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Abstract

Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) algorithms have received
increasing attention in both theory and practice. In this paper, we propose a
Stochastic Recursive Variance-Reduced gradient HMC (SRVR-HMC) algorithm.
It makes use of a semi-stochastic gradient estimator that recursively accumulates
the gradient information to reduce the variance of the stochastic gradient. We
provide a convergence analysis of SRVR-HMC for sampling from a class of
non-log-concave distributions and show that SRVR-HMC converges faster than
all existing HMC-type algorithms based on underdamped Langevin dynamics.
Thorough experiments on synthetic and real-world datasets validate our theory and
demonstrate the superiority of SRVR-HMC.

1 Introduction

Monte Carlo Markov Chain (MCMC) has been widely used in Bayesian learning [1] as a powerful
tool for posterior sampling, inference and decision making. More recently, Hamiltonian MCMC
approaches based on the Hamiltonian Langevin dynamics [24, 43] have received extensive attention
in both theory and practice [16, 5, 40, 14, 6, 18, 55, 28] due to their widespread empirical successes.
Hamiltonian Langevin dynamics (a.k.a., underdamped Langevin dynamics) [19] is described by the
following stochastic differential equation:

dVt = −γVtdt− u∇f(Xt)dt+
√

2γudBt,

dXt = Vtdt,
(1.1)

where γ > 0 is called the friction parameter, u > 0 is the inverse mass,Xt,Vt ∈ Rd are the position
and velocity variables of the continuous-time dynamics respectively, and Bt ∈ Rd is the standard
Brownian motion. Under mild assumptions on the function f(x), the Markov process (Xt,Vt) has a
unique stationary distribution which is proportional to exp{−f(x)− ‖v‖22/(2u)} and the marginal
distribution of Xt converges to a stationary distribution π ∝ exp{−f(x)}. Hence, we can apply
numerical integrators to discretize the continuous-time dynamics (1.1) in order to sample from the
target distribution π. Direct Euler-Maruyama discretization [34] of (1.1) gives rise to

vk+1 = vk − γηvk − ηu∇f(xk) +
√

2γuηεk,

xk+1 = xk + ηvk,
(1.2)
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which is known as underdamped Langevin MCMC (UL-MCMC) and can also be viewed as a type of
Hamiltonian Monte Carlo (HMC) methods [43, 6]. Cheng et al. [18] studied a modified version of
UL-MCMC in (1.2) and proved its convergence rate to the stationary distribution in 2-Wasserstein
distance for sampling from strongly log-concave densities. When the target distribution is non-log-
concave but admits certain good properties, the convergence guarantees of UL-MCMC in Wasserstein
metric have also been established in [27, 17, 8, 30].

In practice, f(x) in (1.2) can be chosen as the negative log-likelihood function on the training data:

f(x) = n−1
∑n
i=1 fi(x), (1.3)

where n is the size of training data and fi(x) : Rd → R is the negative log-likelihood function on the
i-th data point. For a large dataset, it can be extremely inefficient to compute the full gradient ∇f(x)
which consists of gradients ∇fi(x)’s for all data points. To alleviate this computational burden,
stochastic gradient Hamiltonian Monte Carlo (SGHMC) methods [16, 40] and stochastic gradient
UL-MCMC (SG-UL-MCMC) [18] were proposed, which replace the full gradient in (1.2) with a
mini-batch stochastic gradient. While SGHMC is much more efficient than HMC methods, it comes
at the cost of a slower mixing rate due to the large variance caused by stochastic gradients [5, 6, 23].
To resolve this dilemma, Zou et al. [55], Li et al. [37] proposed stochastic variance-reduced gradient
HMC methods using variance reduction techniques [33, 36] and proved that variance reduction can
accelerate the convergence of both HMC and SGHMC for sampling and Bayesian inference. For
sampling from a class of non-log-concave densities, Gao et al. [30] showed that SGHMC converges
to the stationary distribution of (1.1) up to an ε-error in 2-Wasserstein distance with Õ(ε−8µ−5

∗ )1

gradient complexity2, where µ∗ is a lower bound of the spectral gap of the Markov process generated
by (1.1) and is in the order of exp(−Õ(d)) in the worst case [27]. This gradient complexity of
SGHMC is very high even for a moderate sampling error ε.

In this paper, we aim to reduce the gradient complexity of SGHMC for sampling from non-log-
concave densities. The fundamental challenge in speeding up HMC-type methods lies in the control
of the discretization error between the Hamiltonian Langevin dynamics (1.1) and discrete algo-
rithms. We propose a novel algorithm, namely stochastic recursive variance-reduced gradient HMC
(SRVR-HMC), which employs a recursively updated semi-stochastic gradient estimator to reduce
the variance of stochastic gradient and improve the discretization error. Note that such a recursively
updated semi-stochastic gradient estimator was originally proposed in [44, 29] for finding stationary
points in stochastic nonconvex optimization. Nevertheless, our analysis is fundamentally different
from that in [44, 29] since their goal is just to find a stationary point of f(x), while we aim to sample
from the target distribution π ∝ exp(−f(x)) that concentrates on the global minimizer of f(x),
which is substantially more challenging.

1.1 Our contributions

We summarize our major contributions as follows.

• We propose a new HMC algorithm called SRVR-HMC for approximate sampling, which is
built on a recursively updated semi-stochastic gradient estimator that significantly decreases the
discretization error and speeds up the sampling process.

• We establish the convergence guarantee of SRVR-HMC for sampling from non-log-concave
densities satisfying certain dissipativeness condition. Specifically, we show that its gradient
complexity for achieving ε-error in 2-Wasserstein distance is Õ((n+ ε−2n1/2µ

−3/2
∗ ) ∧ ε−4µ−2

∗ ).
Remarkably, the convergence guarantee of SRVR-HMC is better than the Õ(ε−4µ−3

∗ n) gradient
complexity of HMC [30] by a factor of at least Õ(ε−2µ

−3/2
∗ n1/2), and better than the Õ(ε−8µ−5

∗ )

gradient complexity of SGHMC [30] by a factor of at least Õ(ε−4µ−3
∗ ).

• With a proper choice of parameters, our algorithm can reduce to UL-MCMC [18] and SG-UL-
MCMC [18], which are originally proposed for sampling from strongly-log-concave distributions.

1Õ(·) hides constant and logarithm factors.
2Gradient complexity is the total number of stochastic gradients∇fi(x) an algorithm needs to compute in

order to achieve ε-error in terms of certain measurement.
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Our theoretical analysis shows that these two algorithms can be used for sampling from non-log-
concave distributions as well, and they enjoy lower gradient complexities than HMC and SGHMC
[30], which is of independent interest.

• We compare our algorithm with many state-of-the-art baselines through experiments on sampling
from Gaussian mixture distributions, independent component analysis (ICA) and Bayesian logistic
regression, which further validates the superiority of our algorithm.

1.2 Additional related work

There is also a vast literature of MCMC methods based on the overdamped Langevin dynamics [35]:

dXt = −∇f(Xt)dt+
√

2βdBt, (1.4)

where β > 0 is the temperature parameter andBt is Brownian motion. The convergence analysis of
Langevin based algorithms dates back to [46]. Mattingly et al. [41] established convergence rates for
a class of discrete approximation of Langevin dynamics. When the target distribution is smooth and
strongly log-concave, the convergence of Langevin Monte Carlo (LMC) based on the discretization of
(1.4) has been widely studied in terms of both total variation (TV) distance [21, 26] and 2-Wasserstein
distance [22, 20]. Welling and Teh [50] proposed the stochastic gradient Langevin dynamics (SGLD)
algorithm to avoid full gradient computation. Teh et al. [47] proposed to apply decreasing step size
with SGLD and proved its convergence in terms of mean square error (MSE). Vollmer et al. [48]
characterized the bias of SGLD and further proposed a modified SGLD algorithm that removes the
bias. [10] establish a link between LMC, SGLD, SGLDFP (a variant of SGLD) and SGD, which
shows that the stationary distribution of LMC and SGLDFP can be closer to the target density π as the
sample size increases, while the dynamics of SGLD is more similar to that of SGD. Barkhagen et al.
[4], Chau et al. [13] studied the convergence of SGLD when the training data in (1.3) are dependent.
In order to reduce the variance of SGLD, SVRG-LD and SAGA-LD have been proposed by Dubey
et al. [25] and their convergence have been studied in terms of MSE [25, 15] and 2-Wasserstein
distance [56, 12]. Baker et al. [2] proposed to use control variate in SGLD which can also reduce the
variance and improve the convergence rate. Mou et al. [42] studied the generalization performance of
SGLD from both stability and PAC-Bayesian perspectives. For nonconvex optimization, Raginsky
et al. [45] proved the non-asymptotic convergence rate of SGLD and Zhang et al. [52] analyzed the
hitting time of SGLD to local minima. Xu et al. [51] further studied the global convergence of a class
of Langevin dynamics based algorithms.

Table 1: Gradient complexity of different methods to achieve ε-error in 2-Wasserstein distance for
sampling from non-log-concave densities.

Methods Gradient Complexity

LMC Õ
(
ε−4λ−5

∗ n
)

[45]
SGLD Õ

(
ε−8λ−9

∗
)

[45]
SVRG-LD Õ

(
n+ ε−2λ−4

∗ n3/4 + ε−4λ−4
∗ n1/2

)
[57]

HMC Õ
(
ε−4µ−3

∗ n
)

[30]
UL-MCMC Õ

(
ε−2µ

−3/2
∗ n

)
. Corollary 3.9

SGHMC Õ
(
ε−8µ−5

∗
)

[30]
SG-UL-MCMC Õ

(
ε−6µ

−5/2
∗

)
. Corollary 3.9

SRVR-HMC Õ
(
(n+ ε−2n1/2µ

−3/2
∗ ) ∧ ε−4µ−2

∗
)

. Corollary 3.5

In Table 1, we compare the gradient complexity of different methods to achieve ε-error in 2-
Wasserstein distance for sampling from non-log-concave densities3. LMC, SGLD and SVRG-LD are
based on overdamped Langevin dynamics (1.4) and HMC, UL-MCMC, SGHMC, SG-UL-MCMC
and SRVR-HMC are based on underdamped Langevin dynamics (1.1). The HMC/SGHMC algo-
rithm studied in [30] and the UL-MCMC/SG-UL-MCMC algorithm [18] analyzed in this paper are

3The original results for LMC/SGLD in [45] and for HMC/SG-HMC in [30] are about the global convergence
in nonconvex optimization. Yet their results can be adapted to sampling from non-log-concave distributions, and
the corresponding gradient complexities can be spelled out from their convergence rates.
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slightly different since they rely on different discretization methods to the Hamiltonian Langevin
dynamics (1.1). In addition, note that λ∗ denotes the spectral gap of the Markov process generated by
overdamped Langevin dynamics (1.4), which is also in the order of exp(−Õ(d)) [9, 45] in the worst
case.

