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Lemma 3.2 (Thinned intensities). Let F and G be the full history and thinned history with respect to
a p-thinned process Np(t). Let H be the internal history of N(t). The following equalities hold:

(1) λFp (t) = pλ
H(t);

(2) λGp(t) = pE
[
λH(t)|G

]
.

Proof. For (1), it can be obtained by taking expectation on both side of dNp(t) = BN(t)dN(t):

λFp (t) = EdNp(t) = EBN(t)dN(t) = λH(t). (1)

For (2), Theorem 7.13 in [2] gives a solution to recover the point process given the thinned history be
the following conditional expectation:

E [N(t)|G] = Np(t) +
1 − p

p

∫t
0
dΛG

p(s). (2)

Here, ΛG
p is the G-compensator of the p-thinned process, which equals to ΛG

p(t) =
∫t

0 λ
G
p(s)ds.

Further,

E
[
λH(t)|G

]
= lim
s→0

E [N(t+ s) −N(t)|G]

ds

= lim
s→0

E [Np(t+ s) −Np(t)|G]

ds
+

1 − p

p
λGp(t)

= λGp(t) +
1 − p

p
λGp(t)

=
1
p
λGp(t).

where the desired result follows.

Lemma 4.1 (Thinning for parameter estimation of NHPP). Consider an NHPP N(t) with determin-
istic intensity λ(t; θ), t > 0, θ ∈ Rd. If there exists an invertible linear operator A : Rd → Rd satis-
fying λ(t;Aθ) = pλ(t; θ), then the M-estimator on thinned history can be written as θ̃H = A−1θ̂G

such that E
[
∇R(θ̃H)|G

] P−→ 0, as the number of realizations n→∞.
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Proof. From Theorem 7.13 in [2] we have,

E
[
∇R(θ̃H)|G

]
= E
{ 1
p

∫T
0
H(t; θ̃H)

[
dNp(t) − pλ(t; θ̃H)dt

∣∣∣G]}
=

1
p

∫T
0
H(t; θ̃H)

[
dNp(t) − λ(t; θ̂G)dt

]
=

1
p

∫T
0
H(t; θ̃H)

[
dNp(t) − λ(t; θ∗G)dt+ λ(t; θ

∗
G)dt− λ(t; θ̂G)dt

]
=

1
p

∫T
0
H(t; θ̃H)

[
λ(t; θ∗G)dt− λ(t; θ̂G)dt

] P−→ 0.

The last step is due to the asymptotic normality of M-estimator ([1]) that θ̂G
P−→ θ∗G as the number of

realizations n→∞.

Theorem 4.3 (Thinning for parameter estimation of decouplable intensities). Consider a point
process N(t) with decouplable intensity. If there exist invertible linear operators A and B sat-
isfying BE

[
mH(t)|G

]
= mG

p(t), where mG
p(t) is the component of thinned intensity λGp(t), and

pB−1g(t; θ) = g(t;Aθ), then the M-estimator on thinned history can be written as θ̃H = A−1θ̂G

such that E
[
∇R(θ̃H)|G

] P−→ 0, as the number of realizations n → ∞. Particularly, if λH(t; θ) is
linear, then A = pB−1.

Proof. The proof is similar with the NHPP one. Be definition we have,

E
[
∇R(θ̃H)|G

]
=

1
p
E
∫T

0

{
HH(t; θ̃H)

[
dNp(t) − pλ

H(t; θ̃H)dt
]∣∣∣G}

=
1
p

∫T
0
E
{
HH(t; θ̃H)|G

}
E
{
dNp(t) − pλ

H(t; θ̃H)dt
∣∣∣G}

By the definition of stochastic integral, it suffices to show that Np(t) −
∫
pλH(t; θ̃H)dt asymptoti-

cally converges to a martingale in probability.

E
{
dNp(t) − pλ

H(t; θ̃H)dt
∣∣∣G} = g(t; θ∗)TmG(t) − pg(t; θ̃H)TE

[
mH(t)|G

]
=
[
g(t; θ∗) − pB−1g(t; θ̃H)

]T
mG(t)

=
[
g(t; θ∗) − g(t;Aθ̃H)

]T
mG(t)

=
[
g(t; θ∗) − g(t; θ̂G)

]T
mG(t)

Since θ̂G
P−→ θ∗G as the number of realizations n → ∞, and g is continuous with respect to θ,[

g(t; θ∗) − g(t; θ̂G)
]T
mG(t)

P−→ 0, which is the desired result.

