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Abstract

Deep neural networks achieve stellar generalisation even when they have enough
parameters to easily fit all their training data. We study this phenomenon by
analysing the dynamics and the performance of over-parameterised two-layer
neural networks in the teacher-student setup, where one network, the student, is
trained on data generated by another network, called the teacher. We show how the
dynamics of stochastic gradient descent (SGD) is captured by a set of differential
equations and prove that this description is asymptotically exact in the limit of
large inputs. Using this framework, we calculate the final generalisation error of
student networks that have more parameters than their teachers. We find that the
final generalisation error of the student increases with network size when training
only the first layer, but stays constant or even decreases with size when training
both layers. We show that these different behaviours have their root in the different
solutions SGD finds for different activation functions. Our results indicate that
achieving good generalisation in neural networks goes beyond the properties of
SGD alone and depends on the interplay of at least the algorithm, the model
architecture, and the data set.

Deep neural networks behind state-of-the-art results in image classification and other domains
have one thing in common: their size. In many applications, the free parameters of these models
outnumber the samples in their training set by up to two orders of magnitude1,2. Statistical learning
theory suggests that such heavily over-parameterised networks generalise poorly without further
regularisation3–9, yet empirical studies consistently find that increasing the size of networks to
the point where they can easily fit their training data and beyond does not impede their ability to
generalise well, even without any explicit regularisation10–12. Resolving this paradox is arguably one
of the big challenges in the theory of deep learning.

One tentative explanation for the success of large networks has focused on the properties of stochastic
gradient descent (SGD), the algorithm routinely used to train these networks. In particular, it has
been proposed that SGD has an implicit regularisation mechanism that ensures that solutions found
by SGD generalise well irrespective of the number of parameters involved, for models as diverse as
(over-parameterised) neural networks10,13, logistic regression14 and matrix factorisation models15,16.

In this paper, we analyse the dynamics of one-pass (or online) SGD in two-layer neural networks. We
focus in particular on the influence of over-parameterisation on the final generalisation error. We use
the teacher-student framework17,18, where a training data set is generated by feeding random inputs
through a two-layer neural network with M hidden units called the teacher. Another neural network,
the student, is then trained using SGD on that data set. The generalisation error is defined as the mean
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squared error between teacher and student outputs, averaged over all of input space. We will focus on
student networks that have a larger number of hidden units K ≥M than their teacher. This means
that the student can express much more complex functions than the teacher function they have to
learn; the students are thus over-parameterised with respect to the generative model of the training
data in a way that is simple to quantify. We find this definition of over-parameterisation cleaner in our
setting than the oft-used comparison of the number of parameters in the model with the number of
samples in the training set, which is not well justified for non-linear functions. Furthermore, these two
numbers surely cannot fully capture the complexity of the function learned in practical applications.

The teacher-student framework is also interesting in the wake of the need to understand the ef-
fectiveness of neural networks and the limitations of the classical approaches to generalisation11.
Traditional approaches to learning and generalisation are data agnostic and seek worst-case type
bounds19. On the other hand, there has been a considerable body of theoretical work calculating
the generalisation ability of neural networks for data arising from a probabilistic model, particularly
within the framework of statistical mechanics17,18,20–22. Revisiting and extending the results that have
emerged from this perspective is currently experiencing a surge of interest23–28.

In this work we consider two-layer networks with a large input layer and a finite, but arbitrary, number
of hidden neurons. Other limits of two-layer neural networks have received a lot of attention recently.
A series of papers29–32 studied the mean-field limit of two-layer networks, where the number of
neurons in the hidden layer is very large, and proved various general properties of SGD based on
a description in terms of a limiting partial differential equation. Another set of works, operating in
a different limit, have shown that infinitely wide over-parameterised neural networks trained with
gradient-based methods effectively solve a kernel regression33–38, without any feature learning. Both
the mean-field and the kernel regime crucially rely on having an infinite number of nodes in the
hidden layer, and the performance of the networks strongly depends on the detailed scaling used38,39.
Furthermore, a very wide hidden layer makes it hard to have a student that is larger than the teacher
in a quantifiable way. This leads us to consider the opposite limit of large input dimension and finite
number of hidden units.