From Table 1, we can see that the proposed SRVR-HMC algorithm strictly outperforms HMC, UL-
MCMC, SGHMC and SG-UL-MCMC, and also outperforms LMC, SGLD and SVRG-LD in terms
of the dependency on target accuracy ε and training sample size n. We remark that for a general
non-log-concave target density, λ∗ and µ∗ are not directly comparable, though both of them are
exponential in dimension d. However, it is shown that for a class of target densities, µ∗ can be in the
order of O(λ

1/2
∗ ) [27, 30], which suggests that SRVR-HMC is also strictly better than LMC, SGLD

and SVRG-LD for sampling from such densities.

Notation. We denote discrete update by lower case bold symbol xk and continuous-time dynamics
by upper case italicized bold symbol Xt. For a vector x ∈ Rd, we denote by ‖x‖2 the Euclidean
norm. For random vectors xk,Xt ∈ Rd, we denote their probability distribution functions by P(xk)
and P(Xt) respectively. For a probability measure µ, we denote by Eµ[X] the expectation of X
under probability measure u. The 2-Wasserstein distance between two probability measures u and v
is

W2(u, v) =

√
inf

ζ∈Γ(u,v)

∫
Rd×Rd

‖Xu −Xv‖22dζ(Xu,Xv),

where the infimum is taken over all joint distributions ζ with u and v being its marginal distributions.
1(·) denotes the indicator function. We denote index set [n] = {1, 2, . . . , n} for an integer n. We
use an = O(bn) to denote that an ≤ Cbn for some constant C > 0 independent of n, and use
an = Õ(bn) to hide the logarithmic factors in bn. The Vinogradov notation an . bn is also used
synonymously with an = O(bn). We denote min{a, b} and max{a, b} by a∧b and a∨b respectively.
The ceiling function dxe outputs the least integer greater than or equal to x.

2 The proposed algorithm

In this section, we present our algorithm, SRVR-HMC, for sampling from a target distribution in
the form of π ∝ exp{−f(x)}. Our algorithm is shown in Algorithm 1, which has a multi-epoch
structure. In detail, there are dK/Le epochs, where K is the number of total iterations and L denotes
the epoch length, i.e., the number of iterations within each inner loop.

Recall that the update rule of HMC in (1.2) requires the computation of full gradient ∇f(xk) at each
iteration, which is the average of n stochastic gradients. This causes a high per-iteration complexity
when n is large. Therefore, we propose to leverage the stochastic gradient to offset the computational
burden. At the beginning of the j-th epoch, we compute a stochastic gradient g̃j based on a batch of
training data (uniformly sampled from [n] without replacement) as shown in Line 4 of Algorithm
1, where the batch is denoted by B̃j with batch size |B̃j | = B0. In each epoch, we make use of
the stochastic path-integrated differential estimator [29] to compute the following semi-stochastic
gradient

gk = 1/B
∑
i∈Bk

[
∇fi(xk)−∇fi(xk−1)

]
+ gk−1, (2.1)

where Bk is another uniformly sampled (without replacement) mini-batch from [n] with mini-batch
size |Bk| = B. Unlike the unbiased stochastic gradient estimators in SGHMC [16] and SVR-HMC
[55], gk is a biased estimator of the full gradient∇f(xk) conditioned on xk. However, we can show
that while being biased, the variance of gk is substantially smaller than that of unbiased ones. This
is the key reason why our algorithm can achieve a faster convergence rate than existing HMC-type
algorithms. Based on the semi-stochastic gradient in (2.1), we update the position and velocity
variables as follows

vk+1 = vke
−γη − uγ−1(1− e−γη)gk + εvk,

xk+1 = xk + γ−1(1− e−γη)vk + uγ−2(γη + e−γη − 1)gk + εxk,
(2.2)

where η is the step size and u, γ are the inverse mass and friction parameter defined in (1.1), which
are usually treated as tunable hyper parameters in practice. Moreover, εvk, ε

x
k ∈ Rd are zero mean
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Algorithm 1 Stochastic Recursive Variance-Reduced gradient HMC (SRVR-HMC)
1: input: Initial points x̃0 = x0 = x0,v0; step size η; batch sizes B0 and B; total number of

iterations K; epoch length L
2: for j = 0, . . . , dK/Le do
3: Uniformly sample a subset of index B̃j ⊂ [n] with |B̃j | = B0

4: Compute g̃j = 1/B0

∑
i∈B̃j ∇fi(x̃j)

5: for l = 0, . . . , L− 1 do
6: k = jL+ l
7: if l = 0 then
8: gk = g̃j
9: else

10: Uniformly sample a subset of index Bk ⊂ [n] with |Bk| = B
11: Compute gk = 1/B

∑
i∈Bk(∇fi(xk)−∇fi(xk−1)) + gk−1

12: end if
13: xk+1 = xk + γ(1− e−γη)vk + uγ−2(γη + e−γη − 1)gk + εxk
14: vk+1 = vke

−γη − uγ−1(1− e−γη)gk + εvk
15: end for
16: x̃j+1 = x(j+1)L

17: end for
18: output: xK

Gaussian random vectors with covariance matrices satisfying

E[εvk(εvk)>] = u(1− e−2γη) · I,
E[εxk(εxk)>] = uγ−2(2γη + 4e−γη − e−2γη − 3) · I,
E[εvk(εxk)>] = uγ−1(1− 2e−γη + e−2γη) · I,

(2.3)

where I ∈ Rd×d is the identity matrix. The covariance of the Gaussian noises in (2.3) is obtained
by integrating the Hamiltonian Langevin dynamics (1.1) over a time period of length η. It is worth
noting our update rule in (2.2) and the construction of the Gaussian noises in (2.3) follow Cheng
et al. [18], Zou et al. [55], Cheng et al. [17], except that we use a different semi-stochastic gradient
estimator as shown in (2.1). In contrast, Cheng et al. [18] uses full gradient and noisy gradient, and
Zou et al. [55] uses an unbiased semi-stochastic gradient based on SVRG [33].

We remark here that the semi-stochastic gradient estimator in (2.1) was originally proposed in finding
stationary points in finite-sum optimization [44, 29] and further extended in [49, 32]. In addition,
another semi-stochastic gradient estimator called SNVRG [54, 53] has also been demonstrated to
achieve similar convergence rate in finite-sum optimization. Despite using the same semi-stochastic
gradient estimator, our work differs from [44, 29] in at least two aspects: (1) the sampling problem
studied in this paper is different from the optimization problem studied in [44, 29], where our goal
is to sample from a target distribution concentrating on the global minimizer of f(x) such that the
sample distribution is close to the target distribution in 2-Wasserstein distance. In contrast, Nguyen
et al. [44], Fang et al. [29] aim at finding a stationary point of f(x) with small gradient; and (2)
the algorithms in [44, 29] only have one update variable, while our SRVR-HMC algorithm has an
additional Hamiltonian momentum term and therefore has two update variables (i.e., velocity and
position variables). The Hamiltonian momentum is essential for underdamped Langevin Monte Carlo
methods to achieve a smaller discretization error than overdamped methods such as SGLD [50] and
SVRG-LD [25]. At the same time, this also introduces a great technical challenge in our theoretical
analysis and requires nontrivial efforts.

3 Main theory

In this section, we provide the convergence guarantee for Algorithm 1. In particular, we characterize
the 2-Wasserstein distance between the distribution of the output of Algorithm 1 and the target
distribution π ∝ e−f(x). We focus on sampling from non-log-concave densities that satisfy the
smoothness and dissipativeness conditions, which are formally defined as follows.
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Assumption 3.1 (Smoothness). Each fi in (1.3) is M -smooth, i.e., there exists a positive constant
M > 0, such that the following holds

‖∇fi(x)−∇fi(y)‖2 ≤M‖x− y‖2, for any x,y ∈ Rd.

Note that Assumption 3.1 directly implies that function f(x) is also M -smooth.
Assumption 3.2 (Dissipativeness). There exist constants m, b > 0, such that the following holds

〈∇f(x),x〉 ≥ m‖x‖22 − b, for any x ∈ Rd.

Different from the smoothness assumption, Assumption 3.2 is only required for f(x) rather than
fi(x). The dissipativeness assumption is standard in the analysis for sampling from non-log-concave
densities and is essential to guarantee the convergence of underdamped Langevin dynamics [46, 41].

3.1 Convergence analysis of the proposed algorithm

Now we state our main theorem that establishes the convergence rate of Algorithm 1.
Theorem 3.3. Suppose Assumptions 3.1 and 3.2 hold and the initial points are x0 = v0 = 0. If set
γ ≤ 2

√
Mu and the step size η ≤ O(mM−3 ∧m1/2M−3/2L−1/2), the output xK of Algorithm 1

satisfies

W2

(
P(xK), π

)
≤ Γ1

((
1 +

L

B

)
Kη3 +

Kη

γ2B0
· 1(B0 < n)

)1/4

+ Γ0e
−µ∗Kη,

where B0, B are the batch and minibatch sizes, L is the epoch length and µ∗ = exp(−Õ(d)) is
a lower bound of the spectral gap of the Markov process generated by (1.1). Γ0 = Õ(µ−1

∗ ) and
Γ1 = 2D1(M2γ3uD2)1/4 are problem-dependent parameters with constants D1, D2 defined as

D1 =
8

γ

√
um(f(0)− f(x∗)) + 2Mu(4d+ 2b+m‖x∗‖22γ2) + (12um+ 3γ2)

m
,

D2 =
8um(f(0)− f(x∗)) + 8Mu

(
20(d+ b) +m‖x∗‖22

)
γ2m

+ max
i∈[n]

‖∇fi(0)‖22
M2

,

and x∗ = argminx∈Rd f(x) is the global minimizer of f .

