Appendix

A Notation

For any positive integer n, we use [n] to denote the set {1,2,-- ,n}. For random variable X, let
E[X] denote the expectation of X (if this quantity exists).

For any vector x € R, we use ||z|| to denote its £5 norm.

We provide several definitions related to matrix A. Let det(A) denote the determinant of a square
matrix A. Let AT denote the transpose of A. Let A’ denote the Moore-Penrose pseudoinverse of
A. Let A~ denote the inverse of a full rank square matrix. Let || A||r denote the Frobenius norm
of matrix A. Let ||A|| denote the spectral norm of matrix A. Let 0;(A) to denote the i-th largest
singular value of A.

We use 1 to denote the indicator function, which is 1 if f holds and 0 otherwise. Let I; € Rdxd
denote the identity matrix. We use ¢(z) to denote an activation function. We use D to denote a
Gaussian distribution N'(0, I;). For integer k, we use Dy, to denote N'(0, I,).

For any function f, we define 6( f) tobe f-1log? M (f). In addition to O(-) notation, for two
functions f, g, we use the shorthand f < g (resp. =) to indicate that f < C'g (resp. >) for an
absolute constant C'. We use f =< g to mean cf < g < C'f for constants ¢, C.

B Preliminaries

We state some useful facts in this section.

FactB.1. Let A=[a; ay --- ay] Letdiag(A) € R¥ denote the vector where the i-th entry is

A; i, Vi € [K]. Let 1 € R denote the vector that the i-th entry is 1, Vi € [k]. We have the following
properties,

k
(D) > (a] e:)* = || diag(A)]3,

i=1
k

(ID) > () a:)* = [| A%,
i=1
E ok

(1) > > (a)a;) = |A- 1|3,
i=1 j=1

(V) > a)a; = [A-1]5 - |A] 7.
i#£]

Proof. Using the definition, it is easy to see that (I), (Il) and (IIT) are holding.
Proof of (IV), we have

k
Sala; =Y ala;~ Y ala; =413 - Al
ij i=1

i#]
where the last step follows by (II) and (III). O]
FactB.2. Let A= a1 az --- ay). Let diag(A) € R” denote the vector where the i-th entry is

A Vi€ k] Letl € R¥ denote the vector that the i-th entry is 1, Vi € [k]. We have the following
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propetrties,
(D) Y _aleiela; = (diag(A)T - (A- 1)) — || diag(A)|3,
i#]

(ID) Y "aeje] a; = (diag(A)" - (A- 1)) — | diag(A)]13,
i#£]

(I11) Za ela e; = (diag(A)" - 1) — || diag(A) |3,
i#]

(IV) > aleja)e; = (AT, A) — || diag(A)|3.
i#]

Proof. Proof of (I). We have

gaele aj = gaeze aj — Eae,e a;

i#]

= Zam@i aj — || diag(A )HQ
,J

k k
= aiie] Y a;— | diag(A)[3
i—1 j=1

— (diag(4)" - (A~ 1) — || ding(A)]3
Proof of (II). It is similar to (I).
Proof of (IIT). We have

E a ela €; = E a ela €; — E (l ela €;
i#]
= E a;-rei . E a;-rej — E a?eia;rei
i=1 j=1 i=1
k k k
= E Qi ° § Qg5 — § Q3@
i=1 j=1 1=1

= (diag(4) " - 1)* — || diag(A)|3

Proof of (IV). We have
Za;reja;ei = Ztr[a;reja;ei]
i#] i#]
= Ztr[eja;eia:]
i#]
= Z(eja;r,aie;r>
i#]
k
= D (ejaj aiel) = 3 feial aiel
%7 =1
= (AT, A) — || diag(A )||§

where the second step follows by tr[ABCD] = tr[BC'DA], the third step follows by tr[AB] =
(A,BT). O
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C Proof Sketch

At high level the proofs for Theorem 3.2 and Theorem 3.4 include the following steps. 1) Show that
the population Hessian at the ground truth is positive definite. 2) Show that population Hessians
near the ground truth are also positive definite. 3) Employ matrix Bernstein inequality to bound the
population Hessian and the empirical Hessian.

We now formulate the Hessian. The Hessian of Eq. (3), V2 fq(U,V) € R(Zkd)x(2kd) " can be de-
composed into two types of blocks, (i € [k], ] € [k]),
P fa(U, V) 0?fa(U,V)
8ui8vj ’ 6’[,61611]
where u;(v;, resp.) is the i-th column of U (j-th column of V, resp.). Note that each of the above
second-order derivatives is a d X d matrix.

The first type of blocks are given by:

2 Vv N

% ]g[¢ (u) )¢ (v) )y " o(v] y)d(u] x)] +51]E[ ey (U V)G (uf 2)¢' (v] y)zy '],
1UVj

where Eq[] = % > (eyealls 0ij = li=;, and

hay (U, V) = (U T2) To(VTy) — (U Ta) "o (V" Ty).

For sigmoid/tanh activation function, the second type of blocks are given by:

2 fo(U,V ~ , ~
PIoOY) _ & [g1(wT ) (u] 2)aaT ST 1)6(0] )] + 65 [y (U V)6 (0] 2)o0] )]
Ou;0u Q Q
(7
For ReLLU/leaky ReLLU activation function, the second type of blocks are given by:
2 A~
S B[] )0 0] 2y 0] (] )]

Note that the second term of Eq. (7) is missing here as (U, V') are fixed, the number of samples is
finite and ¢ (z) = 0 almost everywhere.

In this section, we will discuss important lemmas/theorems for Step 1 in Appendix C.1 and Step 2,3
in Appendix C.3.

C.1 Positive definiteness of the population hessian
The corresponding population risk for Eq. (3) is given by:
1
U V)=5 E (U ) 6(V'y) - Alz,y))%], ®)

2 (x,y)~D
where D := X x ). For simplicity, we also assume X and ) are normal distributions.
Now we study the Hessian of the population risk at the ground truth. Let the Hessian of fp (U, V)
at the ground-truth (U, V') = (U*,V*) be H* € R(Z)*(2dk) \which can be decomposed into the
following two types of blocks (i € [k],j € [k]),

2 *
FUnLVY) o [¢ (u*Tx)d)’(u}*Tm)MT(Zﬁ(UfT?J)d?(”;Ty)} ’

[“)ui(“)uj x,y
asz(U*,V*) 7 . . )
= B [0 Ty T ot et )]

To study the positive definiteness of H*, we characterize the minimal eigenvalue of H* by a con-
strained optimization problem,

(a,b)eB =,y

2
Amin(H*) = min E (Zaﬁ Tz a; + ¢ (v Ty)o(ul ")y Tbi> , 9
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where (a,b) € B denotes that Zle llaill? + |bi]|> = 1. Obviously, Apin(H*) > 0 due to the
squared loss and the realizable assumption. However, this is not sufficient for the local convexity
around the ground truth, which requires the positive (semi-)definiteness for the neighborhood around
the ground truth. In other words, we need to show that A, (H*) is strictly greater than 0, so that
we can characterize an area in which the Hessian still preserves positive definiteness (PD) despite
the deviation from the ground truth.

Challenges. As we mentioned previously there are activation functions that lead to redundancy in
parameters. Hence one challenge is to distill properties of the activation functions that preserve the
PD. Another challenge is the correlation introduced by U* when it is non-orthogonal. So we first
study the minimal eigenvalue for orthogonal U* and orthogonal V* and then link the non-orthogonal
case to the orthogonal case.

C.2 Warm up: orthogonal case

In this section, we consider the case when U*, V* are unitary matrices, i.e., Ut =u*U*" = I,.
(d = k). This case is easier to analyze because the dependency between different elements of x or y
can be disentangled. And we are able to provide lower bound for the Hessian. Before we introduce
the lower bound, let’s first define the following quantities for an activation function ¢.

oy = B ()]
Bii=_ B, (@), o
1= B 926,

p :=min{ (20820 — F 0B — Bt ), (az0B22 — af oBis — 7))

We now present a lower bound for general activation functions including sigmoid and tanh.

Lemma C.1. Let (a,b) € B denote that Zle llail|? + |bi]|? = 1. Assume d = k and U*,V* are
unitary matrices, i.e., UTU* = U*U*"T = V*V*T = V*TV* = [, then the minimal eigenvalue
of the population Hessian in Eq. (9) can be simplified as,

(a,b)eB .y

i 2
min E (Z & (x3)p(yi)x T a; + ¢/(yi)¢(xi)yTbi>
=1

Let 3, p be defined as in Eq. (10). If the activation function ¢ satisfies 51,1 = 0, then Apin (H*) > p.