Our main contributions are as follows:

(i) The dynamics of SGD (online) learning by two-layer neural networks in the teacher-student setup
was studied in a series of classic papers40–44 from the statistical physics community, leading to a
heuristic derivation of a set of coupled ordinary differential equations (ODE) that describe the typical
time-evolution of the generalisation error. We provide a rigorous foundation of the ODE approach to
analysing the generalisation dynamics in the limit of large input size by proving their correctness.

(ii) These works focused on training only the first layer, mainly in the case where the teacher network
has the same number of hidden units and the student network, K = M . We generalise their analysis
to the case where the student’s expressivity is considerably larger than that of the teacher in order to
investigate the over-parameterised regime K > M .

(iii) We provide a detailed analysis of the dynamics of learning and of the generalisation when only
the first layer is trained. We derive a reduced set of coupled ODE that describes the generalisation
dynamics for any K ≥M and obtain analytical expressions for the asymptotic generalisation error
of networks with linear and sigmoidal activation functions. Crucially, we find that with all other
parameters equal, the final generalisation error increases with the size of the student network. In this
case, SGD alone thus does not seem to be enough to regularise larger student networks.

(iv) We finally analyse the dynamics when learning both layers. We give an analytical expression for
the final generalisation error of sigmoidal networks and find evidence that suggests that SGD finds
solutions which amount to performing an effective model average, thus improving the generalisation
error upon over-parameterisation. In linear and ReLU networks, we experimentally find that the
generalisation error does change as a function of K when training both layers. However, there exist
student networks with better performance that are fixed points of the SGD dynamics, but are not
reached when starting SGD from initial conditions with small, random weights.

Crucially, we find this range of different behaviours while keeping the training algorithm (SGD)
the same, changing only the activation functions of the networks and the parts of the network that
are trained. Our results clearly indicate that the implicit regularisation of neural networks in our
setting goes beyond the properties of SGD alone. Instead, a full understanding of the generalisation
properties of even very simple neural networks requires taking into account the interplay of at least
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the algorithm, the network architecture, and the data set used for training, setting up a formidable
research programme for the future.

Reproducibility — We have packaged the implementation of our experiments and our ODE integrator
into a user-friendly library with example programs at https://github.com/sgoldt/nn2pp. All
plots were generated with these programs, and we give the necessary parameter values beneath each
plot.

1 Online learning in teacher-student neural networks

We consider a supervised regression problem with training set D = {(xµ, yµ)} with µ = 1, . . . , P .
The components of the inputs xµ ∈ RN are i.i.d. draws from the standard normal distributionN (0, 1).
The scalar labels yµ are given by the output of a network with M hidden units, a non-linear activation
function g : R→ R and fixed weights θ∗ = (v∗ ∈ RM , w∗ ∈ RM×N ) with an additive output noise
ζµ ∼ N (0, 1), called the teacher (see also Fig. 1a):

yµ ≡ φ(xµ, θ∗) + σζµ, where φ(x, θ∗) =

M∑

m=1

v∗mg

(
w∗mx√
N

)
=

M∑

m

v∗mg(ρm) , (1)

where w∗m is the mth row of w∗, and the local field of the mth teacher node is ρm ≡ w∗mx/
√
N .

We will analyse three different network types: sigmoidal with g(x) = erf(x/
√

2), ReLU with
g(x) = max(x, 0), and linear networks where g(x) = x.

A second two-layer network with K hidden units and weights θ = (v ∈ RK , w ∈ RK×N ), called
the student, is then trained using SGD on the quadratic training loss E(θ) ∝

∑P
µ=1 [φ(xµ, θ)− yµ]

2.
We emphasise that the student network may have a larger number of hidden units K ≥M than the
teacher and thus be over-parameterised with respect to the generative model of its training data.