Theorem 3.3 states that the 2-Wasserstein distance between the output of SRVR-HMC and the target
distribution is upper bounded by two terms: the first term is the discretization error between the
discrete-time Algorithm 1 and the continuous-time dynamics (1.1), which goes to zero when the step
size η goes to zero; the second term represents the ergodicity of the Markov process generated by
(1.1) which converges to zero exponentially fast.
Remark 3.4. The result in Theorem 3.3 encloses a term µ∗ with an exponential dependence on
the dimension d, which is a lower bound of the spectral of the Markov process generated by (1.1).
When f is nonconvex, the exponential dependence of µ∗ on dimension is unavoidable under the
dissipativeness assumption [9]. However, this exponential dependency on d can be weakened by
imposing stronger assumptions on f(x). For instance, Eberle et al. [27], Gao et al. [30] showed that
for a symmetric double-well potential f(x), µ∗ is in the order of Ω(1/a), where a is the distance
between these two wells, and is typically polynomial in the dimension d. Another example is shown
by Cheng et al. [17]: when f(x) is strongly convex outside a `2 ball centered at the origin with radius
R, µ∗ is in the order of exp(−O(MR2)) where M is the smoothness parameter.

From Theorem 3.3, we can obtain the gradient complexity of SRVR-HMC by optimizing the choice
of minibatch size B and batch size B0 in the following corollary.

Corollary 3.5. Under the same assumptions in Theorem 3.3, if setB0 = Õ(ε−4µ−1
∗ ∧n),B . B

1/2
0 ,

L = O(B0/B), and η = Õ(ε2B
−1/2
0 µ

1/2
∗ B), then Algorithm 1 requires Õ((n+ ε−2n1/2µ

−3/2
∗ ) ∧

ε−4µ−2
∗ ) stochastic gradient evaluations to achieve ε-error in 2-Wasserstein distance.

Remark 3.6. Recall the gradient complexities of HMC and SGHMC in Table 1, it is evident that the
gradient complexity of Algorithm 1 is lower than that of HMC [30] by a factor of Õ(ε−2n1/2µ

3/2
∗ ∨

nµ∗) and is lower than that of SGHMC [30] by a factor of Õ(ε−6n−1/2µ
−7/2
∗ ∨ ε−4µ−3

∗ ).
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Remark 3.7. As shown in Table 1, the gradient complexities of overdamped Langevin dynamics
based algorithms, including LMC, SGLD and SVRG-LD, depend on the spectral gap λ∗ of the
Markov chain generated by (1.4). Although the magnitudes of µ∗ and λ∗ are not directly comparable,
they are generally in the same order in the worst case [9, 45, 27]. Thus we treat them the same in the
following comparison. In specific, the gradient complexity of SRVR-HMC is better than those of
LMC [45] SGLD [45] and SVRG-LD [57] by factors of Õ(ε−2n1/2 ∨ n), Õ(ε−6n−1/2 ∨ ε−4) and
Õ(ε−2 ∨ n1/2) respectively.

3.2 Implication for UL-MCMC and SG-UL-MCMC

Recall the proposed SRVR-HMC algorithm in Algorithm 1, if we set the epoch length to be L = 1,
Algorithm 1 degenerates to SG-UL-MCMC [18], with the following update formulation:

vk+1 = vke
−γη − uγ−1(1− e−γη)g̃k + εvk,

xk+1 = xk + γ−1(1− e−γηvk) + uγ−2(γη + e−γη − 1)g̃k + εxk,
(3.1)

where g̃k = |B̃k|−1
∑n
i=1∇fi(xk) denotes the stochastic gradient computed in the k-th iteration. In

addition, if we replace g̃k with the full gradient ∇f(xk), SG-UL-MCMC in (3.1) further reduces
to UL-MCMC [18]. Although these two algorithms were originally proposed for sampling from
strongly-log-concave densities [18], in this subsection, we show that our analysis of SRVR-HMC
can be easily adapted to derive the gradient complexity of UL-MCMC/SG-UL-MCMC for sampling
from non-log-concave densities. We first state the convergence of SG-UL-MCMC in the following
theorem.
Theorem 3.8. Under the same assumptions in Theorem 3.3, the output xK of the SG-UL-MCMC
algorithm in (3.1) satisfies

W2

(
P(xK), π

)
≤ Γ1

[
2Kη3 +Kη/(γ2B0) · 1(B0 < n)

]1/4
+ Γ0e

−µ∗Kη,

where B0 denotes the mini-batch size, µ∗,Γ0 and Γ1 are defined in Theorem 3.3.

Similar to the results in Theorem 3.3, the sampling error of SG-UL-MCMC in 2-Wasserstein distance
is also controlled by the discretization error of the discrete algorithm (3.1) and the ergodicity rate of
Hamiltonian Langevin dynamics (1.1). In particular, the main difference in the convergence results
of SG-UL-MCMC and SRVR-HMC lies in the discretization error term, which leads to a different
gradient complexity for SG-UL-MCMC.

Corollary 3.9. Under the same assumptions in Theorem 3.3, if we set η = Õ(ε2µ
1/2
∗ ) and B0 =

Õ(ε−4µ−1
∗ ), SG-UL-MCMC in (3.1) requires Õ(ε−6µ

−5/2
∗ ) stochastic gradient evaluations to achieve

ε-error in 2-Wasserstein distance. Moreover, UL-MCMC requires Õ(ε−2µ
−3/2
∗ n) stochastic gradient

evaluations to achieve ε-error in 2-Wasserstein distance.
Remark 3.10. Our theoretical analysis suggests that the gradient complexity of UL-MCMC is better
than that of HMC [30] by a factor of O(ε−2µ

−3/2
∗ ) and the gradient complexity of SG-UL-MCMC

is better than that of SGHMC [30] by a factor of O(ε−2µ
−5/2
∗ ). We note that Cheng et al. [17]

proved O(1/ε) convergence rate of UL-MCMC for sampling from a smaller class of non-log-concave
densities in 1-Wasserstein distance. Their result is not directly comparable to our result since 1-
Wasserstein distance is strictly smaller than 2-Wasserstein distance and more importantly, their results
rely on a stronger assumption than the dissipativeness assumption used in our paper as we commented
in Remark 3.4.

4 Experiments

In this section, we evaluate the empirical performance of SRVR-HMC on both synthetic and real
datasets. We compare our proposed algorithm with existing overdamped and underdamped Langevin
based stochastic gradient algorithms including SGLD [50], SVRG-LD [25], SGHMC [16], SG-UL-
MCMC [18] and SVR-HMC [55].

4.1 Sampling from Gaussian mixture distributions
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Figure 1: Kernel density estimation
for Gaussian mixture distribution.

We first demonstrate the performance of SRVR-HMC for fit-
ting a Gaussian mixture model on synthetic data . In this case,
the density on each data point is defined as

e−fi(x) = 2e‖x−ai‖
2
2/2 + e‖x+ai‖22/2,

which is proportional to the probability density function (PDF)
of two-component Gaussian mixture density with weights 1/3
and 2/3. By simple calculation, it can be verified that when
‖ai‖2 ≥ 1, fi(x) is nonconvex but satisfies Assumption 3.2,
and so does f(x) = 1/n

∑n
i=1 fi(x).

We generated n = 500 vectors {ai}i=1,...,n ∈ R2 to construct
the target density functions. We first show that the proposed
algorithm can well approximate the target distribution. Specif-
ically, we run SRVR-HMC for 104 data passes, and use the
last 105 iterates to visualize the estimated distribution, where the batch size, minibatch size and
epoch length are set to be B0 = n, B = 1 and L = n respectively. As a reference, we run MCMC
with Metropolis-Hasting (MH) correction to represent the underlying distribution. Following [3], we
display the kernel densities of random samples generated by SRVR-HMC in Figures 4.1, which shows
that the random samples generated by SRVR-HMC well approximate Gaussian mixture distribution.
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Figure 2: Experiment results for sampling from Gaussian
mixture distribution, where X-axis represents the number of
data passes and Y-axis represents MSE: (a) Comparison with
baseline algorithms. (b) Convergence of SRVR-HMC with
varying batch size B.

In Figure 2(a), we compare the perfor-
mance of SRVR-HMC with baseline
algorithms for sampling from Gaus-
sian mixture distribution. Since di-
rectly computing the 2-Wasserstein
distance is expensive, we resort to the
mean square error (MSE) E[‖x̂−x̄‖22],
where x̄ = Eπ[x] is obtained via run-
ning MCMC with MH correction and
x̂ =

∑k
s=1001 xs/(k − 1000) is the

sample path average, where xs de-
notes the s-th position iterate of the al-
gorithms and we discard the first 1000
iterates as burn-in. We report the MSE
results of all algorithms in Figure 2(a)
by repeating each algorithms for 20
times. It can be seen that SRVR-HMC
converges faster than all baseline algo-
rithms, which is well aligned with our theory. In addition, it can be seen SG-UL-MCMC outperforms
SGHMC, which is consistent with our results in Table 1. We also compare the convergence perfor-
mance of SRVR-HMC with different batch sizes in Figure 2(b). It can be observed that SRVR-HMC
works well for all small batch sizes (B < 20) but becomes significantly worse when B is large
(B = 50). This observation is consistent with Corollary 3.5 where we prove that when B . B

1/2
0

the gradient complexity maintains the same.

4.2 Independent components analysis

We further run the sampling algorithms for independent components analysis (ICA) tasks. In
the ICA model, the input are examples {xi}ni=1, and the likelihood function can be written as
p(x|W) = |det(W)|

∏l
j=1 p(w

>
j x), where W ∈ Rd×l is the model matrix, d is the problem dimen-

sion, l denotes the number of independent components and wj denotes the j-th column of W. Fol-
lowing [50, 25] we set p(w>j x) = 1/(4 cosh2(w>j x/2)) with a Gaussian prior p(W) ∼ N (0, λ−1I).
Then the negative log-posterior can be written as f(W) = 1/n

∑n
i=1 fi(W), where

fi(W) = −n log(|det(W)|)− 2n
∑l
j=1 log

(
cosh(w>j xi/2)

)
+ λ‖W‖2F /2.