Since sigmoid and tanh have symmetric derivatives w.r.t. 0, they satisfy 5, ; = 0. Specifically, we
have p ~ 0.000658 for sigmoid and p ~ 0.0095 for tanh. Also for ReLU, 3; 1 = 1/2, so ReLU
does not fit in this lemma. The full proof of Lemma C.1, the lower bound of the population Hessian
for ReLU and the extension to non-orthogonal cases can be found in Appendix D.

C.3 Error bound for the empirical Hessian near the ground truth

In the previous section, we have shown PD for the population Hessian at the ground truth for the
orthogonal cases. Based on that, we can characterize the landscape around the ground truth for the
empirical risk. In particular, we bound the difference between the empirical Hessian near the ground
truth and the population Hessian at the ground truth. The theorem below provides the error bound
w.r.t. the number of samples (nl,n2) and the number of observations || for both sigmoid and
ReLU activation functions.

Theorem C.2. Foranye > 0, if
ny > e 2tdlog® d,ng > e %tdlog? d, |Q| > e 2tdlog? d,
then with probability at least 1 — d ™, for sigmoid/tanh,
IV2fa(U,V) = V2 fo (U V)| S e+ U= U +[[V =V
for ReLU,

IV fa(U,V) = V2 fp(U*, V)| £ (IIV — VYR U - Ut 6) (U= =+ IV=[h>.
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The key idea to prove this theorem is to use the population Hessian at (U, V') as a bridge.

On one side, we bound the population Hessian at the ground truth and the population Hessian at
(U, V). This would be easy if the second derivative of the activation function is Lipschitz, which
is the case of sigmoid and tanh. But ReL.U doesn’t have this property. However, we can utilize the
condition that the parameters are close enough to the ground truth and the piece-wise linearity of
ReLU to bound this term.

On the other side, we bound the empirical Hessian and the population Hessian. A natural idea is to
apply matrix Bernstein inequality. However, there are two obstacles. First the Gaussian variables
are not uniformly bounded. Therefore, we instead use Lemma B.7 in [ZSJ™17], which is a loosely-
bounded version of matrix Bernstein inequality. The second obstacle is that each individual Hessian
calculated from one observation (z,y) is not independent from another observation (2, y’), since
they may share the same feature x or y. The analyses for vanilla IMC and MC assume all the
items(users) are given and the observed entries are independently sampled from the whole matrix.
However, our observations are sampled from the joint distribution of X’ and ).

To handle the dependency, our model assumes the following two-stage sampling rule. First, the
items/users are sampled from their distributions independently, then given the items and users, the
observations §2 are sampled uniformly with replacement. The key question here is how to combine
the error bounds from these two stages. Fortunately, we found special structures in the blocks of
Hessian which enables us to separate z, y for each block, and bound the errors in stage separately.
See Appendix E for details.

D Positive Definiteness of Population Hessian

D.1 Orthogonal case

We first study the orthogonal case, where d = k and U*, V* are unitary matrices, i.e., U* ' U* =
U*U*T V*V*T V*Tv* — I

D.1.1 Lower bound on minimum eigenvalue

Lemma D.1 (Restatement of Lemma C.1). Let (a,b) € B denote that 3, ||a]|> + ||bs||> =
Assume d = k and U*,V* are unitary matrices, i.e., U*TU* = U*U*" = V*V*T = V*Ty* =
14, then the minimal eigenvalue of the population Hessian in Eq. (9) can be simplified as,

2
)\min(H*) = min (Z(b yz LU a; + ¢ (y2)¢(xz)y—rbz> . (ll)

(a,b)eB :m/
Let 3, p be defined as in Eq. (10). If the activation function ¢ satisfies 1,1 = 0, then Apin(H*) > p.

Proof. In the orthogonal case, we can easily transform Eq. (9) to Eq. (11) since x,y are normal
distribution. Now we can decompose Eq. (11) into the following three terms.

k 2
E <Z oy ai + ¢’ (yz)¢(xi)yTbi>

(Z ¢’<yi>¢<xi>yTbi>

2

-k <Z ¢/($i)¢(yi)xTai>

=1

C

+2E |36/ @)olua it (y)o(a,)y b,
4,J

D

Note that the first term is similar to the second term, so we just lower bound the first term and the
third term. Define A = [a1,a2,- - ,ak], B = [b1,ba,- - ,bg]. Let A, be the off-diagonal part of A
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and A, be the diagonal part of A, i.e., A, + Ag = A. And let g4 = diag(A) be the vector of the
diagonal elements of A. We will bound C and D in the following.

For C, we have

2
<Z¢ i) (yi)x al>

k

=Y E |(¢/@)ely)ea; }+ZE Jo(aTai - ¢'(@;)e(y;)e " a;]

i=1
k

= > g [(a] €)*(Baz — B20) + Baollaill’]
=1

+Y 0o [Bloal aj + (BiaBro — BLo)(al eiel aj +al eja] e;) + BT 1 (af eia e; + a] eja] e;)]
i#]
=Cp + Ch.
where the last step follows by

Zago a; €)*(Baa — B2.0) + Baollail %]

Cy = Zal,o 51,0‘11' a; + (B12B1,0 — Bi 0)(GT€1€T% +a; e]a;rej) + 51 1(‘1Teza €j +a; eja;—ei)]

i#]
First we can simplify C in the following sense,
k k
C1 = az,0(B2,2 — B2,0) Z(a?eif + a2,082,0 Z llaill3
i=1 i=1

= 2,0(B2,2 — Pa,0) | diag(A) 3 + az,082,0[| Al 7,
where the last step follows by Fact B.1.

We can rewrite C in the following sense

Cy = a%,O(ﬂ%,OCZ,l + (B1,281,0 — 5%,0) (Ca2+Co3)+ 51271(02,4 +Cs5)).

_ § T,
0271 = a; a;

i#£j
_ T T
Coo = E a; e;e; a;
i#£j
_ T, T .
Coz = E a; eje; a;
i#£j
_ T T
Caoy = E a; €a; e;
i#£]
T T
Co5 = E a; eja; €;
i#]

where

Using Fact B.1, we have
Cop = || A-1]5 - [|A]|%-
Using Fact B.2, we have

oz = (diag(A) " - (A - 1)) — || diag(A)]3,
Cy3 = (diag(A)" - (A-1)) — || diag(A)]3,
Caa = (diag(A) " - 1) — || diag(A)|I3,

(

AT, A) — || diag(A)]3.
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Thus,
Cy = af o(BLo(IA- 1[5 - A7)
+ (Br2Br0 — B7)2 - (diag(A) T - (A - 1) — || diag(A)]3)
+ 671 ((diag(A) " - 1)% + (AT, A) — 2| diag(4)]13))-

We consider C; + Cy by focusing different terms, for the || A||%(from C; and C5), we have
(a2,082,0 — o 057 o) | Al|%-
For the term (A, AT) (from Cs 5), we have
aioﬂ%g(l‘l, AT).
For the term || diag(A)||2 (from C; and Cy), we have
(a2,0(B2,2 — Ba,0) — 203 o(B1,2B1,0 — BLo) — 201,057 1) || diag(A)|3
For the term || A - 1|3 (from C5 1), we have
a%,oﬁ%,o”“l 13-
For the term diag(A) " - A - 1 (from Cs 5 and C» 3), we have
207 o(Br,261,0 — B ) diag(A) " - A - 1.
For the term (diag(A) " - 1)2 (from Cy 4), we have
aioﬁil(diag(A)T : 1)2~

Putting it all together, we have
C1 + Ca = (a2,0820 — ai 0B o) IAlIE + a%,oﬂ%,1<A»AT>

+ (a2,0(B2,2 = B2,0) — 201 o (B1,2810 — Bi o) — 207 o511) - || diag(A)|®

+ a?,oﬁioHA : 1H2 + 204%,0(51,2&,0 - ﬁio)(diag(A)T “A1) + ozfjoﬁil(diag(A)T : 1)2

= (a2,0820 — af 087 o) (146l + [lgall*) + aF 087 1 ({40, A ) + [l9al*)

+ (a2,082,2 — a2 0820 — 201%’0»31,251,0 + 20!%,05%,0 - 204%,0%,1) lgall?

+af 087 o(llgall® + [ 4o - 1|* + 294 - 4, - 1)

+ 20‘%,0(51,#31,0 - 5%,0)(9,2 Ao -1+ |lgall®) + 04%,05%1(91 -1)?

