
Exact Combinatorial Optimization
with Graph Convolutional Neural Networks

Supplementary Materials

Maxime Gasse
Mila, Polytechnique Montréal
maxime.gasse@polymtl.ca

Didier Chételat
Polytechnique Montréal

didier.chetelat@polymtl.ca

Nicola Ferroni
University of Bologna

n.ferroni@specialvideo.it

Laurent Charlin
Mila, HEC Montréal

laurent.charlin@hec.ca

Andrea Lodi
Mila, Polytechnique Montréal
andrea.lodi@polymtl.ca

1 Dataset collection details

For each benchmark problem, namely, set covering, combinatorial auction, capacitated facility
location and maximum independent set, we generate 10,000 random instances for training, 2,000
for validation, and 3x20 for testing (20 easy instances, 20 medium instances, and 20 hard instances).
In order to obtain our datasets of state-action pairs {(si,ai)} for training and validation, we pick an
instance from the corresponding set (training or validation), solve it with SCIP, each time with a new
random seed, and record new node states and strong branching decision during the branch-and-bound
process. We continue processing new instances by sampling with replacement, until the desired
number of node samples is reached, that is, 100,000 samples for training, and 20,000 for validation.
Note that this way the whole set of training and validation instances is not necessarily used to generate
samples. We report the number of training instances actually used for each problem in Table 1.

Table 1: Number of training instances solved by SCIP for obtaining 100,000 training samples (state-
action pairs). We report both the total number of SCIP solves and the number of unique instances
solved, since instances are sampled with replacement.

Set Combinatorial Capacitated Maximum
Covering Auction Facility Location Independent Set

total 7771 11 322 7159 6198
unique 5335 6661 5046 4349

Note that the strong branching rule, as implemented in the SCIP solver, does not only provides
branching decisions, but also triggers side-effects which change the state of the solver itself. In order
to use strong branching as an oracle only, when generating our training samples, we re-implemented
a vanilla version of the full strong branching rule in SCIP, named vanillafullstrong. This version
of full strong branching also facilitates the extraction of strong branching scores for training the
ranking-based and regression-based machine learning competitors, and will be included by default in
the next version of SCIP.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



2 Training details

2.1 GCNN

As described in the main paper, for our GCNN model we record strong branching decisions (a)
and extract bipartite state representations (s) during branch-and-bound on a collection of training
instances. This yields a training dataset of state-action pairs {(st,at)}. We train our model with the
Tensorflow [1] library, with the same procedure throughout all experiments. We first pretrain the
prenorm layers as described in Section 4.3 of the main paper. We then minimize a cross-entropy
loss using Adam [4] with minibatches of size 32 and an initial learning rate of 1e-3. We divide the
learning rate by 5 when the validation loss does not improve for 10 epochs, and stop training if it
does not improve for 20. All experiments are performed on a machine with an Intel Xeon Gold 6126
CPU at 2.60GHz and an Nvidia Tesla V100 GPU.

A list of the features included in our bipartite state representation is given as Table 2. For more details
the reader is referred to the source code at https://github.com/ds4dm/learn2branch.

Table 2: Description of the constraint, edge and variable features in our bipartite state representation
st = (G,C,E,V).

Tensor Feature Description

C

obj_cos_sim Cosine similarity with objective.

bias Bias value, normalized with constraint coefficients.

is_tight Tightness indicator in LP solution.

dualsol_val Dual solution value, normalized.

age LP age, normalized with total number of LPs.

E coef Constraint coefficient, normalized per constraint.

V

type Type (binary, integer, impl. integer, continuous) as a one-hot encoding.

coef Objective coefficient, normalized.

has_lb Lower bound indicator.

has_ub Upper bound indicator.

sol_is_at_lb Solution value equals lower bound.

sol_is_at_ub Solution value equals upper bound.

sol_frac Solution value fractionality.

basis_status Simplex basis status (lower, basic, upper, zero) as a one-hot encoding.

reduced_cost Reduced cost, normalized.

age LP age, normalized.

sol_val Solution value.

inc_val Value in incumbent.

avg_inc_val Average value in incumbents.