We compare the performance of SRVR-HMC with all the baseline algorithms on MEG dataset4,
which consists of 17730 time-points in 122 channels. In order to explore the performance of our

4http://research.ics.aalto.fi/ica/eegmeg/MEG_data.html
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Figure 3: Experiment results for ICA, where X-axis represents the number of data passes, and Y-axis
represents the negative log likelihood on the test dataset: (a)-(b) Comparison with different baselines
(c)-(d) Convergence of SRVR-HMC with varying batch size B.

algorithm for different sample size, we extract two subset with sizes n = 500 and n = 5000 from the
original dataset for training, and regard the rest 12730 examples as test dataset. For inference, we
compute the sample path average while discarding the first 100 iterates as burn-in. We first compare
the convergence performance of SRVR-HMC with baseline algorithms and report the negative log
likelihood on test dataset in Figures 3(a)-3(b), where the batch size, minibatch size and epoch length
are set to be B0 = n/5, B = 10 and L = B0/B, and the rest hyper parameters are tuned to achieve
the best performance. It is worth noting that we do not perform the normalization when evaluating
the test likelihood, thus the negative log likelihood results may be smaller than 0. From Figures
3(a)-3(b) it can be clearly seen that SRVR-HMC outperforms all baseline algorithms, which validates
its superior theoretical properties. Again, we can see that SG-UL-MCMC can decrease the negative
log likelihood much faster than SGHMC, which is well aligned with our theory. Furthermore, we
evaluate the convergence for different minibatch size, which are displayed in Figures 3(c)-3(d), where
the batch size B0 is fixed as n/5 for both scenarios. It can be seen that SRVR-HMC attains similar
convergence performance for all small minibatch sizes (B ≤ 10 when B0 = 100 and B ≤ 20 when
B0 = 1000), which again corroborates our theory that when B . B

1/2
0 the gradient complexity

maintains the same.

We also evaluate our proposed algorithm SRVR-HMC on Bayesian logistic regression. We defer the
additional experimental results to Appendix E due to space limit.

5 Conclusions

We propose a novel algorithm SRVR-HMC based on Hamiltonian Langevin dynamics for sampling
from a class of non-log-concave target densities. We show that SRVR-HMC achieves a lower gradient
complexity in 2-Wasserstein distance than all existing HMC-type algorithms. In addition, we show
that our algorithm reduces to UL-MCMC and SG-UL-MCMC with properly chosen parameters. Our
analysis of SRVR-HMC directly applies to these two algorithms and suggests that UL-MCMC/SG-
UL-MCMC are faster than HMC/SGHMC for sampling from non-log-concave densities.
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A Proof of main theory

In this section, we prove our main theorems and corollaries.

A.1 Proof of Theorem 3.3

We first prove the convergence of Algorithm 1 in terms of 2-Wasserstein distance. To simplify the
proof, we define the following concatenated vectors

zk =

(
xk
vk

)
, Zt =

(
Xt

Vt

)
(A.1)

where xk,vk are the iterates in Algorithm 1 and Xt,Vt are the variables in the continuous-time
dynamics (1.1). Instead of directly boundingW2(P(xk), π), we aim to prove that its upper bound
W2(P(zk), πz) converges to ε-precision, where

πz ∝ exp(−‖v‖22/(2u) + f(x)) (A.2)

denotes the stationary distribution of Hamiltonian dynamics (1.1) with respect to both x and v. By
triangle inequality, it holds that

W2

(
P(zk), πz

)
≤ W2

(
P(zk),P(Zkη)

)
+W2

(
P(Zkη), πz

)
. (A.3)

The first term on the R.H.S. of (A.3) represents the discretization error of Algorithm 1, and the second
term is typically referred to the ergodicity of the continuous-time dynamics (1.1), which characterizes
the mixing time of the Markov process (Xt,Vt). These two terms can be upper bounded by the
following lemmas respectively.
Lemma A.1. Suppose the initial point of Algorithm 1 is x = v = 0. zk and Zt are defined as in
(A.1). Under Assumptions 3.1 and 3.2, if we set the step size η = O(mM−3 ∧m1/2M−3/2L−1/2),
the 2-Wasserstein distance between the iterate zk generated by Algorithm 1 and the point Zkη
generated by Hamiltonian dynamics (1.1) is upper bounded as follows,

W2

(
P(zk),P(Zkη)

)
≤ 2Λ̄

(
M2γ3uĒ

(
1 +

L

B

)
Kη3 +

M2γuĒKη
B0

· 1(B0 < n)

)1/4

,

where Λ̄ and Ē are defined as

Λ̄ =
8

γ

√
um(f(x0)− f(x∗)) + 2Mu(4d+ 2b+m‖x∗‖22γ2) + (12um+ 3γ2)

m
,

Ē =
8um(f(x0)− f(x∗)) + 8Mu

(
20(d+ b) +m‖x∗‖22

)
γ2m

+
G2

M2
,

G = maxi∈n ‖∇fi(0)‖2 and x∗ = argminxRd f(x) is the global minimizer of f .
Lemma A.2. Zt and πz are defined as in (A.1) and (A.2) respectively. Under Assumptions 3.1 and
3.2, then we have

W2

(
P(Zt), πz

)
≤ Γ0e

−µ∗t,

where µ∗ denotes the contraction rate of Hamiltonian Langevin dynamics (1.1), which is in the order
of e−Õ(d) under Assumption 3.2, and Γ0 is a constant of order O(1/µ∗).

Here µ∗ serves as a lower bound of the spectral gap of the spectral gap of the Markov process
generated by (1.1), and in the worst case the exponential dependency on d is unavoidable [27].

Based on the above two lemmas, the proof of Theorem 3.3 is straightforward.

Proof of Theorem 3.3. By Lemmas A.1 and A.2, it holds that

W2

(
P(zK), πz

)
≤ W2

(
P(zK),P(ZKη)

)
+W2

(
P(ZKη), πz

)
≤ Γ1

[(
1 +

L

B

)
Kη3 +

Kη

γ2B0
· 1(B0 < n)

]1/4

+ Γ0e
−µ∗Kη,

where Γ1 = 2D1(M2γ3uD2)1/4, Γ0 is defined in A.2, and D1, D2 correspond to Λ̄ and Ē in
Lemmas A.1 respectively. By plugging in the definition of 2-Wasserstein distance, we obtain the fact
thatW2

(
P(xK), π

)
≤ W2

(
P(zK), πz

)
, which completes the proof.
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A.2 Proof of Corollary 3.5

Proof. In order to ensure the 2-Wasserstein distanceW2

(
P(xk), π

)
≤ ε, we can set

Γ1

[(
1 +

L

B

)
Kη3 +

Kη

γ2B0
· 1(B0 < n)

]1/4

≤ ε

2
and Γ0e

−µ∗Kη =
ε

2
. (A.4)

For the first equation in (A.4), we further set η sufficiently small and B0 sufficiently large such that(
1 +

L

B

)
Kη3 =

1

2

(
ε

2Γ1

)4

and
Kη

γ2B0
· 1(B0 < n) ≤ 1

2

(
ε

2Γ1

)4

.

Solving the second equation in (A.4), we obtain Kη = µ−1
∗ log(2Γ0/ε). Plugging this into the above

equations, we have

η =
ε2µ

1/2
∗

4
√

2Γ2
1

√
(1 + L/B) log(2Γ0/ε)

, B0 =
32Γ4

1 log(2Γ0/ε)

ε4γ2µ∗
∧ n.

Combining the choice of η and the fact that Kη = µ−1
∗ log(2Γ0/ε), we get

K =
4
√

2Γ2
1(1 + L/B)1/2 log3/2(2Γ0/ε)

ε2µ
3/2
∗

.

Now we can calculate the total gradient complexity of Algorithm 1 as follows:
Tg = KB +KB0/L+B0.

In order to minimize the gradient complexity, it requires to set BL = O(B0) which implies that
η = O(ε2µ

1/2
∗ B

−1/2
0 B). Then we have

Tg = Õ(B0 + (B2 + LB)1/2µ
−3/2
∗ ε−2

)
.

Note that B0 = Õ(ε−4 ∧ n). Thus we can chose the set size B such that B2 . B0 and get

Tg = Õ(ε−2µ
−3/2
∗ B

1/2
0 ) +O(B0) = Õ

((
ε−2µ

−3/2
∗ n1/2 + n

)
∧ ε−4µ−2

∗
)
.

This completes the proof.

A.3 Proof of Theorem 3.8

Proof of Theorem 3.8. As we mentioned before, the proposed algorithm can reduce to a variant of
SGHMC algorithm by setting L = 1. Therefore, the convergence guarantee of SGHMC can be
directly generalized from Theorem 3.3, i.e.,

W2

(
P(xK), π

)
≤ Γ1

[(
1 +

1

B

)
Kη3 +

Kη

γ2B0
· 1(B0 < n)

]1/4

+ Γ0e
−µ∗Kη.

Since B ≥ 1, we have 1/B ≤ 1. Plugging this into the above inequality, we can complete the
proof.

A.4 Proof of Corollary 3.9

Proof of Corollary 3.9. In order to guarantee the distanceW2

(
P(xK), π

)
be smaller than ε, we can

set

2Kη3 =
ε4

32Γ4
1

,
Kη

γ2B0
1(B0 < n) =

ε4

32Γ4
1

and Γ0e
−µ∗Kη =

ε

2
.

Solving the above equations, we get

Kη = µ−1
∗ log(2Γ0/ε), η =

ε2µ
1/2
∗

8Γ2
1

√
log(2Γ0/ε)

, B0 =
32Γ4

1 log(2Γ0/ε)

ε4γ2µ∗
∧ n.

Solving the above we further obtain

K =
8Γ2

1 log3/2(2Γ0/ε)

ε2µ
3/2
∗

,

which implies that the gradient complexity of SG-UL-MCMC is

T = KB0 = Õ
(
ε−6µ−5/2 ∧ ε−2µ−3/2n

)
.

