
A Other applications

A.1 Constrained Parallel Markov Decision Process

We consider the parallel MDP problem [34, 42, 17] where we have a single-agent MDP task and N

workers, where each worker acts as an individual agent and aims to solve the same MDP problem. In
the parallel MDP setting, each agent is characterized by a tuple (S,A, P, �, r

i

, d

i

, µ

i

), where each
agent has the same but individual state space, action space, transition probability distribution, and the
discount factor. However, the reward function, cost function, and the distribution of the initial state
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The hope is that by solving the single-agent problem using N agents in parallel, the algorithm could
be more stable and converge much faster [40]. Intuitively, each agent i may have a different initial
state and will explore different parts of the state space due to the randomness in the state transition
distribution and the policy. It also helps to reduce the correlation between agents’ behaviors. As
a result, by running multiple agents in parallel, we are more likely to visit different parts of the
environment and get the experience of the reward/cost function values more efficiently. This mimics
the strategy used in tree-based supervised learning algorithms [14, 29, 30].

Following the settings in [17], we have N agents (i.e., N workers) and one central controller in the
system. The global parameter is denoted by ✓, and we consider the constrained parallel MDP problem
where the goal is to solve the following optimization problem:

minimize
✓

J(✓) =

NX

i=1

E
⇡✓


�

X

t�0

�

t

· r

i

(s

i

t

, a

i

t

)

�
,

subject to D(✓) = E
⇡✓

X

t�0

�

t

· d

i

(s

i

t

, a

i

t

)

�
 D

0

, i 2 N .

During the estimation step, the controller broadcasts the current parameter ✓
k

to each agent and each
agent samples its own trajectory and obtains estimators for function value/gradient of the reward/cost
function. Next, each agent uploads its estimators to the central controller and the central controller
takes the average over these estimators, and then follow our proposed algorithm to solve for the
QCQP problem and update the parameter to ✓

k+1

. This process continues until convergence.

A.2 Constrained Multi-agent Markov Decision Process

A natural extension of the (single-agent) MDP is to consider a model with N agents termed multi-
agent Markov decision process (MMDP). Recently this kind of problem has been attracting more
and more attention. See [15] for a comprehensive survey. Most of the work on multi-agent MDP
problems consider the setting where the agents share the same global state space, but each with their
own collection of actions and rewards [11, 63, 69]. In each stage of the system, each agent observes
the global state and chooses its own action individually. As a result, each agent receives its reward
and the state evolves according to the joint transition distribution. An MMDP problem can be fully
collaborative where all the agents have the same goal, or fully competitive where the problem consists
of two agents with an opposite goal, or the mix of the two.

Here we consider a slightly different setting where each agent has its own state space. The only
connection between the agents is that the global reward is a function of the overall states and actions.
Furthermore, each agent has its own constraint which depends on its own state and action only. This
problem is known as Transition-Independent Multi-agent MDP and is considered in [50]. Specifically,
each agent’s task is characterized by a tuple (S
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usual. Note that P i
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the joint state space and action space. The global reward function is given by r : S ⇥A ! R that
depends on the joint state and action. Here we consider the fully collaborative setting where all
the agents have the same goal. Under this setting, the policy set of each agent is parameterized as
{⇡
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chosen by agent i at stage t and a

t

= ⇧

i2N

a

i

t

as the joint action chosen by all the agents. The goal
of this constrained MMDP is to solve the following problem
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(20)

Inspired by the parallel implementation ([38], Section V), our algorithm applies naturally to con-
strained MMDP problem with some modifications. This modified procedure can also be viewed as
a distributed version of the original algorithm. The overall problem (20) can be viewed as a large
“single-agent” problem where the constraints are decomposable into N parts. In this case, instead of
solving a large QCQP problem in each iteration, each agent could solve its own QCQP problem in a
distributed manner which is much more efficient. As before, we denote the sample negative reward
and cost function as
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Note that the constraint function is naturally decomposable into N parts. We also “manually” split the
objective function into N parts, so that each agent could solve its own QCQP problem in a distributed
manner. As before, we define
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With this surrogate functions, each agent then solves its own convex relaxation problem
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or, alternatively, solves for the feasibility problem if (21) is infeasible
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This step can be implemented in a distributed manner for each agent and is more efficient than solving
the overall problem with the overall parameter ✓. Finally, the update rule for each agent i is as usual
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This process continues until convergence.

B Proof of Theorem 4

According to the choice of the surrogate function (5) and Assumption 2, it is straightforward to
verify that the function J
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(✓) defined in (8) is uniformly strongly convex in ✓ for each iteration t.
Moreover, both J
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for some constant L
0

and the error term ✏ that goes to 0 as k
1

, k

2

go to infinity. This shows that the
function sequence J

(kj)
(✓) is equicontinuous. Since ⇥ is compact and the discounted cumulative

reward function is bounded by r

max

/(1� �), we can apply Arzela-Ascoli theorem [22, 32] to prove
existence of b

J(✓) that converges uniformly. Moreover, since we apply the same operations on the
constraint function D(✓) as to the reward function J(✓) in Algorithm 1, the above properties also
hold for D(✓).

The rest of the proof follows in a similar way as the proof of Theorem 1 in [38]. Under Assumptions 1
- 3, the technical conditions in [38] are satisfied by the choice of the surrogate functions (5) and (6).
According to Lemma 2 in [38], with probability one we have
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This shows that, although in some of the iterations the convex relaxation problem (7) is infeasible,
and we have to solve the alternative problem (9), the iterates {✓

k

} converge to the feasible region
of the original problem (4) with probability one. Furthermore, with probability one, the convergent
point e✓ is the optimal solution to the following problem
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The KKT conditions for (22) together with the Slater condition show that the KKT conditions of
the original problem (4) are also satisfied at e✓. This shows that e✓ is a stationary point of the original
problem almost surely.
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