The SGD algorithm defines a Markov process Xµ ≡ [v∗, w∗, vµ, wµ] with update rule given by the
coupled SGD recursion relations

wµ+1
k = wµk −

ηw√
N
vµk g
′(λµk)∆µxµ, (2)

vµ+1
k = vµk −

ηv
N
g(λµk)∆µ. (3)

We can choose different learning rates ηv and ηw for the two layers and denote by g′(λµk) the derivative
of the activation function evaluated at the local field of the student’s kth hidden unit λµk ≡ wkxµ/

√
N ,

and we defined the error term ∆µ ≡
∑
k v

µ
k g (λµk)−

∑
m v
∗
mg(ρµm)− σζµ. We will use the indices

i, j, k, . . . to refer to student nodes, and n,m, . . . to denote teacher nodes. We take initial weights at
random from N (0, 1) for sigmoidal networks, while initial weights have variance 1/

√
N for ReLU

and linear networks.

The key quantity in our approach is the generalisation error of the student with respect to the teacher:

εg(θ, θ
∗) ≡ 1

2

〈
[φ(x, θ)− φ(x, θ∗)]

2
〉
, (4)

where the angled brackets 〈·〉 denote an average over the input distribution. We can make progress by
realising that εg(θ∗, θ) can be expressed as a function of a set of macroscopic variables, called order
parameters in statistical physics,21,40,41

Qµik ≡
wµi w

µ
k

N
, Rµin ≡

wµi w
∗
n

N
and Tnm ≡

w∗nw
∗
m

N
, (5)

together with the second-layer weights v∗ and vµ. Intuitively, the teacher-student overlaps Rµ =
[Rµin] measure the similarity between the weights of the ith student node and the nth teacher node.
The matrix Qik quantifies the overlap of the weights of different student nodes with each other, and
the corresponding overlap of the teacher nodes are collected in the matrix Tnm. We will find it
convenient to collect all order parameters in a single vector

mµ ≡ (Rµ, Qµ, T, v∗, vµ), (6)
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and we write the full expression for εg(mµ) in the SM, Eq. (S31).

In a series of classic papers, Biehl, Schwarze, Saad, Solla and Riegler40–44 derived a closed set of
ordinary differential equations for the time evolution of the order parameters m (see SM Sec. B).
Together with the expression for the generalisation error εg(mµ), these equations give a complete
description of the generalisation dynamics of the student, which they analysed for the special case
K = M when only the first layer is trained42,44. Our first contribution is to provide a rigorous
foundation for these results under the following assumptions:

(A1) Both the sequences xµ and ζµ, µ = 1, 2, . . ., are i.i.d. random variables; xµ is drawn from a
normal distribution with mean 0 and covariance matrix IN , while ζµ is a Gaussian random
variable with mean zero and unity variance;

(A2) The function g(x) is bounded and its derivatives up to and including the second order exist and
are bounded, too;

(A3) The initial macroscopic state m0 is deterministic and bounded by a constant;

(A4) The constants σ, K, M , ηw and ηv are all finite.

The correctness of the ODE description is then established by the following theorem:

Theorem 1.1. Choose T > 0 and define α ≡ µ/N . Under assumptions (A1) – (A4), and for any
α > 0, the macroscopic state mµ satisfies

max
0≤µ≤NT

E ||mµ −m(α)|| ≤ C(T )√
N

, (7)

where C(T ) is a constant depending on T , but not on N , and m(α) is the unique solution of the
ODE

d

dt
m(α) = f(m(α)) (8)

with initial condition m∗. In particular, we have

dRin
dα

≡ fR(m(α)) = ηvi〈∆g′(λi)ρn〉 , (9a)

dQik
dα

≡ fQ(m(α)) = ηvi〈∆g′(λi)λk〉+ ηvk〈∆g′(λk)λi〉

+ η2vivk〈∆2g′(λi)g
′(λk)〉+ η2vivkσ

2〈g′(λi)g′(λk)〉 , (9b)
dvi
dα
≡ fv(m(α)) = ηv〈∆g(λi)〉. (9c)

where all f(m(α)) are uniformly Lipschitz continuous in m(α). We are able to close the equations
because we can express averages in Eq. (9) in terms of only m(α).