This completes the proof.
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B Proof of technical lemmas

In this section, we provide the proofs of the two key lemmas presented in the analysis in Appendix A.

B.1 Proof of Lemma A.1

We first lay down the supporting lemmas that would be useful in our proof.
Lemma B.1 (Lemma 10 in [18]). The Hamiltonian Langevin dynamics (1.1) has the following
solution

Vt = V0e
−γt − u

∫ t

0

e−γ(t−s)∇f(Xt)ds+ ε̃vt , (B.1)

Xt = X0 +
1− e−γt

γ
V0 + u

∫ t

0

∫ s

0

e−γ(s−r)∇f(Xr)drds+ ε̃xt , (B.2)

where ε̃vt =
√

2γu
∫ t

0
e−γ(t−s)dBs and ε̃xt =

√
2γu

∫ t
0

∫ s
0
e−γ(s−r)dBrds are Gaussian random

variables with mean 0 and their covariance matrices are as follows:

E[ε̃vt (ε̃
v
t )
>] = u(1− e−2γt) · Id×d

E[ε̃xt (ε̃xt )>] =
u

γ2
(2γt+ 4e−γt − e−2γt − 3) · Id×d

E[ε̃vt (ε̃
x
t )>] =

u

γ
(1− 2e−γt + e−2γt) · Id×d.

To prove the convergence of Algorithm 1, we define a Lyapunov function for all (x,v) ∈ Rd × Rd
as follows

E(x,y) = ‖x‖22 + ‖x + 2v/γ‖22 + 8u
(
f(x)− f(x∗)

)
/γ2. (B.3)

Note that ‖a‖22 + ‖b‖22 ≥ ‖a− b‖22/2. By the definition of E and the fact that f(x) ≥ f(x∗), we
have

E(x,v) ≥ ‖x‖22 + ‖x + 2v/γ‖22 ≥ max{‖x‖22, 2‖v/γ‖22}. (B.4)

Lemma B.2. Under Assumptions 3.1 and 3.2, if we set the step size of Algorithm 1 according to the
following condition:

η ≤ min

(
γ

4(8Mu+ uγ + 22γ2)
,

√
4u2

4Mu+ 3γ2
,

6γbu

(4Mu+ 3γ2)d
,

γ4m

48(46γ2 + 288uγ + 32u)M3u
,

γm1/2

48M3/2(γ2 + u)1/2L1/2
,

γ√
6Mu

,
γĒ1/2

2Gu
,

1

2
√
Lγ

)
,

and B0 ≥ min{1/η, n}, then for all k ≥ 0, E[‖xk‖22], E[‖vk‖22] and E[‖gk‖22] can be bounded as
follows,

E[‖xk‖22] ≤ Ē , E[‖vk‖22] ≤ γ2Ē/2, and E[‖gk‖22] ≤ 14M2Ē ,

where Ē is defined as

Ē = E(x0,v0) +
8Mu

[
16(d+ b) +m‖x∗‖22

]
γ2m

+
G2

M2
, G = max

i∈n
‖∇fi(0)‖2,

and E(x,y) is the Lyapunov function defined in (B.3).

The following lemma characterizes the expected distance between the semi-stochastic gradient gk
and the full gradient∇f(xk).
Lemma B.3. Suppose Assumptions 3.1 and 3.2 hold. For Algorithm 1, if we choose the same step
size η used in Lemma B.2, then it holds that

E[‖gk −∇f(xk)‖22] ≤ 4LM2γ2η2Ē
B

+
4M2Ē
B0

· 1(B0 < n),

where Ē is defined in Lemma B.2.
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The next lemma is referred to as the exponential integrability.
Lemma B.4. Suppose Assumptions 3.1 and 3.2 hold. Let θ > 0 be any constant such that θ ≤
min{γ2/(128u),m/32}. Then, it holds that

log
(
E
[
eθ(‖Xt‖22+‖Vt‖22)

])
≤ 2θE(X0,V0) +

32Mθu
(
4d+ 2b+m‖x∗‖22)

)
γ2m

,

where E(x,y) is the Lyapunov function defined in (B.3).

The following weighted CKP inequality gives a tight connection between 2-Wasserstein distance and
KL divergence.
Lemma B.5 (Weighted CKP Inequality [7]). For any two probability measures P and Q, if they
have finite second moments, the following holds,

W2(Q,P ) ≤ Λ(
√
DKL(Q||P ) + 4

√
DKL(Q||P )),

where Λ = 2 infθ>0

√
1/θ(3/2 + logEx∼P [eθ‖x‖

2
2 ]).

Now we are ready to prove our first key lemma on the discretization error of Algorithm 1.

Proof of Lemma A.1. By the weighted CKP inequality in Lemma B.5, we have

W2

(
P(zK),P(ZKη)

)
≤ Λ

(√
DKL(P(zK)||P(ZKη)) + 4

√
DKL(P(zK)||P(ZKη))

)
, (B.5)

where Λ = 2 infθ>0

√
1/θ(3/2 + logEP(ZT )[e

θ‖ZT ‖22 ]) and T = Kη. By (A.1) it holds that
‖ZT ‖22 = ‖XT ‖22 + ‖VT ‖22. Applying Lemma B.4, we obtain

Λ = 2 inf
θ>0

√
1/θ(3/2 + logEPT [eθ(‖XT ‖22+‖VT ‖22 ])

≤ 2 inf
0<θ≤min{ γ2

128u ,
m
32}

√
1

θ

(
3

2
+ 2θE(X0,V0) +

32Mθu
(
4d+ 2b+m‖x∗‖22

)
γ2m

)

≤ 2

√
2E(X0,V0) +

32Mu
(
4d+ 2b+m‖x∗‖22

)
+ 16(12um+ 3γ2)

γ2m
:= Λ̄, (B.6)

where in the last inequality we used the fact that the infimum value is attained at θ =
min{γ2/(128u),m/32} and the fact that 1/θ ≤ 128u/γ2 + 32/m. Therefore, it remains to prove
the upper bound of the KL divergence between distributions P(zK) and P(ZKη), which can be done
by following the standard techniques in [21, 45, 51] to construct a continuous-time Markov process.
In particular, based on the update rule in Algorithm 1, we define the following continuous-time
interpolation of (vk,xk)

dṼt = −γṼtdt− uG̃tdt+
√

2γu · dBt

dX̃t = Ṽtdt, (B.7)

where G̃t =
∑∞
k=0 gk 1{t ∈ [kη, (k + 1)η)} remains invariant in each interval [kη, (k + 1)η) and

gk is the semi-stochastic gradient at the k-th iteration of Algorithm 1. It can be verified that the
distribution of (vk,xk) is identical to that of (Ṽkη, X̃kη). Integrating (B.7) from 0 to t gives

Ṽt = Ṽ0 −
∫ t

0

γṼsds−
∫ t

0

uG̃sds+

∫ t

0

√
2γu · dBs,

X̃t = X̃0 +

∫ t

0

Ṽsds.

Due to the semi-stochastic gradient gk, (B.7) does not form a Markov chain since G̃s contains
additional randomness introduced by the stochastic gradient. Nevertheless, Gyöngy [31] showed
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that we can use the following Markov chain whose one-time marginal distribution mimics that of
(Ṽt, X̃t),

V̂t = V̂0 −
∫ t

0

γV̂sds−
∫ t

0

uĜsds+

∫ t

0

√
2γu · dBs,

X̂t = X̂0 +

∫ t

0

V̂sds,

where Ĝs = E[G̃s|Ṽs = V̂s]. Next, we let Pt denote the probability measure of the point (Vt,Xt)

in Hamiltonian Langevin dynamics and Qt denote the probability measure of (V̂t, X̂t). By Girsanov
formula [39] we can derive the Radon-Nikodym derivative of Pt with respect to Qt as follows:

dPt
dQt

= exp

{√
γu

2

∫ t

0

(
∇f(X̂s)− Ĝs

)
· dBs −

γu

4

∫ t

0

∥∥∇f(X̂s)− Ĝs

∥∥2

2
ds
}
.

When we choose T = Kη, it follows that

DKL(QT ||PT ) = EQT

[
log

(
dPT
dQT

)]
=
γu

4

∫ T

0

E
[∥∥∇f(X̂s)− Ĝs

∥∥2

2

]
ds

=
γu

4

∫ T

0

E
[∥∥∇f(X̃s)− G̃s

∥∥2

2

]
ds

=
γu

4

K−1∑
k=0

∫ (k+1)η

kη

E
[∥∥∇f(X̃s)− G̃s

∥∥2

2

]
ds, (B.8)

where the third equality holds since X̂s has the same distribution as X̃s. Moreover, note that G̃s is a
step function based on semi-stochastic gradients {gk}k=1,...,K , and equals gk when s ∈ [kη, (k+1)η)
for all k < K. Therefore, in the k-th interval, i.e., s ∈ [kη, (k + 1)η), we have

E[‖∇f(X̃s)− G̃s‖22] ≤ 2E[‖∇f(X̃s)−∇f(xk)‖22] + 2E[‖∇f(xk)− gk‖22], (B.9)

where xk = X̃kη is the k-th iterate in Algorithm 1. We then upper bound two terms on the R.H.S. of
(B.9) separately. Regarding the first term E[‖∇f(X̃s)−∇f(xk)‖22], Assumption 3.1 implies

E[‖∇f(X̃s)−∇f(xk)‖22] ≤M2E[‖X̃s − X̃kη‖22], (B.10)

where we replaced xk with X̃kη . Multiplying eγt to both sides of the first equation in (B.7) yields

(dṼt + γṼtdt)eγt = −uG̃te
γtdt+

√
2γu · eγt · dBt.

Note that (dṼt + γṼtdt)e
γt = d

(
Ṽte

γt
)
, integrating both sides over t from kη to r gives

Ṽre
γr − Ṽkηeγkη =

∫ r

kη

−uG̃ze
γzdz +

∫ r

kη

√
2γu · eγz · dBz,

which can be further simplified as

Ṽr = Ṽkη · e−γ(r−kη) −
∫ r

kη

uG̃ze
−γ(r−z)dz +

∫ r

kη

√
2γu · e−γ(r−z) · dBz.

