h)(x,x′) by simply applying the closed-form formulas
described in (37) and (38) on A(h).

However, in general, the diagonal entries of A(h) are not always all ones, in which case we resort

to the homogeneity of the ReLU activation function. Suppose Λ =

(
1 λ
λ 1

)
for some |λ| ≤ 1, and

D =

(
c1 0
0 c2

)
for some c1, c2 ≥ 0, then one can show that

E
(u,v)∼N (0,DΛD)

[σ (u)σ (v)] =
λ(π − arccos(λ)) +

√
1− λ2

2π
· c1c2 (39)

and

E
(u,v)∼N (0,DΛD)

[σ̇ (u) σ̇ (v)] =
π − arccos (λ)

2π
. (40)

Inspired by this, our final approach is described as follows.

1. LetD =

(
Dx 0
0 Dx′

)
, whereDx andDx′ are diagonal matrices whose diagonal entries

are square roots of the diagonal entries of Σ(h−1)(x,x) and Σ(h−1)(x′,x′), respectively.

2. Applying Equations (39) and (40) onA(h) = DΛ(h)D, where the diagonal entries of Λ(h)

are all ones.

Notice that the implementation above requires us to store the whole A(h) matrix, which has size
2PQ× 2PQ. To further optimize the efficiency, we notice that to implement the approach described
above, we only need to store the diagonal entries of Σ(h−1)(x,x) and Σ(h−1)(x′,x′), together with
the matrix Σ(h−1)(x,x′), which has size PQ× PQ.
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