Theorem 5.1 (Thinning for gradient estimation). Let N(t) be a point process with decouplable
intensity λH(t; θ) = g(t; θ)TmH(t) in Eq. (4). If there exist invertible linear operators A and B

satisfying BE
[
mH(t)|G

]
= mG

p(t), wheremG
p(t) is the component of thinned intensity λGp(t), and

pB−1g(t; θ) = g(t;Aθ), then
(1) E

[
∇R(θ)|G

]
6 1/pA−1∇Rp(Aθ), for R is LSE;

(2) E
[
∇R(θ)|G

]
6 A−1∇Rp(Aθ), for R is MLE.

Particularly, if the intensity is deterministic, i.e.,mH(t) = 1, both equalities hold.

Proof. By definition of stochastic integral, we have

E
[
∇R(θ)|G

]
= E
{∫T

0
HH(t; θ)

[
dN(t) − λH(t; θ)dt

] ∣∣∣G}
= E
{∫T

0
HH(t; θ)dN(t)

∣∣∣G}− E
{∫T

0
HH(t; θ)λH(t; θ)dt

∣∣∣G}
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Here the second term can be bounded by,

E
{
HH(t; θ)λH(t; θ)dt

∣∣G} > E
{
HH(t; θ)

∣∣G}E{λH(t; θ)dt
∣∣G}

According to the definition of forward stochastic integral, the first term can be written as,

E
{∫T

0
HH(t; θ)dN(t)|G

}
=

∫T
0
E
{
HH(t; θ)|G

}
E {dN(t)|G}

Let’s look at these components one by one. The condition of the theorem yields,

E
{
λH(t; θ)dt

∣∣G} = g(t; θ)TE[mH(t)|G
]
dt

= pB−1g(t; θ)TmG(t)dt

= g(t;Aθ)TmG(t)dt

= λG(t;Aθ)dt (3)

and,

E {dN(t)|G} =
1
p
dNp(t). (4)

If R is LSE, then we have,

E
[
HH(t; θ)

∣∣G] = ∇E[λH(t; θ)|G
]

= ∇θ
1
p
g(t;Aθ)TmG

p(t)

= A−1∇ 1
p
g(t;Aθ)TmG

p(t)

= A−1HG
p(t;Aθ) (5)

Thus, combining Eq.(3),(4) and (5) yields,

E
[
∇R(θ)|G

]
6

1
p2 A

−1
∫T

0
HG
p(t;Aθ)

[
dNp(t) − λ

G
p(t;Aθ)dt

]
=

1
p
A−1∇Rp(Aθ).

If R is MSE, then we have,

E
[
HH(t; θ)

∣∣G] = ∇E[ log λH(t; θ)|G
]

> ∇θ log
[
g(t;Aθ)TmG

p(t)
]

= A−1∇ log
[
g(t;Aθ)TmG

p(t)
]

= A−1HG
p(t;Aθ) (6)

Combining Eq.(3) and Eq.(6) yields the second conclusion,

E
[
∇R(θ)|G

]
6

1
p
A−1
∫T

0
HG
p(t;Aθ)

[
dNp(t) − λ

G
p(t;Aθ)dt

]
= A−1∇Rp(Aθ).

The proof ends here.

Theorem 5.2 (Variance of gradient estimation). Let ∇R̂G(θ) and ∇R`(θ) be the p-thinned and sub-
interval gradient at θ, where∇R̂G(θ) = 1/pA−1∇Rp(Aθ) for LSE and∇R̂G(θ) = A−1∇Rp(Aθ)
for MLE. The variance of p-thinned gradient is no greater than that of sub-interval gradient:

V
[
∇R̂G(θ)

]
6 V

[
∇R`(θ)

]
. (7)
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Proof. For the RHS, using the law of total variance yields,

V
[
∇R`(θ)

]
= E
{
V
[
∇R`(θ)|F

]}
+ V
{
E
[
∇R`(θ)|F

]}
.