We prove Theorem 1.1 using the theory of convergence of stochastic processes and a coupling trick
introduced recently by Wang et al.45 in Sec. A of the SM. The content of the theorem is illustrated in
Fig. 1b, where we plot εg(α) obtained by numerically integrating (9) (solid) and from a single run of
SGD (2) (crosses) for sigmoidal students and varying K, which are in very good agreement.

Given a set of non-linear, coupled ODE such as Eqns. (9), finding the asymptotic fixed points
analytically to compute the generalisation error would seem to be impossible. In the following, we
will therefore focus on analysing the asymptotic fixed points found by numerically integrating the
equations of motion. The form of these fixed points will reveal a drastically different dependence of
the test error on the over-parameterisation of neural networks with different activation functions in
the different setups we consider, despite them all being trained by SGD. This highlights the fact that
good generalisation goes beyond the properties of just the algorithm. Second, knowledge of these
fixed points allows us to make analytical and quantitative predictions for the asymptotic performance
of the networks which agree well with experiments. We also note that several recent theorems29–31

about the global convergence of SGD do not apply in our setting because we have a finite number of
hidden units.
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Figure 1: The analytical description of the generalisation dynamics of sigmoidal networks
matches experiments. (a) We consider two-layer neural networks with a very large input layer.
(b) We plot the learning dynamics εg(α) obtained by integration of the ODEs (9) (solid) and from a
single run of SGD (2) (crosses) for students with different numbers of hidden units K. The insets
show the values of the teacher-student overlaps Rin (5) for a student with K = 4 at the two times
indicated by the arrows. N = 784,M = 4, η = 0.2.

2 Asymptotic generalisation error of Soft Committee machines

We will first study networks where the second layer weights are fixed at v∗m = vk = 1. These networks
are called a Soft Committee Machine (SCM) in the statistical physics literature18,27,40–42,44. One
notable feature of εg(α) in SCMs is the existence of a long plateau with sub-optimal generalisation
error during training. During this period, all student nodes have roughly the same overlap with all
the teacher nodes, Rin = const. (left inset in Fig. 1b). As training continues, the student nodes
“specialise” and each of them becomes strongly correlated with a single teacher node (right inset),
leading to a sharp decrease in εg . This effect is well-known for both batch and online learning18 and
will be key for our analysis.

Let us now use the equations of motion (9) to analyse the asymptotic generalisation error of neural
networks ε∗g after training has converged and in particular its scaling with L = K −M . Our first
contribution is to reduce the remaining K(K + M) equations of motion to a set of eight coupled
differential equations for any combination of K and M in Sec. C. This enables us to obtain a
closed-form expression for ε∗g as follows.

In the absence of output noise (σ = 0), the generalisation error of a student with K ≥ M will
asymptotically tend to zero as α→∞. On the level of the order parameters, this corresponds to
reaching a stable fixed point of (9) with εg = 0. In the presence of small output noise σ > 0, this
fixed point becomes unstable and the order parameters instead converge to another, nearby fixed
point m∗ with εg(m∗) > 0. The values of the order parameters at that fixed point can be obtained by
perturbing Eqns. (9) to first order in σ, and the corresponding generalisation error εg(m∗) turns out
to be in excellent agreement with the generalisation error obtained when training a neural network
using (2) from random initial conditions, which we show in Fig. 2a.

Sigmoidal networks. We have performed this calculation for teacher and student networks with
g(x) = erf(x/

√
2). We relegate the details to Sec. C.2, and content us here to state the asymptotic

value of the generalisation error to first order in σ2,

ε∗g =
σ2η

2π
f(M,L, η) +O(σ3), (10)

where f(M,L, η) is a lengthy rational function of its variables. We plot our result in Fig. 2a together
with the final generalisation error obtained in a single run of SGD (2) for a neural network with initial
weights drawn i.i.d. from N (0, 1) and find excellent agreement, which we confirmed for a range of
values for η, σ, and L.