= (2,002,0 — a%,oﬂio)”AoH% + aioﬂiﬂAm A)) + (a2,0B22 — O‘%,Oﬂil) Nlgall®

+ aioﬂio(”Ao 1% + 201%,051,251,0(9:4r A1)+ a?,oﬁf,l(gl -1)%
By doing a series of equivalent transformations, we have removed the expectation and the formula
C becomes a form of A and the moments of ¢. These equivalent transforms are mainly based on the
fact that x;, x;, y;, y; for any ¢ # j are independent on each other.

Similarly we can reformulate D,

Z ¢ () i)z aid (y;)(x;)y b

T N Th
= Z E yl)x az¢( ) y b +Z E yZ)w az¢ (yj)ﬁb(x])y bJ]
i i#]
= Z'y a; e:b] e; + Zal 16; er] ei +arapraa) e]bj ej +a; eszez) + 51 164 elb ej
i i#]

= (v* = BLoai — 2010011610811 — oF 0BT1)9h9B

+ 55,00‘%,1 (A,B") + a?)oﬁil(gll)(ggl)

+ o1,001,1 81,0811 [(AL) T g5 + (B1) T g4
=y - a%,oﬂiﬂg}gB + 512,001%,1<A07BOT> + 0&05571(9}1)(9;1)
+ a1 001,181,081,1[(A01) g5 + (Bo1) T gal.
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Combining the above results, we have

Amin(]—_l*) - AO+B;”%‘

A3 HIBI3=1 <ﬁi°ai1|
+ [lo1,081,0401 + 01,081,294 + 01,181,198l

+ [lo1,081,0Bo1 + 1,081,298 + 1,181,194

+ (2,082,0 — a?,oﬂf,o - ﬂ%,oail - 04%,05%,1)(”140”% + 1B, |1%)
+1/2- a3 o871 (140 + Ag I3 + 1|Bo + By |17)

+ [a2,082,2 — 04%,0/3%,1 - O‘ioﬁ%g - O‘ilﬁil] “(lgall® + llgall?)

+2(7* — ai of7 1 — 201.001181181,2)949B

a8, (g1 +ggl>2).

(12)

The final output of the above formula has a clear form: most non-negative terms are extracted. 4, B
are separated into the off-diagonal elements and off-diagonal elements and these two terms can be
dealt with independently. Now we consider the activation functions that satisfy $; 1 = 0, which
further simplifies the equation. Note that Sigmoid and tanh satisfy this condition.

Finally, for 81,1 = 0, we obtain
2

a a2+ 16| 2=1 2y

k

Amin (H") = min I (Z ¢ (z:)p(yi)x " a; + ¢/(yi)¢(xi)yTbi>
i=1
. 2 a2 2 2 2 2
= min o —a — @ A B
HAHQFHIBH%:I( 2,082,0 10810 = Bi o001 1) (14|l + [ Boll7)
+ (a20B22 — o 0Bt — V) lgall® + lgsl*)
2 2 14 4+ BT 2 2

+ Bioaiall Ao + By [l + 77194 + 95|
+ af (/181,094 + Br2401]1* + o ol 1,094 + B1,2Bo1]%)
min{(az,082,0 — a%,oﬁio - 5%,004%,1)» (az,0B2:2 — Oéioﬁiz -}

=p

Y

For sigmoid, we have p = 0.000658; for tanh, we have p = 0.0095.

O
The following lemma will be used when transforming non-orthogonal cases to orthogonal cases.
Lemma D.2. Forany A = [a1,aq, - - - ,ai] € R™*, we have,
& 2
UED Z ¢ (x:)o(yi)ail| | > (20820 — af 0S5 o) |1 All%-
S |
Proof. Recall 1 € R? denote the all ones vector.
i 2
E ! ZT; i) Qg
o ; ¢ (x:)(y:)
[k
= B | 2@ @)ew)laill®| + | E 1D 6 @)o(wi)e ()6 (ys)a; as
’ Li=1 ’ i
= (az2,082,0 — O‘ioﬂ%,o)HAH% + aioﬁ%,o A1)
> (02,0820 — 1 085 0) 1Al -
Thus, we complete the proof. O
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Now let’s show the PD of the population Hessian of Eq. (4) for the ReLU case. where u*(!) is the
first row of U* and W € R(4=1)xk,

Lemma D.3. Consider the activation function to be ReLU. Assume k = d, U*,V* are unitary
matrices and ui ; # 0,Vi € [k]. Then the minimal eigenvalue of the correspondmg population
Hessian of Eq. (4) is lower bounded,

Amin(V2 50 (W, V) 2 ,m%lg{ﬁzi},
1€ ’
where W* = U3, . is the last d — 1 rows of U* and

f%eLU(VV, V) = F |:(¢(WT1'2:d + m1(u*(1))T)T¢(VTy) - A(x,y))ﬂ , (13)

z,y

Proof. By fixing u;1 = uj,Vi € [k], we can rewrite the minimal eigenvalue of the Hessian as
follows. For simplicity, we denote Apin (H) := Amin (V2 fR°LY (W™, V*)). First we observe that

2

k
Amin (H) = min E (D6 (uf "2)(vf Ty)aTas + ¢ (0 Ty)pu; ")y b
o lallP i P=12 | \ =
aH:O,ViE[k]
(14)
Without loss of generality, we assume V* = I. Set x = U*s, then we have
% 2
Awin(H) = min B Z¢’ s)6(i)s U T a; + ¢ (yi)d(ai)y " bs
SE laal P16 |?=1 %Y
g, 1—0 Vie[k]

2
min E <Z ¢ Sz yz 5 a; + ¢ (yl)¢($i)y—rbi> ;

SE el +bi|P=12Y
w*Ma;=0,Viek]

where (1) is the first row of U* and the second equality is because we replace U* " a; by ;. In the
ReLU case, we have

a0 =a11 =a20=P10=p1,1=01,1=020=P02=7=1/2
According to Eq. (12), we have

Amin(H) = min Co(llAul2 + || Bol|2 + |40 + AT |2/2 + || B, + B |%/2
141+ BII:=1,u"® A=0

+ |40 + B |7 + llga + g5

+ 141+ ga + gBl> + |1Bol + ga + gBl* + (941 + g51)%),
where C is a universal constant. Now we show that there exists a positive number ¢ such that
Amin(H) > ¢p. If there is no such number, i.e., Apmin(H) = 0, then we have A, = B, = 0,
ga = —gp. By the assumption that u] ; # 0 and the condition w*MA =0, wehave g4 = g = 0,

which violates ||A[|%2 + ||B||2 = 1. So Amin(H) > 0. An exact value for cg is postponed to
Theorem D.6, which gives the lower bound for the non-orthogonal case.

D.2 Non-orthogonal Case

The restriction of orthogonality on U, V' is too strong. We need to consider general non-orthogonal
cases. With Gaussian assumption, the non-orthogonal case can be transformed to the orthogonal
case according to the following relationship.

Lemma D.4. Let U € R be a full-column rank matrix. Let g : R — [0,00). Define A\(U) =
ak(U)/ (Hfz1 o;(U)). Let D denote the normal distribution. Then

E [gUT2)] > = E_ [g(ox(U)z2)]. (15)
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Remark This lemma transforms U ' 2, where the elements of 2 are mixed, to o, (U)z, where all
the elements are independently fed into g with the sacrifices of a condition number of U. Using
Lemma D.4, we are able to show the PD for non-orthogonal U*, V*.

Proof. Let P € R¥** be the orthonormal basis of U, and let W = [wy,ws, -+ ,wi] = PTU €
kak-
.
E (oU7x)
_ T
= & [ 2)

= /(27r)_k/Qg(WTz)e_“ZHQ/de
- / (2m) k2 g(s)e WS IP/2) qet (W) ds
> / (2m) ~F/2g(s)e= TV DISIP/2| det(WT)|ds

= /(%)—k/?g (01(1WT)t> e IIP/2) qet (W) | ok (What

= L /(277)—16/2g(o_k(W)t)e_”tuz/th

where the third step follows by replacing z by z = W T s, the fourth step follows by the fact that
|[W1Ts|| <oy (WT)|s|, and the fifth step follows replacing s by s = mt. O

Using Lemma D.4, we are able to provide the lower bound for the minimal eigenvalue for sigmoid
and tanh.

