
Appendix for “G2SAT: Learning to Generate SAT
Formulas”

Anonymous Author(s)
Affiliation
Address
email

1 Implementation Details1

1.1 Removing Trivial Components of SAT formulas Generated by PS2

We found that almost all formulas generated by the PS model were trivially unsatisfiable when it is3

tasked with generated formulas with similar metrics as formulas in the traning set. In order to better4

demonstrate the SAT solver behaviors on the PS model, we increased the difficulty of its generated5

formulas by performing a lightweight post-processing step that iteratively removes clauses leading to6

short unsatisfiable proof. Concretely, for each generated formula, we used a SAT solver (Picosat [2])7

to try to solve it within a given conflict1 budget. If the solver were able to prove that the formula is8

unsatisfiable within that budget, we removed a clause from the unsatisfiable core (i.e., a subset of9

all clauses that is unsatisfiable) that Picosat returned and repeated the same process on the pruned10

formula, until it became satisfiable or no longer solvable within the conflict budget. We found that11

this efficient approach, only removes a low proportion of clauses and has small impact on the graph12

theoretic properties, but significantly increases the difficulty of the formulas generated by PS.13

2 Experiment Details14

2.1 Computing facilities15

The G2SAT model is trained on a single NVIDIA RTX-2080Ti GPU. We evaluate the performance of16

SAT solvers on a cluster equipped with Intel Xeon E5-2637 v4 CPUs running Ubuntu 16.04 and we17

dedicated 2 cores, 8000 MB RAM for each job. For each formula, we gave each solver a 10 minutes18

timeout.19

2.2 Evaluation20

We used an implementation of the Louvain Algorithm to measure the modularities [3].21

We used an implementation of the maximum likelihood method for computing an estimate of αv and22

αc [4, 1].23

2.3 More details on baseline methods24

Community Attachment (CA). The CA model generates formulas to fit a desired VIG modularity25

[5]. The model takes in five inputs n,m, k, c,Q, where n is the number of variables, m the number26

of clauses, k the length of each clause, c the size of a partition of the VIG, and Q is the desired27

VIG modularity. The output of the algorithm is a SAT formula with n variables and m clauses,28

1A SAT solver finds a conflict when it finds a partial assignment of values to variables that cannot satisfy the
formula.

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



each of length k, such that the optimal modularity for any c-partition of the VIG of the formula is29

approximately Q.30

Popularity-Similarity (PS).31

The PS model generates formulas to fit desired αv and αc [6]. In addition, the formulas generated by32

PS are guaranteed to have high modularity. The model takes in seven inputs n,m, k,K, αv, αc, T ,33

where n, m are the same with CA, k the minimum clause length, K the average clause length, and T34

a hyper-parameter that decides the trade-off between modularity and αv, αc. We use two versions of35

PS, with T = 0 and T = 1.5.36

References37

[1] C. Ansótegui, M. L. Bonet, and J. Levy. On the structure of industrial sat instances. In I. P. Gent,38

editor, Principles and Practice of Constraint Programming - CP 2009, pages 127–141, Berlin,39

Heidelberg, 2009. Springer Berlin Heidelberg.40

[2] A. Biere. Picosat essentials. JSAT, 4:75–97, 2008.41

[3] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in42

large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008,43

2008.44

[4] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM45

Review, 51:661–703, 2009.46

[5] J. Giráldez-Cru and J. Levy. A modularity-based random sat instances generator. In Proceedings47

of the 24th International Conference on Artificial Intelligence, IJCAI’15, pages 1952–1958.48

AAAI Press, 2015.49

[6] J. Giráldez-Cru and J. Levy. Locality in random sat instances. In Proceedings of the Twenty-Sixth50

International Joint Conference on Artificial Intelligence, IJCAI-17, pages 638–644, 2017.51

2


	Implementation Details
	Removing Trivial Components of SAT formulas Generated by PS

	Experiment Details
	Computing facilities
	Evaluation
	More details on baseline methods