One notable feature of Fig. 2a is that with all else being equal, SGD alone fails to regularise the
student networks of increasing size in our setup, instead yielding students whose generalisation error
increases linearly with L. One might be tempted to mitigate this effect by simultaneously decreasing
the learning rate η for larger students. However, lowering the learning rate incurs longer training
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Figure 2: The asymptotic generalisation error of Soft Committee Machines increases with the
network size. N = 784, η = 0.05, σ = 0.01. (a) Our theoretical prediction for ε∗g/σ

2 for sigmoidal
(solid) and linear (dashed), Eqns. (10) and (12), agree perfectly with the result obtained from a single
run of SGD (2) starting from random initial weights (crosses). (b) The final overlap matrices Q and
R (5) at the end of an experiment with M = 2,K = 5. Networks with sigmoidal activation function
(top) show clear signs of specialisation as described in Sec. 2. ReLU networks (bottom) instead
converge to solutions where all of the student’s nodes have finite overlap with teacher nodes.

times, which requires more data for online learning. This trade-off is also found in statistical learning
theory, where models with more parameters (higher L) and thus a higher complexity class (e.g. VC
dimension or Rademacher complexity4) generalise just as well as smaller ones when given more data.
In practice, however, more data might not be readily available, and we show in Fig. S2 of the SM that
even when choosing η = 1/K, the generalisation error still increases with L before plateauing at a
constant value.

We can gain some intuition for the scaling of ε∗g by considering the asymptotic overlap matrices Q
and R shown in the left half of Fig. 2b. In the over-parameterised case, L = K −M student nodes
are effectively trying to specialise to teacher nodes which do not exist, or equivalently, have weights
zero. These L student nodes do not carry any information about the teachers output, but they pick up
fluctuations from output noise and thus increase ε∗g . This intuition is borne out by an expansion of ε∗g
in the limit of small learning rate η, which yields

ε∗g =
σ2η

2π

(
L+

M√
3

)
+O(η2), (11)

which is indeed the sum of the error of M independent hidden units that are specialised to a single
teacher hidden unit, and L = K −M superfluous units contributing each the error of a hidden unit
that is “learning” from a hidden unit with zero weights w∗m = 0 (see also Sec. D of the SM).

Linear networks. Two possible explanations for the scaling ε∗g ∼ L in sigmoidal networks may
be the specialisation of the hidden units or the fact that teacher and student network can implement
functions of different range if K 6= M . To test these hypotheses, we calculated ε∗g for linear neural
networks46,47 with g(x) = x. Linear networks lack a specialisation transition27 and their output
range is set by the magnitude of their weights, rather than their number of hidden units. Following
the same steps as before, a perturbative calculation in the limit of small noise variance σ2 yields

ε∗g =
ησ2(L+M)

4− 2η(L+M)
+O(σ3). (12)

This result is again in perfect agreement with experiments, as we demonstrate in Fig. 2a. In the limit
of small learning rates η, Eq. (10) simplifies to yield the same scaling as for sigmoidal networks,

ε∗g =
1

4
ησ2(L+M) +O

(
η2
)
. (13)

This shows that the scaling ε∗g ∼ L is not just a consequence of either specialisation or the mismatched
range of the networks’ output functions. The optimal number of hidden units for linear networks
is K = 1 for all M , because linear networks implement an effective linear transformation with an
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Figure 3: The performance of sigmoidal networks improves with network size when training
both layers with SGD. (a) Generalisation dynamics observed experimentally for students with
increasingK, with all other parameters being equal. (N = 500,M = 2, η = 0.05, σ = 0.01, v∗ = 4).
(b) Overlap matrices Q, R, and second layer weights vk of the student at the end of the run with
K = 5 shown in (a). (c) Theoretical prediction for ε∗g (solid) against ε∗g observed after integration of
the ODE until convergence (crosses) (9) (σ = 0.01, η = 0.2, v∗ = 2).

effective matrix W =
∑
k wk. Adding hidden units to a linear network hence does not augment the

class of functions it can implement, but it adds redundant parameters which pick up fluctuations from
the teacher’s output noise, increasing εg .