Theorem D.5. Assume o, (U*) = 03,(V*) = 1. Assume (31,1 defined in Eq. (10) is 0. Then the
minimal eigenvalue of Hessian defined in Eq. (9) can be lower bounded by,

>\m1n(H ) 2 A(U*))\(V*)maX{K(U*)N%(V*)}

where

Proof. Let P € R4k ( € RI** be the orthonormal basis of U*, V* respectively. Let R €
RF** G e R*** satisfy that U* = P-Rand V* = Q- S. Let P, € R¥(@=F) @ ¢ RIX(d=F) pe
the orthogonal complement of P, ) respectively. Seta; = P-s;+ P, -t;andb; = Q -p; + Q1 - q;-
Then we can decompose the minimal eigenvalue problem into three terms.
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[/ & 2

B (de(ufw)ﬂé(v” )z a; + ¢/ (v )oﬁ(u”x)y%)
k 2
=E <Z¢/(U:T$)¢(Uny)xT(P8¢+P¢ti)+¢'(UZTy)¢(u )y (meuQqu))

k 2
-E <Z¢’<u:%>¢<vfy>ﬂpsz—+¢'<vfy>¢<u o)y Tcm)

Cy

k 2 k 2
<Z ¢'(ufT$)¢(v?Ty)xTPLti> +E (Z ¢’(UZ‘Ty)¢(U?TfC)yTQqu’> :
i=1 ’ i=1

Cs

where we omit the terms containing a single independent Gaussian variable, whose expectation is
zero. Using Lemma D.4, we can lower bound the term C as follows,

2
Gy

k
= (Z¢’<uf%>¢(vz”y>wTU*R—lsi+¢'<vrTy>¢<u )y V'S~ m)

1
)\(U*))\(V* . z, yN’D;C

6/ (e (V) dlon(U)a)y TS i (V)]

Y

(Z(b Uk x% (b(yi)xTR_lSiUk(U*)

And
k 2
2z E E o' (u; Tx)p(v; Tyt
1 k 2
2NN waf |2 00V s

Without loss of generality, we assume o (U*) = o1 (V*) = 1. Then according to Lemma D.1 and
Lemma D.2, we have

1
AUSAV*) max{w(U*), k(V*)}

) min{(ag,oﬂgo - a%,oﬂio - 5%0&%1)» (a2,082,2 — 0‘%,0512,2 - "/2)}~

Ami]ﬂ (H) Z

Considering the definition of p in Eq. (10), we complete the proof. O

For the ReLLU case, we lower bound the minimal eigenvalue of the Hessian for non-orthogonal cases.

Theorem D.6. Consider the activation to be ReLU. Assume U*,V'* are full-column-rank matrices
and uy ; # 0,Vi € [k]. Then the minimal eigenvalue of the Hessian of Eq. (13) is lower bounded,

. . 2
(V2 ReLU(W* V*)) > 1 ( mlnie[k]{|u1,i|} >
’ SNV N+ ur O] max{ U=, [[V*][} )

where u*(Y) is the first row of U*.
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Proof. Let P € R¥*%k (Q € R?*F be the orthonormal basis of U*, V* respectively. Let R €
RF*k S e RF*F satisfy that U* = P- Rand V* = Q- S. Let P, € R4X(4=K) | e RI*X(d=FK) pe
the orthogonal complement of P, ) respectively. Seta; = P-s;+ P, -t;andb; = Q -p; + Q1 - q;-
Similar to the proof of Theorem D.5, Lemma D.2 and Lemma D.3, we have the following.

5 <Z¢ Ty)eTas+ (o] >¢<urTx>yTbi>
Zm[ > on(U ) o)e” R siou(U)
+6/ (e (V) dlon (U )a)y S pion (V)]
- .
+ TR e |22 OO0V i)
1 I ’
T XTIV e Z¢’(0k(U*)wi)¢(0k(V*)yi)qi

1

>—— (| A% + ||B|? 4+ gall? T2, £ 10112
_16>\(U*))\(V*)(” olle + 1 Bolle + gz + 951" + 3TN + [|QIF)),

where A\ = [R71517R71525 e aRilSk]a E = [S71p17 Sipoa e 7Silpk]’ f = [t17t27 T 7tk]a
Q = [qlanv' o 7qk]'

Similar to Eq. (14), we can find the minimal eigenvalue of the Hessian by the following constrained
minimization problem.

2
Amin (H) = % min 2 (Zd’ Tz a; + ¢ (v Ty)p(ul ")y Tb> ,
P ;Hazl(l)\jllb[kl]\ =1 m/

which is lower bounded by the following formula.

1
R 5 TOANUAV)
st [|RA|E + |SBIE +IT7 + Q1% =1
el PRA+e/ P T=0

(14olF + 1BoliE + llgz + 951 + 3UIT1E + 1QIF))

_m
A,B,
(16)

If we assume the minimum of the above formula is ¢;. We show that c; > 0 by contradiction.
Ifc;, =0, thenT =Q = 0,4, = B, = 0, 9i = —9p- Since T = 0, we have e PRA =
e U*A = 0. Assuming (e] U*); # 0, Vi, we have 9z = 95 = 0. This violates the condition that
IRANZ + ISBIZ + ITI% + Q1% = 1.

Now we give a lower bound for c;. First we note,
IRA|: + ISBI% + ITIE + 11QIF < IRIPIAIE + ISIZIBIE + ITII% + Q1%
Therefore,

1
ax{[|U*[|?, [V*]]}

1Al + I1BIE +ITIF + QI = —
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Also,as e] U* A, + (e] U*) ® gr+ el P, T =0, where ® is the element-wise product, we have

1 ~ ~
lgzll* < (== Ul Aol + 7))
A mm{|“1,i|}

2
L O\ 5 e g
g( 214,13 + I713).

min{u [}

Note that [lg 7/ + [lg5 + 951> = 1llg5//>. Now let’s return to the main part of objective function
Eq. (16).

1AolZ + 1 BollE + llgz + 9l1* + 31 T1% + Q1)

> 20185 + ITI3) + 31 Ael? + 1Ballt + gz + 951 + I3 + 11

o L (DY g+ DU+ UBLI Lo+ gl + 1T + 1GIE
> (BN gl + loal?) + AR + 1Bl + 17 + 101

> L (W} (g + llga 1 + 1Al + 1Boli2 + 1712 + Q1)

. ( min{fuf,[} )2
~ 2\ e max{[U] [V}

Therefore,

. . 2

S 1 < min{|uj [} )

c > )
P 200U AV \ (1 + [[wr O ) max{ [ U], [V}

E Positive Definiteness of the Empirical Hessian

For any (U,V), the population Hessian can be decomposed into the following 2k x 2k blocks
(i € [k],j € [K],

82fD(U’ V) _ 1, T 1, T T T T
“Huow, — & 10 0)¢ (] D)axT 6l )é(v] v)]
+3i; E [(6(UT2) 6(VTy) = o(U"T2) "o (V" Ty)) ¢ (u] 2)6 (v y)wa ]
32fD(U, V) _ 1), T Py T T T T
oman, = & [l ] ey 6wl y)o(u] )]
+85 B [(0(UT2) ¢(VTy) = 6(UT2) T o(V"Ty)) &' (u] 2)¢/ (v y)ay ]
amn
where §;; = 1if i = j, otherwise d;; = 0. Similarly we can write the formula for %g{;jv) and
& fp(UV) :
OviOu; °

Replacing E, , by ﬁ Z(w,y)eﬂ in the above formula, we can obtain the formula for the corre-
sponding empirical Hessian, V2 fq (U, V).

We now bound the difference between V2 fo (U, V) and V2 fp(U*, V*).

Theorem E.1 (Restatement of Theorem C.2). Forany e > 0, if

ny > e 2tdlog?d, ny > e 2tlogd, |Q| > e 2tdlog®d,
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then with probability 1 — d~¢, for sigmoid/tanh,
V2 fo(U,V) = V2o (U, VI S e+ |U = U + |V -V,
for RelLU,

: P L A A A V2
IV2FalU,V) -2 o (U, V)] £ ((%(V)> (5 +e> (e

Proof. Define H(U, V) € R(2k)x(2kd) a5 3 symmetric matrix, whose blocks are represented as
Hupry = E [0/l 0)6f (u] 0)2T 60 )00 )]

7 (18)

Huyoy = E [¢/(u]2)¢' (0] y)ay T é(v] y)é(u]z)]

dxd dxd ’fp(U,V) 9*fp(U,V) :
where Hy, o, € R Hy, ., €R correspond to Duidn; 0 D respectively.

We decompose the difference into
IV?fo(U.V) = V2 fp(U*, V)| < [V?fa(U,V) = HU,V)|| + [|[H(U,V) = V2 fp (U, V*)]|.
Combining Lemma E.2, E.14, we complete the proof. O
Lemma E.2. Foranye > 0, if

ny > e 2tdlog?d, ny > e 2tlogd, |Q| > e 2tdlog?d,
then with probability 1 — d~, for sigmoid/tanh,

IV2fo(U,V) = HU, V)| S e+ |U-U*[| + |V - V7|,
for ReLU,

IV fa(U, V) = HU V)| S ellU™ V7.

