- Thank you to all of the reviewers for their insightful comments! We respond to specific questions and comments of each
- reviewer below, and further provide additional discussion of the problem of developing algorithms that guarantee LSS.
- **Reviewer 1:** We completely agree that the notation and style should be streamlined to improve readability, and have
- undertaken changes to address this. One such change will be removing subscripts and superscripts in cases where the
- distribution/generator/etc. are clear from context.
- **Reviewer 2:** Indeed, the way Theorems 4.6. and 4.7 were stated may have made them seem weaker then they are 6
- actually are, and we thank you for pointing this out. The theorems were stated for the "interesting" values of small ϵ
- and δ , but also immediately hold for larger values, so long as the sample size is sufficient. Theorem 4.6 holds for any 8
- $\epsilon > 0$, for sufficiently large n, and Theorem 4.7 similarly holds for any $0 < \delta < 1$, for sufficiently large n. We have 9
- revised these two Theorem statements to reflect this. 10
- **Reviewers 2 and 3:** We agree with you that developing algorithms that satisfy LSS and techniques for bounding LSS 11
- is an exciting direction for future work, and we would be glad to expand our discussion of this in the paper. 12
- Naturally, any mechanism which guarantees Differential privacy (e.g., the Laplace and Gaussian mechanisms) will
- guarantee LSS as well, as a result of the DP->LMI->LSS implications. We plan to point this out more explicitly.
- One can also see this, and perhaps gain additional insight, by manipulating the loss definition:

$$\sum_{x \in X_{+}(r)} \left(D_{\mathcal{X}|\mathcal{R}}^{G}\left(x \mid r\right) - D_{\mathcal{X}}\left(x\right) \right) = \sum_{x \in X_{+}(r)} D_{\mathcal{X}}\left(x\right) \left(\frac{D_{\mathcal{X}|\mathcal{R}}^{G}\left(x \mid r\right)}{D_{\mathcal{X}}\left(x\right)} - 1 \right) = \sum_{x \in X_{+}(r)} D_{\mathcal{X}}\left(x\right) \left(\frac{D_{\mathcal{R}|\mathcal{X}}^{G}\left(r \mid x\right)}{D_{\mathcal{R}}^{G}\left(r\right)} - 1 \right)$$

- Since $D_{\mathcal{R}}^{G}\left(r\right) = \sum_{x' \in \mathcal{X}} D_{\mathcal{R}|\mathcal{X}}^{G}\left(r \,|\, x'\right)$, it suffices to bound the quantity $\frac{D_{\mathcal{R}|\mathcal{X}}^{G}\left(r \,|\, x'\right)}{D_{\mathcal{R}|\mathcal{X}}^{G}\left(r \,|\, x'\right)}$ for any $x, x' \in \mathcal{X}$, which is
- bounded by e^{ϵ} for a Laplace mechanism with parameter $\frac{\Delta}{n\epsilon}$ in the case of a product distribution. Though this example does not provide direct improvement over DP, it may suggest a potential technique for proving LSS bounds for novel
- mechanisms. 19
- **Reviewer 3:** There are indeed other candidates for the distance notion in Definition 2.1. We have explored some of
- them, but have not found another notion that we can show is both necessary and sufficient for generalization. Perhaps 21
- the most natural alternative to consider is bounded KL-Divergence, which, by Jensen's inequality, implies a bound on 22
- TV-distance. Thus, it is natural that bounded KL-Divergence would be sufficient for generalization; however, it is not 23
- clear that it is necessary. The form of the "loss assessment query" we introduce provides some intuition for the choice 24
- of the TV-distance; one cannot construct a natural analogous query for KL-Divergence, due to its unboundedness. This 25
- observation does not demonstrate that other distance measures cannot be used, but at least suggests that our proof 26
- technique may not suit them. 27
- The fact that we handle non-iid databases is actually crucial. The reason for this is that even if the underlying data
- 29 distribution were iid, the resulting posterior distribution given a query response might no longer be iid. Thanks for
- 30 pointing out that we need to clarify this in the writeup.
- The α_i values presented in Theorem 2.7 are expected losses, which might be significantly lower than ϵ_i (which can be 31
- thought of as high probability bounds on the loss). As you suggest, we will clarify the comment right after Theorem 32
- 2.7, that the Theorem is weakest when α_i is close to ϵ_i , and more meaningful when $\alpha_i \ll \epsilon_i$.