2.2 SVMrank and LambdaMART

For SVMrank and LambdaMART, at each node t we record strong branching ranks ρi for each
candidate variable i, and extract the same variable-wise features φKhalil

i as Khalil et al. [3], with two
modifications. First, because of differences between CPLEX and SCIP, it is difficult to reimplement
single/double infeasibility statistics, but SCIP keeps track of left/right infeasibility statistics, namely
the number of times branching on the variable led to a left (resp. right) infeasible child. Because these
statistics capture similar aspects of the branch-and-bound tree, we swapped one for the other. Second,
since in our setting at test time there is no separate data collection stage, statistics are computed on

2

https://github.com/ds4dm/learn2branch


past branching decisions at each time step t. Otherwise we follow [3], which suggest a zero-one
feature normalization over the candidate, a.k.a. query-based normalization, and a binarization of the
ranking labels around the 80th centile. This yields a training dataset of variable-wise state-rank pairs
{(φKhalil

i (st), ρi,t)}.

The SVMrank model is trained by minimizing a cost sensitive pairwise loss with a 2nd-order polyno-
mial feature augmentation, and regularization on the validation set among C ∈ {0.001, 0.01, 0.1, 1},
as in the original implementation. The LambdaMART model uses 500 estimators, and is trained by
maximizing a normalized discounted cumulative gain with default parameters, with early stopping
using the validation set.

Note that in their SVMrank implementation, Khalil et al. [3] limit at each node the candidate variables
to the ten with highest pseudocost, both for training and testing. This makes sense in their online
setting, as the model is trained and applied after observing the behavior of strong branching on a few
initial nodes, which initializes the pseudocosts properly. In our context, however, there is no initial
strong branching phase, and as is to be expected we observed that applying this pseudocost filtering
scheme degraded performance. Consequently, we do not filter, and rather train and test using the
whole set of candidate variables at every node.

In addition, both the SVMrank and LambdaMART approaches suffer from poorer training scalability
than stochastic gradient descent-based deep neural networks, and we found that training on our entire
dataset was prohibitive. Indeed, training would have taken more than 500GB of RAM for SVMrank
and more than 1 week for LambdaMART for even the smallest problem class. Consequently, we had
to limit the size of the dataset, and chose to reduce the training set to 250,000 candidate variables,
and the validation set to 100,000.

2.3 ExtraTrees

For ExtraTrees, we record strong branching scores σi for each candidate variable i, and extract
variable-wise features φsimple

i from our bipartite state s as follows. For every variable we keep the
original variable node features vi, which we concatenate with the component-wise minimum, mean
and maximum of the edge and constraint node features (ei,j , cj) over its neighborhood. As a result,
we obtain a training dataset of variable-wise state-score pairs {(φsimple

i (st), σi,t)}. The model is
trained by mean-squared error minimization, while at test time branching is made on the variable
with the highest predicted score, i∗ = argmaxi σ̂(φi(st)). As Alvarez et al. [2, p. 14] mention,
with this model the inference time increases with the training set size. Additionally, even though in
practice the ExtraTrees model training scales to larger datasets than the SVMrank and LambdaMART
models, here also we ran into memory issues when training on our entire dataset. Consequently, for
ExtraTrees we also chose to limit the training dataset to 250,000 candidate variables, a figure roughly
in line with Alvarez et al. [2]. Note that we did not use the expert features proposed by Khalil et al.
[3] for ExtraTrees, as those were resulting in degraded performance.

3 When are decisions hard for the GCNN policy?

To understand what kinds of decisions are taken by the trained GCNN policy beyond the imitation
learning accuracy, it is insightful to look at when it is confident. In particular, we can take the
entropy of our policy as a measure of confidence, and compute an analogous quantity from the strong
branching scores, H(strong branching) = logm form the number of candidates with maximal strong
branching score. Figure 1 shows that entropies at every decision point on the easy instances for the
four problems roughly correlate. This suggests that the decisions where the GCNN hesitates are those
that are intrinsically difficult, since on those the expert hesitates more as well.