Thus by the second equation in (B.7) we have

X̃s = X̃kη +

∫ s

kη

Ṽrdr

= X̃kη +

∫ s

kη

(
Ṽkηe

−γ(r−kη) − u
(∫ r

kη

e−γ(r−z)G̃kηdz
)

+
√

2γu

∫ r

kη

e−γ(r−z)dBz

)
dr,
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where G̃z = G̃kη for z ∈ [kη, (k + 1)η) by definition. This further implies that∥∥X̃s − X̃kη

∥∥2

2
=

∥∥∥∥∫ s

kη

(
Ṽkηe

−γ(r−kη) − u
∫ r

kη

e−γ(r−z)G̃kηdz +
√

2γu

∫ r

0

e−γ(r−z)dBz

)
dr
∥∥∥∥2

2

≤ 3

∥∥∥∥∫ s

kη

Ṽkηe
−γ(r−kη)dr

∥∥∥∥2

2

+ 3u2

∥∥∥∥∫ s

kη

∫ r

kη

e−γ(r−z)G̃kηdzdr
∥∥∥∥2

2

+ 6γu

∥∥∥∥∫ s

kη

∫ r

0

e−γ(r−z)dBzdr
∥∥∥∥2

2

≤ 3η2‖vk‖22 + 3u2η4‖gk‖22 + 6γu

∥∥∥∥∫ s

kη

∫ r

0

e−γ(r−z)dBzdr
∥∥∥∥2

2

,

where the second inequality follows from the fact that (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and the last
inequality follows from facts that s ∈ [kη, (k + 1)η)), Ṽkη = vk, G̃kη = gk and e−γ(r−z) ≤ 1.
Moreover, by Lemma B.1, we have

E
[∥∥∥∥ ∫ s

kη

∫ r

0

e−γ(r−z)dBzdr
∥∥∥∥2

2

]
=

d

γ2
(2γ(s− kη) + 4e−γ(s−kη) − e−2γ(s−kη) − 3) ≤ 2dη2,

where we use inequality 1− x ≤ e−x ≤ 1− x+ x2/2 for positive x and 0 ≤ s− kη ≤ η to get the
last inequality. Combining the above analysis and (B.10), we have

E[‖∇f(X̃s)−∇f(xk)‖22] ≤ 3M2η2
(
E[‖vk‖22] + u2η2E[‖gk‖22]/4 + 4γud

)
.

Applying Lemma B.2 and setting η2 ≤ min{γ2/(4M2u2), γ2Ē/(2G2u2)}, we have

E[‖∇f(X̃s)−∇f(xk)‖22] ≤ 4M2γ2η2Ē .
Then in terms of the second term on the R.H.S. of (B.9), we have the following by Lemma B.3,

E[‖∇f(xk)− gk‖22] ≤ 4LM2γ2η2Ē
B

+
4M2Ē
B0

· 1(B0 < n).

Plugging the above inequalities into (B.9) and further (B.8), we have

DKL(QT ||PT ) =
γu

4

K−1∑
k=0

∫ (k+1)η

kη

E[‖∇f(X̃s)− G̃s‖22]

≤M2γ3uĒ
(

1 +
L

B

)
Kη3 +

M2γuĒKη
B0

· 1(B0 < n). (B.11)

Combining (B.5), (B.6) and (B.11) and assuming that DKL(QT ||PT ) ≤ 1, we get

W2(QKη,PKη) ≤ 2Λ̄

(
M2γ3uĒ

(
1 +

L

B

)
Kη3 +

M2γuĒKη
B0

· 1(B0 < n)

)1/4

,

which completes the proof.

B.2 Proof of Lemma A.2

Now we prove Lemma A.2 which characterizes the exponential mixing rate of the Hamiltonian
dynamics (1.1). Our analysis will be built based on the contraction results of Langevin dynamics in
[27]. We first lay down some useful lemmas that will be used in our analysis.

The following lemma is a direct implication of Assumption 3.2.
Lemma B.6. If f(x) satisfies Assumption 3.2, then for all x ∈ Rd it holds that

〈∇f(x),x〉/2 ≥ λ
(
f(x) + u−1γ2‖x‖22/4

)
−A, (B.12)

where λ and A are parameters defined as

λ =
2m

4M + u−1γ2
and A =

2m(f(x∗) +M‖x∗‖22)

4M + u−1γ2
+
b

2
. (B.13)
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Before we present the contraction results provided in [27], we first define a semi-metricWρ(·, ·). For
any concatenated vectors (x,v), (x′,v′) ∈ R2d (equivalently, x,v,x′,v′ ∈ Rd), we define

r((x,v), (x′,v′)) = α‖x− x′‖2 + ‖x− x′ + γ−1(v − v′)‖2,
ρ((x,v), (x′,v′)) = h(r((x,v), (x′,v′)))(1 + θV(x,v) + θV(x′,v′)),

(B.14)

where α, θ ∈ (0,∞) are constants. h : [0,∞)→ [0,∞) (1) is a continuous, non-decreasing concave
function which is C2 continuous on (0, R1) for some constant R1 > 0; (2) is a constant function on
[0,∞); (3) and satisfies h(0) = 0, h′+(0) = 1 and h′−(R1) > 0. V : R2d → R is defined as follows

V(x,v) = f(x) +
γ2

4u

(
‖x + γ−1v‖22 + ‖γ−1v‖22 − λ‖x‖22

)
,

where γ, u are the parameter of dynamics in (1.1), λ is defined in (B.13). For any two probability
measures µ and ν, we define

Wρ(µ, ν) = inf
ζ∈Γ(µ,ν)

∫
ρ((x,v), (x′,v′))dζ((x,v), (x′,v′)), (B.15)

where the infimum is over all couplings of µ and ν. As is pointed out by Eberle et al. [27], Wρ

may not necessarily be a metric and thus triangle inequality does not hold. Therefore, we callWρ a
semi-metric.

Recall the solution of Hamiltonian dynamics in Lemma B.1. We use Lt to denote the operator of
integration on the dynamics from time 0 to t. That is, LtV0 = Vt and LtX0 = Xt denote the velocity
and the position of the random process. Suppose the initial point Z0 = (X>0 ,V

>
0 )> ∈ R2d follows

a distribution µ. Then with a slight abuse of notation, we also use Ltµ to denote the distribution of
Zt = (X>t ,V

>
t )>. Built on the above preliminaries and notations, the following lemma is about the

contraction of Hamiltonian dynamics in terms of semi-metricWρ.
Lemma B.7 (Theorem 2.3 and Corollary 2.6 in [27]). Suppose Assumptions 3.1 and 3.2 hold and
thus (B.12) is true. There exist constants α, θ > 0 and a continuous non-decreasing concave function
h : [0,∞)→ [0,∞) as required in (B.14) such that for all probability measures µ, ν, it holds that

W2(Ltµ,Ltν) ≤ C0

√
Wρ(µ, ν)e−µ∗t

for all t ≥ 0, where µ∗ is a lower bound of the spectral gap of Markov chain (1.1) and satisfies

µ∗ =
1

768γeΛ
min{λMueΛ,Λ1/2Mu, γΛ1/2},

Λ =
12(1 + 2α+ 2α2)(d+A)Mu

5γ2λ(1− 2λ)
,

C0 =

√
2e1+Λ/2

min{1, α}
max

{
1,

2
√

2 + 4α+ 4α2(d+A)1/2u1/2γ−1/2µ
−1/2
∗

min{1, (8Λ/M)1/4}

}
,

(B.16)

γ, u are the parameters in dynamics (1.1) and λ,A are defined in (B.13).

In particular, for Lemma B.7, the function h in the definition of semi-metricWρ in (B.15) is chosen
as follows:

h(r) =

∫ r∧R1

0

φ(s)g(s)ds,

where R1 =
√

8Λ/M and the auxiliary functions are defined as

φ(s) = e−
(1+η)Ms2

8 − γ
2s2 max{1,1/(2α)}

2u , Φ(s) =

∫ s

0

φ(x)dx,

g(s) = 1− 9λ∗γ

4u

∫ s

0

Φ(x)φ(x)−1dx.

Now we are ready to complete the proof of Lemma A.2.

19



Proof of Lemma A.2. By (2.11) in [27], we know that the function h(r) is upper bounded by R1 =√
8Λ/M defined in Lemma B.7. Thus, the distance function ρ((x,v), (x′,v′)) can be bounded as

ρ((x,v), (x′,v′)) ≤ R1(1 + θV(x,v) + θV(x′,v′)).

Let µ0 denote the distribution of (x0,v0). It follows that

Wρ(µ0, πz) = inf
ζ∈Γ(µ0,πz)

∫
ρ((x0,v0), (xπ,vπ))dζ((x0,v0), (xπ,vπ))

≤ R1

(
1 + θE[V(x0,v0)] + θE[V(xπ,vπ)]

)
. (B.17)

Moreover, recall the definition of function V(x,v) we have

V(x,v) = f(x) +
γ2

4u

(
‖x + γ−1v‖22 + ‖γ−1v‖22 − λ‖x‖22

)
≤ f(x∗) +

M

2
‖x− x∗‖22 +

γ2

4u

(
‖x + γ−1v‖22 + ‖γ−1v‖22 − λ‖x‖22

)
≤ f(x∗) +

(
M +

γ2(2− λ)

4u

)
‖x‖22 +M‖x∗‖22 +

3‖v‖22
4u

,

where the first inequality comes from the smoothness of f (Assumption 3.1) and the second inequality
is due to the fact that (a + b)2 ≤ 2a2 + 2b2 for any a, b. Note that the stationary distribution π is
proportional to the function e−f(x)−‖v‖22/(2u). As is shown in [45] (Section 3.5, equation (3.19)), we
know that

E[‖xπ‖22] ≤ b+ d

m
.

In addition, since the marginal distribution of vπ is a d dimensional Gaussian distribution, we have
E[‖vπ‖22] = du. Plugging these into (B.17), we have

Wρ(µ0, πz) ≤ R1

(
1 + θE[V(x0,v0)] + θE[V(xπ,vπ)]

)
≤ R1

(
1 + θ

(
V(x0,v0) + f(x∗) +

(
4Mu+ γ2(2− λ)

)
(b+ d)

4um
+ d+M‖x∗‖22

))
.