The first term can be rewritten as,

E
{
V
[
∇R`(θ)|F

]}
=

1 − p

p
E
{∫T

0
HH(t; θ)

[
dN(t) − λH(t; θ)dt

]}2

=
1 − p

p
E
[
∇R(θ)

]2
,

The second term can be written as,

V
{
E
[
∇R`(θ)|F

]}
= V

[
∇R(θ)

]
.

Thus, the total variance of∇R`(θ) can be written as,

V
[
∇R`(θ)

]
=

1 − p

p
E
[
∇R(θ)

]2
+ V

[
∇R(θ)

]
.

Then we consider the LHS, by the definition of variance,

V
[
∇R̂G(θ)

]
= E

[
∇R̂G(θ)

]2
−
[
E∇R̂G(θ)

]2
. (8)

Apply Theorem ??, we have, [
E∇R̂G(θ)

]2
>
[
E∇R(θ)

]2
. (9)

For LSE, since quadratic function is convex, we obtain E
[
HG
p(t;Aθ)

]2
6 E

[
HH(t; θ)

]2. This
equivalence also holds for MLE, we omit the proof, since it can be proved similarly. Further, we
obtain,

E
[
∇R̂G(θ)

]2
=

1
p2 A

−1E
[ ∫T

0
HG
p(t; (Aθ)

[
dNp(t) − λ

G
p(t;Aθ)dt

] ]2
(A−1)T

=
1
p2 A

−1E
[ ∫T

0
HG
p(t; (Aθ)

[
dNp(t) − λ

G
p(t; θ

∗
G)dt+ λ

G
p(t; θ

∗
G)dt− λ

G
p(t;Aθ)dt

] ]2
(A−1)T

=
1
p2 A

−1E
{∫T

0
HG
p(t;Aθ)

[
dNp(t) − λ

G
p(t; θ

∗
G)dt

]}2

(A−1)T+

1
p2 A

−1E
{∫T

0
HG
p(t;Aθ)

[
λGp(t;Aθ

∗
G) − λ

G
p(t;Aθ)

]
dt

}2

(A−1)T (10)

The first term,

1
p2 A

−1E
{∫T

0
HG
p(t;Aθ)

[
dNp(t) − λ

G
p(t; θ

∗
G)dt

]}2

(A−1)T

=
1
p2 A

−1E
{∫T

0

[
HG
p(t;Aθ)

]2
dNp(t)

}
(A−1)T

6
1
p2 E
{∫T

0

[
HH(t; θ)

]2
dNp(t)

}
=

1
p
E
∫T

0

[
HH(t; θ)

]2
dN(t) (11)

The second term,

1
p2 A

−1E
{∫T

0
HG
p(t;Aθ)

[
λGp(t;Aθ

∗
G) − λ

G
p(t;Aθ)

]
dt

}2

(A−1)T

6
1
p
E
{∫T

0
HH(t; θ)

[
λH(t; θ∗H) − λH(t; θ)

]
dt

}2

(12)
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Substituting Eq. (11) and (12)to Eq. 10 yields

E
[
∇R̂G(θ)

]2
6

1
p
E
∫T

0

[
HH(t; θ)

]2
dN(t) +

1
p
E
{∫T

0
HH(t; θ)

[
λH(t; θ∗H) − λH(t; θ)

]
dt

}2

=
1
p
E
{∫T

0
HH(t; θ)

[
dN(t) − λH(t; θ∗H)dt

]}2

= E
[
∇R(θ)

]2
. (13)

Combine Eq.(13) and Eq.(10) to Eq.(8),

V
[
∇R̂G(θ)

]
6

1
p
E
[
∇R(θ)

]2
−
[
E∇R(θ)

]2

=
1 − p

p
E
[
∇R(θ)

]2
+ E

[
∇R(θ)

]2
−
[
E∇R(θ)

]2

=
1 − p

p
E
[
∇R(θ)

]2
+ V

[
∇R(θ)

]
= V

[
∇R`(θ)

]
,

which is the desired result.
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