4 Training set sizes for the machine learning methods

As discussed, computational limitations made training of machine learning competitors impossible
on the full dataset that we used to train our GCNN policy. It is a limitation of those methods that they
cannot benefit from as much training data as the proposed deep policy with the same computational
budget, and conversely, the scalability of our proposed method to large training sets is a major
advantage. Since there is little reason for artificially restricting any model to smaller datasets than

3



0 2 4 6
GCNN entropy

0

1

2

3

4

5

6

7

St
ro

ng
 b

ra
nc

hi
ng

 e
nt

ro
py

Set Covering

1 2 3 4 5 6
GCNN entropy

0

1

2

3

4

5

6

St
ro

ng
 b

ra
nc

hi
ng

 e
nt

ro
py

Combinatorial Auction

0 1 2 3 4
GCNN entropy

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

St
ro

ng
 b

ra
nc

hi
ng

 e
nt

ro
py

Capacitated Facility Location

0 2 4 6 8
GCNN entropy

0

2

4

6

8

St
ro

ng
 b

ra
nc

hi
ng

 e
nt

ro
py

Maximum Independent Set

Figure 1: Entropy of the GCNN policy against the “entropy” of strong branching.

Table 3: Number of branching nodes (state-action pairs) used for training the machine learning
competitors, that is, for obtaining 250,000 training and 100,000 validation samples (variable-score
pairs). In comparison, the number of branching nodes in the complete dataset used to train the GCNN
model is 100,000 for training, and 20,000 for validation.

Set Combinatorial Capacitated Maximum
Covering Auction Facility Location Independent Set

training 1979 1738 6201 534
validation 782 696 2465 213

they can handle, especially since the state-of-the-art branching rule (reliability pseudocost) is not
even a machine learning method, we did not do so in the paper.

Nonetheless, a natural question is whether the improvements in performance provided by the GCNN
came solely from increased dataset size. To answer this question, we re-trained a GCNN model using
the same amount of data as for the competitors, that is, 250,000 candidate variables for training, and
100,000 for validation. The size of the resulting datasets, from the point of view of the number of
branching nodes recorded, is reported in Table 3. As can be seen in Table 4, the resulting model
(GCNN-SMALL) still clearly outperforms the competitors in terms of accuracy. Thus although using
more training samples improves performance, the improvements cannot be explained only by the
amount of training data.

4



Table 4: Imitation learning accuracy on the test sets.

Set Covering Combinatorial Auction Capacitated Facility Location Maximum Independent Set
model acc@1 acc@5 acc@10 acc@1 acc@5 acc@10 acc@1 acc@5 acc@10 acc@1 acc@5 acc@10
TREES 51.8±0.3 80.5±0.1 91.4±0.2 52.9±0.3 84.3±0.1 94.1±0.1 63.0±0.4 97.3±0.1 99.9±0.0 30.9±0.4 47.4±0.3 54.6±0.3

SVMRANK 57.6±0.2 84.7±0.1 94.0±0.1 57.2±0.2 86.9±0.2 95.4±0.1 67.8±0.1 98.1±0.1 99.9±0.0 48.0±0.6 69.3±0.2 78.1±0.2
LMART 57.4±0.2 84.5±0.1 93.8±0.1 57.3±0.3 86.9±0.2 95.3±0.1 68.0±0.2 98.0±0.0 99.9±0.0 48.9±0.3 68.9±0.4 77.0±0.5

GCNN-SMALL 57.9±1.0 87.1±0.6 95.5±0.3 55.0±1.6 88.0±0.6 96.2±0.1 69.1±0.1 98.2±0.0 99.9±0.0 50.1±1.2 73.4±0.6 82.8±0.6
GCNN 65.5±0.1 92.4±0.1 98.2±0.0 61.6±0.1 91.0±0.1 97.8±0.1 71.2±0.2 98.6±0.1 99.9±0.0 56.5±0.2 80.8±0.3 89.0±0.1

Table 5: Training time for each machine learning method, in hours.