Moreover, note the fact that x0 = v0 = 0. We further obtain

Wρ(µ0, πz) ≤ R1

(
1 + θ

(
2f(x∗) +

(
4Mu+ γ2(2− λ)

)
(b+ d)

4um
+ d+ 2M‖x∗‖22

))
:= Θ.

For the stationary distribution πz, it is invariant under the Hamiltonian dynamics, i.e., Ltπz = πz for
any t ≥ 0. Note that Ltµ0 = P(Zt) by definition. By Lemma B.7, we have

W2

(
P(Zt), πz

)
≤ C0

√
Wρ

(
P(Z0), πz

)
e−µ∗t

≤ C0Θ1/2e−µ∗t,

where µ∗ and C0 are defined in (B.16) in Lemma B.7. Let Γ0 = C0Θ1/2, it can be seen that both Γ0

and 1/µ∗ are in the order of exp(Õ(d)). This completes the proof.

C Proof of technical lemmas in Appendix B

In this section, we prove the technical lemmas used in the proof of our key lemmas.

C.1 Proof of Lemma B.2

We first present the following lemma on upper bound of the gradient norm, which is a straightforward
implication of the smoothness of f .
Lemma C.1. Under Assumption 3.1, for all x ∈ Rd and i ∈ [n], it holds that

‖∇fi(x)‖2 ≤M‖x‖2 +G,

where G = maxi∈[n] ‖∇fi(0)‖2 is a constant.
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Lemma C.2. Under Assumption 3.1, let k = jm+ l, it holds that

E[‖gk −∇f(xk)‖22] ≤ M2

B

jm+l∑
s=jm

E[‖xs+1 − xs‖22] +
2

B0
E[‖xjm‖22 +G2] · 1(B0 < n),

where G follows the same definition in Lemma C.1.

Proof of Lemma B.2. Recall the Lyapunov function defined in (B.3), we have

E(xk+1,vk+1) = ‖xk+1‖22 + ‖xk+1 + 2vk+1/γ‖22 + 8u
(
f(xk+1)− f(x∗)

)
/γ2. (C.1)

By Assumption 3.1, it holds that

f(xk+1)− f(x∗) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+M‖xk+1 − xk‖22/2− f(x∗). (C.2)

For the first two terms in (C.1), we have

‖xk+1‖22 = ‖xk‖22 + 2〈xk,xk+1 − xk〉+ ‖xk+1 − xk‖22,
‖xk+1 + 2vk+1/γ‖22 = ‖xk + 2vk/γ‖22 + 2〈xk + 2vk/γ,xk+1 − xk + 2(vk+1 − vk)/γ〉

+ ‖xk+1 − xk + 2(vk+1 − vk)/γ‖22,

Substituting the above two equations and (C.2) into (C.1) yields

E[E(xk+1,vk+1)]

≤ E[E(xk,vk)] + 4E[〈xk,xk+1 − xk〉] +
4

γ
E[〈xk,vk+1 − vk〉] +

4

γ
E[〈vk,xk+1 − xk〉]

+
8

γ2
E[〈vk,vk+1 − vk〉] +

8u

γ2
E
[
〈∇f(xk),xk+1 − xk〉+M/2‖xk+1 − xk‖22

]
+ E[‖xk+1 − xk‖22] + E[‖xk+1 − xk + 2(vk+1 − vk)/γ‖22]. (C.3)

Next, we need to upper bound inner products terms 〈xk,xk+1 − xk〉, 〈xk,vk+1 − vk〉, 〈vk,xk+1 −
xk〉, and 〈vk,vk+1 − vk〉 respectively. Recall the update formula of Algorithm 1 as follows,

vk+1 = vke
−γη − u(1− e−γη)

γ
gk + εvk,

xk+1 = xk +
1− e−γη

γ
vk +

u(γη + e−γη − 1)

γ2
gk + εxk.

(C.4)

Note that εvk and εxk are zero mean and independent of vk,xk and gk. Then we have

E[〈xk,xk+1 − xk〉] =
1− e−γη

γ
E[〈xk,vk〉] +

u(γη + e−γη − 1)

γ2
E[〈xk,gk〉],

E[〈xk,vk+1 − vk〉] = −
(
1− e−γη

)
E[〈xk,vk〉]−

u(1− e−γη)

γ
E[〈xk,gk〉],

E[〈vk,xk+1 − xk〉] =
1− e−γη

γ
E[‖vk‖22] +

u(γη + e−γη − 1)

γ2
E[〈vk,gk〉],

E[〈vk,vk+1 − vk〉] = −
(
1− e−γη

)
E[‖vk‖22]− u(1− e−γη)

γ
E[〈vk,gk〉].

Plugging the above bounds for inner products and (C.4) into (C.3) yields

E[E(xk+1,vk+1)]

≤ E[E(xk,vk)]− 4u(2− γη − 2e−γη)

γ2
E[〈xk,gk〉]−

4(1− e−γη)

γ2
E[‖vk‖22]

+
4u
(
γη + e−γη − 1

)
γ3

E[〈vk,gk〉] +
8u(1− e−γη)

γ3
E[〈vk,∇f(xk)− gk〉]

+
8u2
(
γη + e−γη − 1

)
γ4

E[〈∇f(xk),gk〉] +

(
4Mu

γ2
+ 3

)
E[‖xk+1 − xk‖22]
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+
8

γ2
E[‖vk+1 − vk‖22]. (C.5)

By Assumption 3.2, we know that 〈xk,∇f(xk)〉 ≥ m‖xk‖22 − b. We then assume η ≤ 1/(8γ) and
use the inequality −x ≤ e−x − 1 ≤ x2/2− x for any x ≥ 0, it follows that

4u(2− γη − 2e−γη)

γ2
E[〈xk,gk〉]

=
4u(2− γη − 2e−γη)

γ2

[
E[〈xk,∇f(xk)〉] + E[〈xk,gk −∇f(x)〉]

]
≥ 4u(2− γη − 2e−γη)

γ2

(
m‖xk‖22 − b

)
− 4u(2− γη − 2e−γη)

γ2

(
1

8
E[‖xk‖22] + 2E[‖gk −∇f(xk)‖22]

)
≥ 3muη

γ
‖xk‖22 −

4uηb

γ
− 8uη

γ
E[‖gk −∇f(xk)‖22],

where the first inequality is by Young’s inequality and the last one is based on the inequality
γη − (γη)2 ≤ 2− γη − 2e−γη ≤ γη. Similarly, by Young’s inequality, we also have

8u(1− e−γ)

γ3
E[〈vk,∇f(xk)− gk〉] ≤

8u(1− e−γη)

γ3

[
γ

8u
E[‖vk‖22] +

2u

γ
E[‖∇f(xk)− gk‖22]

]
≤ 1− e−γη

γ2
E[‖vk‖22] +

16u2η

γ3
E[‖∇f(xk)− gk‖22].

Then again by Young’s inequalities E[〈vk,gk〉] ≤ 1/2E[‖vk‖22] + 1/2E[‖gk‖22] and
E[〈∇f(xk),gk〉] ≤ 1/2E[‖∇f(xk)‖22] + 1/2E[‖gk‖22], (C.5) can be further simplified as

E[E(xk+1,vk+1)]

≤ E[E(xk,vk)]− 3umη

γ
E[‖xk‖22] +

4uηb

γ
− 3(1− e−γη)− uγη2

γ2
E[‖vk‖22]

+
8uγ2η + 16u2η

γ3
E[‖∇f(xk)− gk‖22] +

(2u+ γ)uη2

γ2
E[‖gk‖22] +

2u2η2

γ2
E[‖∇f(xk)‖22]

+

(
4Mu

γ2
+ 3

)
E[‖xk+1 − xk‖22] +

8

γ2
E[‖vk+1 − vk‖22], (C.6)

where we use the inequality −x ≤ e−x − 1 ≤ x2/2− x again. We then focus on bounding terms
E[‖xk+1 − xk‖22] and E[‖vk+1 − vk‖22]. According to (C.4), we have

E[‖xk+1 − xk‖22] = E
[∥∥∥∥1− e−γη

γ
vk +

u(γη + e−γη − 1)

γ2
gk

∥∥∥∥2

2

]
+ E[‖εxk‖22]

≤ 2η2E[‖vk‖22] +
u2η4

2
E[‖gk‖22] + E[‖εxk‖22], (C.7)

where the first equation is due to the independence between εxk and vk,gk, and the inequality come
from the fact that −x ≤ e−x − 1 ≤ x2/2 − x and Young’s inequality to (C.4). Similarly, we also
have

E[‖vk+1 − vk‖22] ≤ 2γ2η2E[‖vk‖22] + 2u2η2E[‖gk‖22] + E[‖εvk‖22]. (C.8)

Furthermore, by (2.3) it can be easily verified that E[‖εvk‖22] ≤ 2γudη and E[‖εxk‖22] ≤ 2udη2.
Plugging (C.7) and (C.8) into (C.6) gives

E[E(xk+1,vk+1)]

≤ E[E(xk,vk)]− 3umη2

γ
E[‖xk‖22]−

3(1− e−γη)− η2
(
8Mu+ uγ + 22γ2

)
γ2

E[‖vk‖22]

+
36u2η2 + 2γuη2 + (4Mu+ 3γ2)η4

2γ2
E[‖gk‖22] +

2u2η2

γ2
E[‖∇f(xk)‖22]

+
8uη(γ2 + 2u)

γ3
E[‖∇f(xk)− gk‖22] +

(8Mu+ 6γ2)udη2 + 4(4d+ b)uγη

γ2
, (C.9)
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where we the fact that −x ≤ e−x − 1 ≤ x2/2 − x. Note that 1 − exp(x) ≥ 3x/4 when x ≤ 1/2.
Thus, we set

η ≤ min

{
γ

4(8Mu+ uγ + 22γ2)
,

√
4u2

4Mu+ 3γ2
,

6γbu

(4Mu+ 3γ2)d

}
,

and obtain the following according to (C.9),

E[E(xk+1,vk+1)] ≤ E[E(xk,vk)]− 3umη

γ
E[‖xk‖22]− 2η

γ
E[‖vk‖22] +

(20u+ γ)uη2

γ2
E[‖gk‖22]

+
2u2η2

γ2
E[‖∇f(xk)‖22] +

8uη(γ2 + 2u)

γ3
E[‖∇f(xk)− gk‖22] +

16(d+ b)uη

γ
.