ReLU networks. The analytical calculation of ε∗g , described above, for ReLU networks poses some
additional technical challenges, so we resort to experiments to investigate this case. We found that
the asymptotic generalisation error of a ReLU student learning from a ReLU teacher has the same
scaling as the one we found analytically for networks with sigmoidal and linear activation functions:
ε∗g ∼ ησ2L (see Fig. S3). Looking at the final overlap matrices Q and R for ReLU networks in the
bottom half of Fig. 2b, we see that instead of the one-to-one specialisation of sigmoidal networks, all
student nodes have a finite overlap with some teacher node. This is a consequence of the fact that it is
much simpler to re-express the sum of M ReLU units with K 6= M ReLU units. However, there
are still a lot of redundant degrees of freedom in the student, which all pick up fluctuations from the
teacher’s output noise and increase ε∗g .

Discussion. The key result of this section has been that the generalisation error of SCMs scales as

ε∗g ∼ ησ2L. (14)

Before moving on the full two-layer network, we discuss a number of experiments that we performed
to check the robustness of this result (Details can be found in Sec. G of the SM). A standard
regularisation method is adding weight decay to the SGD updates (2). However, we did not find a
scenario in our experiments where weight decay improved the performance of a student with L > 0.
We also made sure that our results persist when performing SGD with mini-batches. We investigated
the impact of higher-order correlations in the inputs by replacing Gaussian inputs with MNIST
images, with all other aspects of our setup the same, and the same εg-L curve as for Gaussian inputs.
Finally, we analysed the impact of having a finite training set. The behaviour of linear networks and
of non-linear networks with large but finite training sets did not change qualitatively. However, as
we reduce the size of the training set, we found that the lowest asymptotic generalisation error was
obtained with networks that have K > M .

3 Training both layers: Asymptotic generalisation error of a neural network

We now study the performance of two-layer neural networks when both layers are trained according
to the SGD updates (2) and (3). We set all the teacher weights equal to a constant value, v∗m = v∗,
to ensure comparability between experiments. However, we train all K second-layer weights of the
student independently and do not rely on the fact that all second-layer teacher weights have the same
value. Note that learning the second layer is not needed from the point of view of statistical learning:
the networks from the previous section are already expressive enough to capture the students, and
we are thus slightly increasing the over-parameterisation even further. Yet, we will see that the
generalisation properties will be significantly enhanced.
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Sigmoidal networks. We plot the generalisation dynamics of students with increasing K trained
on a teacher with M = 2 in Fig. 3a. Our first observation is that increasing the student size K ≥M
decreases the asymptotic generalisation error ε∗g, with all other parameters being equal, in stark
contrast to the SCMs of the previous section.

A look at the order parameters after convergence in the experiments from Fig. 3a reveals the intriguing
pattern of specialisation of the student’s hidden units behind this behaviour, shown for K = 5 in
Fig. 3b. First, note that all the hidden units of the student have non-negligible weights (Qii > 0). Two
student nodes (k = 1, 2) have specialised to the first teacher node, i.e. their weights are very close to
the weights of the first teacher node (R10 ≈ R20 ≈ 0.85). The corresponding second-layer weights
approximately fulfil v1 + v3 ≈ v∗. Summing the output of these two student hidden units is thus
approximately equivalent to an empirical average of two estimates of the output of the teacher node.
The remaining three student nodes all specialised to the second teacher node, and their outgoing
weights approximately sum to v∗. This pattern suggests that SGD has found a set of weights for
both layers where the student’s output is a weighted average of several estimates of the output of the
teacher’s nodes. We call this the denoising solution and note that it resembles the solutions found in
the mean-field limit of an infinite hidden layer29,31 where the neurons become redundant and follow
a distribution dynamics (in our case, a simple one with few peaks, as e.g. Fig. 1 in31).