Set Combinatorial Capacitated Maximum
Covering Auction Facility Location Independent Set

TREES 0.05 ± 0.00 0.03 ± 0.00 0.16 ± 0.01 0.04 ± 0.00
SVMRANK 1.21 ± 0.01 1.17 ± 0.06 1.04 ± 0.03 1.19 ± 0.02

LMART 2.87 ± 0.23 2.47 ± 0.26 1.38 ± 0.15 2.16 ± 0.53
GCNN 14.45 ± 1.56 3.84 ± 0.33 18.18 ± 2.98 4.73 ± 0.85

5 Training and inference times

For completeness, we report in Table 5 the training time of each machine learning method, and
in Table 6 their inference time per node. As can be observed, the GCNN model relies on less
complicated features than the other methods, and therefore requires less computational time during
feature extraction, at the cost of a higher prediction time.

Table 6: Inference time per node for each machine learning model, in milliseconds. We report both
the time required to extract and compute features from SCIP (feat. extract), and the total inference
time (total) which includes feature extraction and model prediction.

Easy Medium Hard
model total feat. extract total feat. extract total feat. extract
TREES 23.8 ± 4.0 11.2 ± 2.0 28.4 ± 4.5 15.7 ± 3.2 54.9 ±14.2 42.7 ±13.8

SVMRANK 16.6 ± 7.1 6.4 ± 4.3 23.1 ±11.1 9.4 ± 5.1 150.4 ±19.3 55.6 ±12.6
LMART 7.0 ± 3.5 6.0 ± 3.3 10.1 ± 4.8 8.8 ± 4.6 55.7 ±12.9 51.9 ±12.6
GCNN 5.5 ±13.1 1.1 ± 3.5 5.4 ± 4.6 1.5 ± 3.0 10.2 ±12.7 4.9 ±10.2

Set Covering

TREES 16.1 ± 5.1 5.9 ± 1.8 25.3 ± 6.1 10.6 ± 4.7 30.2 ± 9.6 15.6 ± 7.8
SVMRANK 14.7 ±10.4 3.9 ± 4.8 31.6 ±20.2 8.3 ± 5.7 55.4 ±39.2 13.5 ± 9.4

LMART 4.5 ± 2.6 3.6 ± 2.3 9.6 ± 5.7 8.2 ± 5.4 15.4 ± 9.1 13.5 ± 8.6
GCNN 7.2 ±24.3 1.2 ± 5.7 4.4 ± 6.1 1.5 ± 4.2 5.1 ± 6.3 2.1 ± 5.3

Combinatorial Auction

TREES 53.7 ± 2.0 49.1 ± 1.1 99.0 ± 6.2 93.4 ± 4.6 205.3 ± 4.9 199.7 ± 4.3
SVMRANK 13.3 ± 6.5 9.3 ± 5.8 21.8 ±14.5 17.9 ±14.0 80.4 ±70.9 74.1 ±70.5

LMART 9.7 ± 6.2 9.3 ± 6.1 18.4 ±14.1 17.9 ±13.9 83.5 ±80.4 82.9 ±80.3
GCNN 9.2 ±15.3 3.9 ± 3.3 14.8 ±18.7 7.5 ± 1.1 43.0 ±53.7 19.9 ±13.9

Capacitated Facility Location

TREES 41.3 ± 7.8 12.0 ± 5.8 56.9 ±12.4 25.0 ±11.1 83.8 ±17.5 45.4 ±15.5
SVMRANK 45.5 ± 5.6 6.9 ± 5.4 96.5 ±12.8 19.4 ±11.8 200.2 ±17.8 35.4 ±17.5

LMART 8.3 ± 5.0 6.6 ± 5.0 22.1 ±11.2 19.2 ±11.2 38.8 ±16.0 34.8 ±15.9
GCNN 5.1 ± 7.4 2.3 ± 5.1 7.7 ±11.1 4.8 ±10.0 12.0 ±17.5 8.1 ±14.8

Maximum Independent Set

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath

5



Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Alejandro M. Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based
approximation of strong branching. INFORMS Journal on Computing, 29:185–195, 2017.

[3] Elias B. Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning
to branch in mixed integer programming. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pages 724–731, 2016.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the Third International Conference on Learning Representations, 2015.

6


	Dataset collection details
	Training details
	GCNN
	SVMrank and LambdaMART
	ExtraTrees

	When are decisions hard for the GCNN policy?
	Training set sizes for the machine learning methods
	Training and inference times