Proof. We can bound |V2fqo(U,V) — H(U,V)|| if we bound each block.
We can show that if

ny > € tdlog®d, mno > e 2tlogd, |Q|> e %tdlog®d,

then with probability 1 — d ¢,

E-Lt0 S| [0 00 (u] )a (0] )olv] y)]

oy |Q
v 19
NP v=r Lemma E.3

N
)

ﬁ > (60 ) o(VTy) = ¢(UT2) "¢ (V:Ty)) ¢ (u] 2)b (0] y)aa "]
(z,y)€eN

U-U*||+ ||V -V Lemma E.6

A

E-o 3 | [0 )6 (0] may T olw] w)o(u] )]

z, Q
L s
S ellUr|PlvEP Lemma E.7

ﬁ S [(eWTa)T¢(VTy) = (U Ta)To(V*Ty)) ¢/ (u] )¢ (v] y)ay ]
(z,y)EN

SIU=-U+ [V —V*, Lemma E.9
where p = 1 if ¢ is ReLU, p = 0 if ¢ is sigmoid/tanh.

Note that for ReLU activation, for any given U, V, the second term is O because ¢’'(z) = 0 almost
everywhere. O
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Lemma E.3. If
ny > € 2tdlog®d, mno > e 2tlogd, |Q|> e %tdlog®d,
then with probability at least 1 — d ¢,
1
E ] D | [¢ @ o) (] 2)zaT o] y)d(u] y)]|| < ellvsl|?lo;1P
(z,y)eN
where p = 1 if ¢ is ReLU, p = 0 if ¢ is sigmoid/tanh.
Proof. Let B(z,y) = qS’(ujx)qﬁ’(uJTx):chgb(viTy)(b(v;y). By applying Lemma E.11 and Prop-
erty (I) — (III), (VI) in Lemma E.4 and Lemma E.5, we have for any € > 0 if
ny > e 2tdlog®d, ny > e *tlogd,

then with probability at least 1 — d—2,

E[B(r,y)] - =

2.y 5]

" Bla,y)| < ellvillPllv;lIP- (19)

(z,y)€S

By applying Lemma E.12 and Property (I), (III) — (V) in Lemma E.4 and Lemma E.5, we have for
any € > 0 if

ny > e Htdlog®d, ny > e *tlogd,

then
1
- @ () w) ¢ (w) )P |l Pea] | < d,
1l6[n1]

and
1
=37 G o] )| S il -
2[6[%2]

Therefore,

1 1
max | | g > Bla,y)B(z,y)'|, &l > Bla,y) " Bla,y)| | < edllvil*[lo;]|*7
(z,y)€S (z,y)€S

(20
We can apply Lemma E.13 and use Eq. (20) and Property (I) in Lemma E.4 and Lemma E.5 to
obtain the following result. If
Q| > e *tdlog® d,

then with probability at least 1 — d—2¢,

1 1
5] Z B(z,y) — ] Z B(z,y)|| < ellvillP[lvs]”- 2D
(z,y)ES (z,y)€Q
Combining Eq. (19) and (21), we finish the proof. O
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Lemma E4. Define T(z) = ¢/(u] 2)¢'(u z)zz". If 2 ~ Z, Z = N(0,14) and ¢ is ReLU or
sigmoid/tanh, the following holds for T'(z) and any t > 1,

O PrlT(:)] < stdlogn] > 1 —n~'d™

s (2 [ Ten]) "

am  wax (| E 7)), | ETETE)|) < b
) s (B, [0TTEr0 ) <

V) ||ETETE TTETE) | S ¢

v | E e st

Proof. Note that 0 < ¢'(z) < 1, therefore (I) can be proved by Proposition 1 of [HKZ12]. (IT) —
(VI) can be proved by Holder’s inequality. O
Lemma E.5. Define T'(z) = ¢(v;'—z)¢(vj—rz). Ifz ~ 2, 2 = N(0,14) and ¢ is ReLU or sig-
moid/tanh, the following holds for T'(z) and any t > 1,

M Pr TG < 5t lo; 17 log n] > 1 —n~"d ™"
1/2

I E [(a"T()0)%])"" < Joil® oI

a  mex (B [@TE)]) S ol

am  wax (|| E @) ||| ETETTE) S Tl

2~Z

)

V) e (E, (@ TETET) ) S e

E_[T(:)T(=) T()T() ]| S loil o 17

v | E @ S Tl .
where p = 1 if ¢ is ReLU, p = 0 if ¢ is sigmoid/tanh.
Proof. Note that |¢(z)| < |z|P, therefore (I) can be proved by Proposition 1 of [HKZ12]. (IT) — (VI)
can be proved by Holder’s inequality O
Lemma E.6. If
ny > € tdlog®d, mno > e 2tlogd, |Q|> e %tdlog®d,

then with probability at least 1 — d ¢,

ﬁ S W) o(VTy) — (U T2) ¢ (V) ¢ (u] 2)(v] y)aa]
(z,y)€Q
SUU =T+ |V = V).

Proof. We consider the following formula first,

ﬁ S (6] ) — 6T 2)d(0]Ty)) ¢ (uT )b (0] y)aa]

(z,y)€Q

IA

|ﬁl| S (g —up) Taza T o(v] Ty y)]

(z,y)€EQ
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Similar to Lemma E.3, we are able to show

1 * * * *
9] Yo [y —u)Ta| 22 o] Ty)(v] y)] — E [(uj —u}) "] 2z T o(v] Ty)d (v y)]
(z,9)€Q ’
S =T
Note that by Holder’s inequality, we have,
B (It =)ol o5 T)otoT )| < 10 - UL
So we complete the proof. O
Lemma E.7. If
ny > € 2tdlog®d, no > e 2tlogd, |Q|> e 2tdlog®d,

then with probability at least 1 — d ¢,

2.

(z,y)EN

1

€]

¢/ (u]

u; T
T,y

Proof. Let B(z,y)

¢'(v] Yo y)y"
have for any € > 0 if

M(x)N(y), where

ny > e 2tdlog®d,

then with probability at least 1 — d 2,

IEBxy

B

)¢ (v] y)ry T (v y)p(u]

. By applying Lemma E.11 and Property (I

2)]|[ < elloil”llug |7

M(x) (u] 2)p(u] 2)a and N(y)

¢'(u;

) — (III), (VI) in Lemma E.8 , we
ng > e tdlog® d,
B, y)|| < €llug[I[lvill?- (22)

(z,y)€S

By applying Lemma E.12 and Property (I), (IV) —

(VI) in Lemma E.8, we have for any € > 0 if

ny > € 2tdlog®d,ny > e tdlog® d,

then

1

> M(z)M(z)"

L l€[nq]

< g1,

LS N TN S el

l€[ns]

By applying Lemma E.12 and Property (I), (IV), (VII), (VIII) in Lemma E.8, we have for any

ny 2> e 2tdlog® d,ny > e 2tdlog? d,

€ > 0if
then
Z M (21) "M (1) || < dllugl|*,
m l€[nq]
Therefore,
1 T 1
max Tl Z B(.Z',y)B(.’I},y) s Tar
1S S|
(z,y)€S

1
- > NN || S dllvil*
l€[n2]

> Blx,y)" B(x,y)

(z,y)€S

< edfJoil|*P ;|

(23)
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We can apply Lemma E.13 and Eq. (23) and Property (I) in Lemma E.8 to obtain the following
result. If

Q| > e %tdlog? d,

then with probability at least 1 — d—2¢,

1 1
5] > Blay) - o] > Bla,y)|| < elloillPlluy]P- (24)
(z,y)€eS (z,y)€N
Combining Eq. (22) and (24), we finish the proof. O]

Lemma E.8. Define T(z) = (b'(ujz)qﬁ(uyz)z Ifz ~ 2, Z = N(0,1) and ¢ is ReLU or

sigmoid/tanh, the following holds for T'(z) and any t > 1,

M P [IT)) < 5t us|Plogn| = 1—n~td;

m | E TGS
(III) \Ia\lrilﬁ)Jb)ﬁ:1 (Z@NEZ [(aTT(z)b)leﬂ < w75

b

(IV) max {

E_[T(:)7(=)"]

zZr~

E_[T(:) ()|} < dllus]*

zZr~

V) e (B, [0 TGTE0)) S

VD | EIT:TE TTETE | S il
(VI max (ZLEZ [(GTT(z)TT(z)ayDl/z < du |27

i | E 1) T T() ")

| S d2lfusl1 .
Proof. Note that 0 < ¢/(z) < 1,|¢(2)| < |z|P, therefore (I) can be proved by Proposition 1 of
[HKZ12]. (IT) — (VIII) can be proved by Holder’s inequality. O
Lemma E.9. If

ny 2> tdlog*d, mny > tlogd, |Q| > tdlog®d,

then with probability at least 1 — d ¢,

|flT| > [(@UT)T6(VTy) = o(U T2)To(V"Ty) ¢/ (u] )/ (v] y)wy ']
(z:y)eQ

SNU =T+ [V =V7.