We confirmed this intuition by using an ansatz for the order parameters that corresponds to a denoising
solution to solve the equations of motion (9) perturbatively in the limit of small noise to calculate
ε∗g for sigmoidal networks after training both layers, similarly to the approach in Sec. 2. While this
approach can be extended to any K and M , we focused on the case where K = ZM to obtain
manageable expressions; see Sec. E of the SM for details on the derivation. While the final expression
is again too long to be given here, we plot it with solid lines in Fig. 3c. The crosses in the same plot
are the asymptotic generalisation error obtained by integration of the ODE (9) starting from random
initial conditions, and show very good agreement.

While our result holds for anyM , we note from Fig. 3c that the curves for differentM are qualitatively
similar. We find a particular simple result for M = 1 in the limit of small learning rates, where:

ε∗g =
η(σv∗)2

2
√

3Kπ
+O(ησ2) . (15)

This result should be contrasted with the εg ∼ K behaviour found for SCM.

Experimentally, we robustly observed that training both layers of the network yields better per-
formance than training only the first layer with the second layer weights fixed to v∗. However,
convergence to the denoising solution can be difficult for large students which might get stuck on a
long plateau where their nodes are not evenly distributed among the teacher nodes. While it is easy to
check that such a network has a higher value of εg than the denoising solution, the difference is small,
and hence the driving force that pushes the student out of the corresponding plateaus is small, too.
These observations demonstrate that in our setup, SGD does not always find the solution with the
lowest generalisation error in finite time.

ReLU and linear networks. We found experimentally that ε∗g remains constant with increasing K
in ReLU and in linear networks when training both layers. We plot a typical learning curve in green
for linear networks in Fig. 4, but note that the figure shows qualitatively similar features for ReLU
networks (Fig. S4). This behaviour was also observed in linear networks trained by batch gradient
descent, starting from small initial weights48. While this scaling of ε∗g with K is an improvement
over its increase with K for the SCM, (blue curve), this is not the 1/K decay that we observed for
sigmoidal networks. A possible explanation is the lack of specialisation in linear and ReLU networks
(see Sec. 2), without which the denoising solution found in sigmoidal networks is not possible. We
also considered normalised SCM, where we train only the first layer and fix the second-layer weights
at v∗m = 1/M and vk = 1/K. The asymptotic error of normalised SCM decreases with K (orange
curve in Fig. 4), because the second-layer weights vk = 1/K effectively reduce the learning rate,
as can be easily seen from the SGD updates (2), and we know from our analysis of linear SCM in
Sec. 2 that εg ∼ η. In SM Sec. F we show analytically how imbalance in the norms of the first and
second layer weights can lead to a larger effective learning rate. Normalised SCM also beat the
performance students where we trained both layers, starting from small initial weights in both cases.
This is surprising because we checked experimentally that the weights of a normalised SCM after
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training are a fixed point of the SGD dynamics when training both layers. However, we confirmed
experimentally that SGD does not find this fixed point when starting with random initial weights.

101 102 103

K

10 4

10 3

10 2

* g
/

2

SCM
Normalised
Both

Figure 4: Asymptotic performance of linear two
layer network. Error bars indicate one standard de-
viation over five runs. Parameters: N = 100,M =
4, v∗ = 1, η = 0.01, σ = 0.01.

Discussion. The qualitative difference be-
tween training both or only the first layer of
neural networks is particularly striking for lin-
ear networks, where fixing one layer does not
change the class of functions the model can im-
plement, but makes a dramatic difference for
their asymptotic performance. This observation
highlights two important points: first, the per-
formance of a network is not just determined by
the number of additional parameters, but also
by how the additional parameters are arranged
in the model. Second, the non-linear dynamics
of SGD means that changing which weights are
trainable can alter the training dynamics in un-
expected ways. We saw this for two-layer linear
networks, where SGD did not find the optimal
fixed point, and in the non-linear sigmoidal net-
works, where training the second layer allowed
the student to decrease its final error with every
additional hidden unit instead of increasing it
like in the SCM.
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