Proof. We consider the following formula first,

ﬁ > (6] ) — p(u; T 2))p(v] ")) & (u] 2)¢' (0] y)ay ]

(z,y) €N

Set M (z) = (qﬁ(ujx) - qﬁ(u;T:r))gb’(uiTx)x and N(y) = gb(v;-‘Ty)gf)’(viTy)yT and follow the proof
for Lemma E.7. Also note that ¢ is Lipschitz, i.e., gb(u;'— ) — ¢(u3"—'—x)\ < \u;'—x - u}’fTac\. We can

show the following. If

ny > tdlog?d, mny > tlogd, |Q| > tdlog?d,
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then with probability at least 1 — d ¢,

1 *
H [ > -k (M (z)N)]|| < lluj —ujll-
(xy)eQ

Note that by Holder’s inequality, we have,

I E IM)NIS llug =l

So we complete the proof.

We provide a variation of Lemma B.7 in [ZSJ*17]. Note that the Lemma B.7 [ZSJ*17] requires
four properties, we simplify it into three properties.

Lemma E.10 (Matrix Bernstein for unbounded case (A modified version of bounded case, Theorem
6.1 in [Tro12], A variation of Lemma B.7 in [ZSJ*17])). Let B denote a distribution over R xd2,
Letd = dy + dy. Let By, Ba, - - - By, be i.i.d. random matrices sampled from B. Let B = Ep..5[B]

and B = 12?21 B;. For parameters m > 0,v € (0,1),v > 0,L > 0, if the distribution B

n

satisfies the following four properties,
(I B~rBH| | <m] Y

)

(I)  max (HBIEB[BBT]

B~B

E [BTB]H) <
(I11) ”a”rilﬁxgﬁ:l (B@B [(aTBb)2D1/2 <L

Then we have for any € > 0 and t > 1, if
n > (18tlogd) - ((e + | B|)*> +me +v)/e* and ~ < (¢/(2L))?

with probability at least 1 — d~2* — ny,

Proof. Define the event

& = {l|Bil| <m}, Vi€ [n].

Define M; = 1 g, |<mBi. Let M = Egg[1 pj<mnB] and M= L5~ | M. By triangle inequal-
ity, we have

|B =Bl <||B = M|+ M — M| +||M-BJ. (25)

In the next a few paragraphs, we will upper bound the above three terms.

The first term in Eq. (25). For each i, let £, denote the complementary set of &;, i.e. &, = [n]\&;.
Thus Pr[¢,;] < ~. By a union bound over i € [n], with probability 1 — n-, || B;|| < m forall i € [n].

Thus M = B.
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The second term in Eq. (25). For a matrix B sampled from B, we use £ to denote the event that
¢ ={||B|| < m}. Then, we can upper bound || M — B|| in the following way,

|M — Bl
:‘h@BwaSm-B]—BEQBH
= | B, [B-1]|
B~B
= max E [aTBblg}
lall=|lb]=1 B~B
mas B (0T BO B [1] by Holder's inequali
= Jall=lb]=1 B~B BB L € y quality
1/2
<LE [1] by Property (IV)
< Ly, by Prfg] <
1
=36 by 7 < (¢/(2L))%,
which is
I’ - B < <.
2

Therefore, || M|| < ||B|| + £.
The third term in Eq. (25). We can bound HJ/W\ — M| by Matrix Bernstein’s inequality [Tro12].
We define Z; = M; — M. Thus we have BIEB[Zi] =0,|Z;| <2m,and

_h

E [Z1Z] ‘ < v+ |B||?>+ € + €| B||. Using matrix Bernstein’s inequality,

E (2,Z]]
B;~B [iad

E [MiMZ.T] —M.MTH <v+ ||MH2 <v+ ||§||2 + &2 + €| Bl

Similarly, we have

for any € > 0,

>

=1

€n /2
Pr — >e| <dexp|— — — .
Br bt | v+ IBIP + €+ e[ Bl + 2me/3

By choosing

BJ? + €2 B|| + 2me/3
n2(3tlogd)-y+” I + € + €| B|| + 2me/

€2/2 ’
for t > 1, we have with probability at least 1 — d—2,
1 « —
S M M| <5
n = 2

Putting it all together, we have for € > 0, if
n > (18tlogd) - ((e + ||§||)2 + me + 1/)/(62) and < (e/(QL))2
with probability at least 1 — d =2 — nvy,
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Lemma E.11 (Tail Bound for fully-observed rating matrix). Let {x;};c[,,] be independent samples
from distribution X and {y;}jcin,) be independent samples from distribution ). Denote S :=
{(z4,9j) Yicni),jens) as the collection of all the (x;,y;) pairs. Let B(x,y) be a random matrix
of x,y, which can be represented as the product of two matrices M(x), N(y), ie, B(z,y) =
M(x)N(y). Let M = E, M(x) and N = E, N(y). Let d, be the sum of the two dimensions of
M (x) and d,, be the sum of the two dimensions of N (y). Suppose both M (x) and N (y) satisfy the
Sollowing properties (z is a representative for x,y, and T(z) is a representative for M (x), N (y)),

O PTG <ma]>1 -7

N . il <ZLEZ {(O‘TT(Z)b)QDU2 < L;
@) max (|| Elre)7e) 7], | Bl TE) <.

Then for any €1 > 0,e2 > 0 if
ny > (18tlogdy) - (Ve + (||M|| + €1)* + myer)/er  and v, < (€1/(2L))>
ng > (18tlogdy) - (vy + (e2 + [[N|)? + myea) /5 and 7, < (e2/(2Ly))?

with probability at least 1 — d;*" — d /2" — ny7y, — nay,,

E B(z,y) — —

S

> Bx,y)|| < el M|+ e||N| + ereo. (26)
(z,y)€S

Proof. First we note that,

1 1
g X B = (X ) )| X N .
(z,y)€Ss i€[na] J€[n2]

and

B [5(e)] = (B0 (BN G

T,y z Y
Therefore, if we can bound || E,.[M (z)] — n% >_ic[n,) M (2:)] and the corresponding term for y, we
are able to prove this lemma.
By the conditions of M (z), the three conditions in Lemma E.10 are satisfied, which completes the
proof.
O

Lemma E.12 (Upper bound for the second-order moment). Let {zi}ie[n} be independent samples
Sfrom distribution Z. Let T'(z) be a matrix of z. Let d be the sum of the two dimensions of T'(z) and
T:= IEZ [T'(2)T(2)"). Suppose T(z) satisfies the following properties.

) PTG <m] > 17

e (B [ TOrE W) < L
|| ErEIETTEIE | < v

Then for any t > 1, if
n> (18tlogd) - (v + (IT| +€)* +m2)/e*  and 7. < (¢/(2L.))*,
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we have with probability at least 1 — d=2t — n-,,

1
S TETE)T|| < || B e +e
1€[n]
Proof. The proof directly follows by applying Lemma E.10. O

Lemma E.13 (Tail Bound for partially-observed rating matrix). Given {z;}ic(n,] and {Y;}jens)>
let’s denote S := {(xi,Y;)}ie[n,],jelns) @S the collection of all the (x;,y;) pairs. Let Q also be

a collection of (x;,y;) pairs, where each pair is sampled from S independently and uniformly.
Let B(z,y) be a matrix of x,y. Let dg be the sum of the two dimensions of B(x,y). Define

Bs = l—é‘ Z(m,y)ES B(z,y). Assume the following,
@O B(z,y)ll < mp,V(z,y) €5,

1 1
(I1) max 5| Z B(z,y)B ) |— Z z,y)| | <vs.

(z,y)es z,y)€
Then we have for any € > 0 and t > 1, if
Q] > (18tlogdp) - (vs + || Bs||* + mpe) /e,

with probability at least 1 — det,

1

Bo_ —
0

Z B(x,y)|| <e.

(z,y)eN

Proof. Since each entry in 2 is sampled from S uniformly and independently, we have

1 1
Ig @ Z B(,’L‘7y) :E Z B(*T7y)

(z,y)€Q (z,y)€S
Applying the matrix Bernstein inequality Theorem 6.1 in [Tro12], we prove this lemma. O
Lemma E.14. For sigmoid/tanh activation function,
IHU,V) = V2 fp (U, V)| < (IV =V + U= U,
where H(U, V) is defined as in Eq. (18).
For ReLU activation function,

ey 1/2 ey 1/2
|H<U,v>—v2fp<U*,v*>||s((”ZWV*)”) o+ (250 v*||)<U*||+||v*||>.

Proof. We can bound each block, i.e.,
E [¢'(u] )¢/ (u] 2)zz" d(v] y)d(v] y) — & (u T 2)¢/ (u} @)z (v} Ty)o(v] Ty)] . @7

z,y

E [¢'(u] )¢ (v] y)ay " o0 y)p(u] x) — ¢ (uf " 2)¢ (v y)ay (v Ty)d(uiTx)] . (28)

z,y

For smooth activations, the bound for Eq. (27) follows by combining Lemma E.15 and Lemma E.16
and the bound for Eq. (28) follows Lemma E.18 and Lemma E.20. For ReLU activation, the bound
for Eq. (27) follows by combining Lemma E.15, Lemma E.17 and the bound for Eq. (28) follows
Lemma E.18 and Lemma E. 19. O
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Lemma E.15.

LE, [(6(y) oo )o(v; w)] H SIVEPIV = v,

Proof. The proof follows the property of the activation function (¢(z) < |z|P) and Holder’s inequal-
ity. O

Lemma E.16. When the activation function is smooth, we have

B (6] 0)— ¢/ )0/ (0] 2)aa] \ <o -l
Proof. The proof directly follows Eq. (12) in Lemma D.10 in [ZSJT17]. O

Lemma E.17. When the activation function is piece-wise linear with e turning points, we have

E [(¢'(u] @) = ¢'(ui"2)¢' (u] 2)z2 "]

:ENDd

\ < (U = U* || /o).

Proof.

E [(¢/(u]2) — ¢/ (u}T2))o (u] m)xﬂ]H < max( E (6] z) & (uT2)|¢/ (o] 2) (= Ta

Y |la]|=1 \z~Dgq

Let P be the orthogonal basis of span(u;, u},u;). Without loss of generality, we assume wu;, u}, u;
are independent, so P = span(u;,u},u;) is d-by-3. Let [¢; ¢f q] = P"[u; uf w] € R3*3. Let
a = Pb+ P, c,where P, € RA*(@=3) ig the complementary matrix of P.

E 1wl @) — ¢/ T[9! (u] )| (2T )]
= E llo'(wf2) = ¢'(w]"2)l|¢/ (w @) (" (Pb+ PLe))’]
5 "y [0/ (u] ) — ¢ (u} T 2)||¢/ (u) )| ((z" Pb)* + (z" Pic)?)]
= E [1¢/(w]2) — ¢/(uiT2) |0/ (u] @) (T Pb)?]
+ B (10 ) = & (uf T 2)]|¢/(u] @) (2T Prc)’]
= E [1¢'(a/2) - ¢'a 2l (0 2)I (= 0)7]
+ o By [19a2) = (a2 (a2l ()] 29)

where the first step follows by a = Pb + P, c, the last step follows by (a + b)? < 2a? + 2b°.

We have e exceptional points which have ¢ (z) # 0. Let these e points be p1, pa, - - - , p.. Note that
if ¢,/ z and ¢} T 2 are not separated by any of these exceptional points, i.e., there exists no j € [e]
such that ¢ 2 < p; < qfTzorq; "z < p; < g z, then we have ¢'(g; 2) = ¢'(q; " 2) since ¢”'(s)
are zeros except for {p;},;=12... . So we consider the probability that ¢ z, ¢ " 2 are separated by
any exception point. We use ; to denote the event that q 2, q¢ "2 are separated by an exceptional
point p;. By union bound, 1 — Z Pr[¢;] is the probability that ¢, z, ¢} " 2 are not separated by
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any exceptional point. The first term of Equation (29) can be bounded as,
E. [1¢'(a)' 2) — ¢'(a; " 2)I16(a)" 2)|(="6)?]
E [1us_,610' (] 2) +¢'(a; T 2)l16 (0 2)|(=T0)%]

z~Ds3
1/2 12
= (ZEEDS [IUHJ-D (ﬂm (&0 )+ ¢/ (477 2)%6 (4] z>2<sz>ﬂ>
1/2
. 1/2
= Fr L&) <ZNED3 [(@(a) 2) + &' (a7 " 2))%¢' (o] z)Q(sz)‘l])
j=1
. 1/2
S| Brlel| el
j=1

where the first step follows by if ¢z, ¢} "z are not separated by any exceptional point then
#'(g;' 2) = ¢'(g; " 2) and the last step follows by Holder’s inequality.

It remains to upper bound Pr,.p, [£;]. First note that if ¢;' z, ¢; " z are separated by an exceptional
point, p;, then |¢ T2 — p;| < |¢| 2 — ¢ " 2| < || — ¢} ||||#||- Therefore,

z~D3 z~D3

g = — pj .
Py (5] < Pr [”leani—qin .

Note that (= P+ 1)/2 follows Beta(1,1) distribution which is uniform distribution on [0, 1].

HZHHq |

py |la" 2= pil ||qi—*q;*||] < [ 2" A IIqi—*qfll} < lai—arll IIU—Ii*II
=~Da [ |2llll4f | g7 =~Ds [l2lllgfl — llg7 ] g7 a1.(U")
*T

where the first step is because we can view ﬁ and H’;—"” as two independent random variables: the
former is about the direction of z and the later is related to the magnitude of z. Thus, we have

E [1¢'(a 2) = /(a7 )1/ (a) 2)I(=70)°] S (ellU U*|l/on@))2[pl2. (30)

Similarly we have

E [16'(a" 2) = &' (@ T )10" (@ 2)I(y" )] < (ellU = U*[|/on(@*)'2[ell*. GD

z2~D3,y~Dy—3

Finally combining Eq. (30) and Eq. (31) completes the proof.

Lemma E.18.

E [(¢(ujx) = p(u; @) (u 2)a] | < U - U

z~Dy
Proof. First, we can use the Lipschitz continuity of the activation function,

E [o(u] ) — ¢(u} " 2)¢' (u] 2)x]

< max || B [Jo(u]2) — 603 2| (u] @) “”H

z~Dy [lal|=1 $~Dd
< max L [|u x — u*Tm|¢ (u] z)|z a|]
llal=1 IND
where Ly < 1is the Lipschitz constant of ¢. Then the proof follows Holder’s inequality. O

Lemma E.19. When the activation function is ReLU,

E [o(uT2)(@ (uf2) = ¢/ (uT2))a] || S (IU = U*||/or(U))2 u]l-

INDd
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Proof.

E [o(u; 2)(¢' (u] 2) — ¢/ (u] T 2))a]

INDd

< max E[Jo(uTo) (¢ (u] w) — ¢/ (u}Tw))aTal]

lall=1 oh,

Similar to Lemma E.17, we can show that

max [I¢( 2)(¢ (u] @) = ¢/ (ui T 2))a " al] < (IU = U*[|/or(U)) ]

llall=1 2z~
O
Lemma E.20. When the activation function is sigmoid/tanh,
E [0 Ta) (¢ (0] 2) — ¢/ (wi ")l | S U U7
Proof.
JE [¢(u§Tw)(¢’(uI ) — ¢/ (u} T x))z]
< max [|qb ¢ (u) ©) — ¢ (u*ng))g;TaH
llall= 1»LND(1
< max (uj z—uTx)za
~ al= le'Dd “ ) ”
S =U.
O

E.1 Local Linear Convergence

Given Theorem 3.2, we are now able to show local linear convergence of gradient descent for sig-
moid and tanh activation function.

Theorem E.21 (Restatement of Theorem 3.3). Let [U°, V] be the parameters in the c-th iteration.
Assuming ||[U¢ —U*||+||V¢—=V*|| < 1/(A\2k), then given a fresh sample set, §, that is independent
of [U¢, V<] and satisfies the conditions in Theorem 3.2, the next iterate using one step of gradient
descent, i.e., [UTY Vet = [U¢, V] — nV fq(U€, V©), satisfies

[T =T + IV = VIR < (1= My/M) (U = U5 + 1V = VE[7)

with probability 1 — d~*, where n = ©(1/M,,) is the step size and M; = 1/(\?k) is the lower
bound on the eigenvalues of the Hessian and M,, < 1 is the upper bound on the eigenvalues of the
Hessian.

Proof. In order to show the linear convergence of gradient descent, we first show that the Hessian
along the line between [U€, V] and [U*, V*| are positive definite w.h.p..

The idea is essentially building a d—'/2\~2k~-net for the line between the current iterate and
the optimal. In particular, we set d'/? points {[U?, V@ }az1,2,... ar/2 that are equally distributed

between [U°¢, V] and [U*, V*]. Therefore, |[U*t! — U?|| + |Vt — V| <d 12\ 21
Using Lemma E.22, we can show that for any [U, V], if there exists a value of a such that |U —
US|+ |V =V <dY2X"2571, then

IV?fo(U, V) = V2 fo(U* V)| S A2
Therefore, for every point [U, V] in the line between [U¢, V| and [U*, V*], we can find a fixed point
in {[U%, V} o1 9. qis2, such that [|U —U?||+ ||V =V < d~*/?A=2k~1. Now applying union
bound for all a, we have that w.p. 1 — d %, for every point [U, V] in the line between [U¢, V] and
U, v+,

MI = V2 fo(U,V) = My,

where M; = Q(A~2x71) and M,, = O(1). Note that the upper bound of the Hessian is due to the
fact that ¢ and ¢’ are bounded.
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Given the positive definiteness of the Hessian along the line between the current iterate and the
optimal, we are ready to show the linear convergence. First we set the stepsize for the gradient
descent update as n = 1/M,, and use notation W := [U, V] to simplify the writing.

wert — W%
=[[We =V fo(We) = W*|%
= [IWe =W |[E = 20(V fa (W), (W = W) + n?|V fa (W) %

Note that
1
Vfa(W€) = (/ VQfQ(W* +EWe - W"))df) vec(We¢ —W™).
0
Define H € R(Zkd)x(2kd)

1
H= (/ V2 fo(W* + E(W° — W*))d§> .
0
By the result provided above, we have
MI < H =< M,I. (32)
Now we upper bound the norm of the gradient,

IV fa(W) |5 = (Hvec(W® — W*), Hvec(W¢ — W*)) < M, (vec(W¢ — W*), Hvec(W*¢ — W*)).

Therefore,

et — w3
< [WE = W* 3 = (=n* M, + 2n){vec(W* — W*), Hvee(W* — ™))
< [WE = W2 = (=M, + 20) MW — W* 3

c * Ml c *
= W e

<

_Tu Wc_W*Z
<=3 I3

Lemma E.22. Let the activation function be tan/sigmoid. For given U*, V' and r > 0, if
ny > € 2tdlog®d, no > e 2tlogd, |Q|> e 2tdlog®d,
then with probability 1 — d~¢,
sup V2 fa(U,V) = V2 fo(U*, V)| S d'/? - r

IU-U+V-Ve|<r

Proof. We consider each block of the Hessian as defined in Eq (17). In particular, we show that if

ny > e 2tdlog?d, ny > e 2tlogd, |Q| > e 2tdlog®d,
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then with probability 1 — d ¢,
1
i > @ wf2)d (uf 2)p(v] y)d(v]y) — &' (wiTa)d (uf T x)d(vf T y)d(vf Ty))aa ]
(z,y)€N
S Olus = | + |y — wfl] + [l — o || + o; — v [)d"/?;
by Lemma E.23
H o, To) o(Vy) = o(U ) To(VTy)) 6 (uf w) (v y)wa

(z y)GSZ

—(o(U T 2) T o(VeTy) — o (U T a) T o (V') ¢ (uf T 2) (v Ty)a "]

SIU = U+ |V = Ve)d'/?

by Lemma E.24
H a2 T80 el olu]o) - ¢t Ta)o' 65T n)olt (s o)) ]
(z,y)€N
S (s — udl + luj — ull + Jvi — o] + |lv; — v2)d"/>
by Lemma E.25
H ] Ta)To(VTy) —o(U*T2) T o(V*Ty)) ¢ (u] )¢ (v y)ay
(z, y)eﬂ

— (p(U ) TSV Ty) — p(UT2) T p(V*Ty)) ¢ (ug T 2)¢! (v T y)wy ']

SU U+ IV = ve|at/?
by Lemma E.26

Lemma E.23. If
ny > € 2tdlog®d, no > e 2tlogd, |Q|> e 2tdlog®d,
then with probability at least 1 — d~,

ﬁ > 1@ (uf 2)d (] )0 y)o(v] y) — ¢ (ug @) (uf T2)(vf Ty)p(v] Ty))waT]

(z,y)€N

S (i = uf ||+ lluy = w§ |+ lloi = vf | + lo; —vf[)d'/?

Proof. Note that
¢ (uf 2)¢' (u] 2)p (v )b (v] y) — ¢ (uf T2)¢' (uf T 2) b (v Ty)p (v ")
=¢'(u 2)¢ (u] 2)p(v] Y)d(v] y) — ¢ (uf T2)¢' (u] 2)B(v] y)p(v] )
+ ' (ufT2) ¢ (u] 2)o (0] y)d(v] y) — ¢ (uf ) (u§ T 2)d(v; ¥)p(v] y)
+ ¢/ (uf Tx)g! (u;”:c>¢>(ﬂy>¢(v}y> ¢ (u T2) ¢! (uf T 2)p(vft T y) (0] y)
+ ¢/ (uf T2)¢ (uf ") p(vf Ty () y) — & (uf T w) ¢ (uf T )p(vf Ty) (v Ty)  (33)

Let’s consider the first term in the above formula. The other terms are similar.

ﬁ S (@l 2) — (W) (W] 2] 9] y)asT]
(z,y)€Q
1
<l X = wdllefeT)
(z,y)€Q
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which is because both ¢'(-) and ¢(-) are bounded and Lipschitz continuous. Applying the un-
bounded matrix Bernstein Inequality Lemma E.10, we can bound

1 u .
a2 U= utlilaliaaT]] S hui - uffd/?
(z,y)eR

Since both ¢’(-) and ¢(-) are bounded and Lipschitz continuous, we can easily extend the above
inequality to other cases and finish the proof. O

Lemma E.24. If
ny > e 2tdlog?d, mny > e 2tlogd, |Q| > e 2tdlog®d,
then with probability at least 1 — d ¢,

ﬁ S W) o(VTy) — U T2) ¢ (V) ¢ (u] 2)(v] y)aa”
(z,y)€N

—(o(UT2)To(VeTy) = o(U* ) TV Ty)) ¢ (ui ") (vf Ty)aa T |
ST =0+ |V = ve|)a/?
Proof. Since for sigmoid/tanh, ¢, ¢, ¢ are all Lipschitz continuous and bounded, the proof of this
lemma resembles the proof for Lemma E.23. O
Lemma E.25. [f
ny > € tdlog*d, mno > e 2tlogd, |Q|> e 2tdlog®d,
then with probability at least 1 — d—*,

ﬁ S (¢l )6 (0] 9o (o] o] ) — ¢ (e 2)o! (02T S8 )Pt 7)) y ]
(z,y)€N

S Ulus = wf | + lluy = wfll + llos = of | + [lo; = vf)d"/?

Proof. Do the similar splits as Eq. (33) and let’s consider the following case,

g 2 (@0 - o) o ] ot vt 2]
(z,y)€0Q
Setting M () = (¢/(u; ©) — ¢/ (u¢ ")) ¢(u; x)z, N(y) = ¢'(v] y)¢(v; y)y " and using the fact
that ||¢ (v ©) — ¢’ (u¢ " 2)| < |lu; — u¢||||z||, we can follow the proof of Lemma E.7 to show if
ny > € 2tdlog®d, no > e 2tlogd, |Q|> e 2tdlog®d,

then with probability at least 1 — d~¢,

ﬁ o (¢ wlw) = ¢ (ufT2) & (v] Y)o(v y)o(u] )y ]| < flus — uf|d"/?

(z,y)eQ

Lemma E.26. If
ny > € 2tdlog®d, no > e 2tlogd, |Q|> e 2tdlog®d,
then with probability at least 1 — d ¢,

LS (60T Ty) - 6T 2) TV Ty)) & (u] ) (0] )y

|Q| (z,y)€Q
— (U Tz)To(VTy) — p (U 2) T p(V*Ty)) ¢ (ud ") ¢ (v Ty)ay ] |
S U=+ |V —Ve))d'/?
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Proof. Since for sigmoid/tanh, ¢, ¢', ¢’ are all Lipschitz continuous and bounded, the proof of this
lemma resembles the proof for Lemma E.25. O
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