(C.10)

We complete the proof via induction. In particular, we aim to prove the following

E[E(xk,vk)] ≤ Ē = E(x0,v0) +
8Mu

[
20(d+ b) +m‖x∗‖22

]
γ2m

+
G2

M2
,

E[‖gk‖22] ≤ 2M2Ē + 2E[‖∇f(xk)‖22.
(C.11)

First, it is easy to verify that (C.11) holds for (x0,v0). Then we assume it holds for all (xs,vs)
with s ≤ k, and prove it remains true for (xk+1,vk+1). It is worthy noting that by (B.4), we have
E[‖xs‖22] ≤ Ē and E[‖vs‖22] ≤ γ2Ē/2 for all s ≤ k.

Induction for E[‖gk+1‖22]: Regarding E[‖gk+1‖22], we aim to show that E[‖gk+1‖22] ≤ 2M2Ē +
2E[‖∇f(xk+1)‖22]. By Lemma C.2, we have

E[‖gk+1 −∇f(xk+1)‖22] ≤ M2

B

jm+l∑
s=jm

E[‖xs+1 − xs‖22] +
2

B0

(
E[M2‖xjm‖22] +G2

)
· 1(B0 < n)

≤ M2

B0

k∑
s=jm

[
2η2E[‖vs‖22] +

u2η4

2
E[‖gs‖22] + E[‖εxs‖22]

]
+

2

B

(
E[M2‖xjm‖22] +G2

)
. (C.12)

Note that by the induction assumption, Lemma C.1 and Young’s inequality, we have

E[‖∇f(xs)‖22] ≤ 2M2E[‖xs‖22] + 2G2 ≤ 2M2Ē + 2G2,

for all s ≤ k, which implies E[‖gs‖22] ≤ 6M2Ē + 4G2 for all s ≤ k. In addition we have
E[‖xjm‖22] ≤ Ē since jm ≤ k. Therefore, we have

E[‖gk+1 −∇f(xk+1)‖22] ≤ M2

B

k∑
s=jm

[
2η2E[‖vs‖22] +

u2η4

2
E[‖gs‖22] + E[‖εxs‖22]

]
+

2

B0
(M2Ē +G2)

≤ LM2

B

[
γ2η2Ē + u2(3M Ē + 2G2)η4 + 2udη2

]
+

4M2Ē
B0

· 1(B0 < n),

where we use the fact that G2 ≤ M2Ē . Let η2 ≤ min{γ2/(6M2u2), γ2Ē/(4G2u2)}, and use the
fact that u ≤ γ2Ē/d, we have

E[‖gk+1 −∇f(xk+1)‖22] ≤ 4LM2γ2Ēη2

B
+

4M2Ē
B0

· 1(B0 < n). (C.13)

Moreover, by Young’s inequality, we have

E[‖gk+1‖22] ≤ 2E[‖∇f(xk+1)− gk+1‖22] + 2E[‖∇f(xk)‖22]

≤ 2E[‖∇f(xk)‖22] +
8LM2γ2Ēη2

B
+ 4M2Ē · 1(B0 < n).
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Let η2 ≤ 4−1L−1γ−2, it is evident that

E[‖gk+1‖22] ≤ 2M2

B
Ē + 2E[‖∇f(xk+1)‖22] ≤ 6M2Ē + 2E[‖∇f(xk+1)‖22],

which completes the induction for gk.

Induction for E(xk+1,vk+1): By assumption (C.11), we have E[‖gk‖22] ≤ 6M2Ē +
2E[‖∇f(xk)‖22] ≤ 14M2Ē . Moreover, by (C.13) we have

E[‖gk+1 −∇f(xk+1)‖22] ≤ 4LM2γ2Ēη2

B
+

4M2Ē
B0

· 1(B0 < n).

Note that by Young’s inequality ‖a + b‖22 ≤ 3‖a‖22/2 + 3‖b‖22 we have

E(x,v) ≤ 5/2‖x‖22 +
12

γ2
‖v‖22 +

2uM

γ2

(
3‖x‖22 + 6‖x∗‖22

)
,

where we used the inequality

f(x)− f(x∗) ≤ M

2
‖x− x∗‖22 ≤

M

4

(
3‖x‖22 + 6‖x∗‖22

)
.

Then if γ2 ≤ 4Mu, we have

E(x,v) ≤ 12

γ2
‖v‖22 +

16uM

γ2
‖x‖22 +

12uM

γ2
‖x∗‖22. (C.14)

Therefore, by (C.10) and the fact that B0 ≥ min{1/η, n}, we have

E[E(xk+1,vk+1)] ≤ E[E(xk,vk)]− 3umη

γ
E[‖xk‖22]− 2η

γ
E[‖vk‖22] +

32(γ2 + u)uLM2Ēη3

γB

+
32(γ2 + u)uM2η2

γ3
Ē +

(288u+ 14γ)M2uη2

γ2
Ē +

16(d+ b)uη

γ

≤
(

1− γmη

6M

)
E[E(xk,vk)] +

(46γ2 + 288uγ + 32u)M2uη2

γ3
Ē

+
32(γ2 + u)uLM2η3

γB
Ē +

16(d+ b)uη + 2um‖x∗‖22η
γ

,

where the last inequality follows from (C.14). We then set the step size as

η ≤ min

{
γ4m

48(46γ2 + 288uγ + 32u)M3u
,

γm1/2

48M3/2(γ2 + u)1/2L1/2

}
,

and use the fact that B ≥ 1, the following holds,

E[E(xk+1,vk+1)] ≤
(

1− γmη

6M

)
E[E(xk,vk)] +

γmη

24M
Ē +

20(d+ b)uη + 2um‖x∗‖22η
γ

≤
(

1− γmη

8M

)
Ē +

16(d+ b)uη + 2um‖x∗‖22η
γ

,

where the last inequality follows from the assumption that E[E(xk,vk)] ≤ Ē . Since we have set

Ē = E(x0,v0) +
8M
[
16(d+ b)u+ um‖x∗‖22

]
γ2m

+
G2

M2
,

it is evident that E[E(xk+1,vk+1)] ≤ Ē holds as well. This completes the induction for
E(xk+1,vk+1).
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C.2 Proof of Lemma B.3

Proof. Note that the semi-stochastic gradient gk takes form

gk =
1

B

∑
i∈Bk

(
∇fi(xk)−∇fi(xk−1)

)
+ gk−1.

By Lemma C.2 and (C.12), we have

E[‖gk −∇f(xk)‖22] ≤ M2

B

jm+l∑
s=jm

E[‖xs+1 − xs‖22] +
2

B0

(
M2E[‖xjm‖22] +G2

)
· 1(B0 < n)

≤ LM2

B

(
2η2E[‖vs‖22] +

u2η4

2
E[‖gs‖22] + E[‖εxs‖22]

)
+

2

B0

(
M2E[‖xjm‖22] +G2

)
· 1(B0 < n).

Then by Lemma B.2 and (C.13), set η2 ≤ min{γ2/(6M2u2), γ2Ē/(4G2u2)} and use the fact that
G2 ≤M2Ē , we obtain

E[‖gk −∇f(xk)‖22] ≤ 4LM2γ2η2Ē
B

+
4M2Ē
B0

· 1(B0 < n).

This completes the proof.

C.3 Proof of Lemma B.4

Proof. Similar to the proof of Lemma B.2, we define

E(x,v) = ‖x‖22 + ‖x + 2v/γ‖22 + 8u
(
f(x)− f(x∗)

)
/γ2.

Performing operator L on A(x,v) = eλE(x,v) gives

LA = 〈∇xA,v〉 − 〈∇vA, γv + u∇f(x)〉+ 〈∇2
vA, γuI〉

= λA
(
〈∇xE ,v〉 − 〈∇vE , γv + u∇f(x)〉+ 〈∇2

vE , γuI〉
)

+ λ2Aγu‖∇vE‖22
= λA

(
− 4‖v‖22/γ − 4um‖x‖22/γ + 4u(2d+ b)/γ

)
+ λ2Aγu

∥∥4x/γ + 8v/γ2
∥∥2

2

≤ λA
(
− 4‖v‖22/γ − 4um‖x‖22/γ + 4u(2d+ b)/γ

)
+ λ2Aγu

(
32‖x‖2/γ2 + 128‖v‖2/γ4

∥∥2

2
,

where the last inequality is by Young’s inequality. Let

λ ≤ min

{
γ2

64u
,
m

16

}
,

we get

LA ≤ λA
(
− 2‖v‖22/γ − 2um‖x‖22/γ + 4u(2d+ b)/γ

)
. (C.15)

Moreover, by Young’s inequality we have

E(x,v) ≤ 5/2‖x‖22 +
12

γ2
‖v‖22 +

2uM

γ2

(
3‖x‖22 + 6‖x∗‖22

)
.

where we use the inequality

f(x)− f(x∗) ≤ M

2
‖x− x∗‖22 ≤

M

4

(
3‖x‖22 + 6‖x∗‖22

)
.

Assume γ2 ≤ 4µM , we have

E(x,v) ≤ 12

γ2
‖v‖22 +

16uM

γ2
‖x‖22 +

12uM

γ2
‖x∗‖22. (C.16)

Plugging the above into (C.15) gives

LA ≤ λA
(
− γm

8M
E + 4u(2d+ b)/γ +

2um

γ
‖x∗‖22

)
.

25



Therefore, we have the following for the Hamiltonian Langevin dynamics 1.1,

dE[A(Xt,Vt)]

dt
= E[LA(Xt,Vt)]

≤ E
[
A(Xt,Vt)

(
− γm

8M
log
(
A(Xt,Vt)

)
+

4λu(2d+ b)

γ
+

2λum

γ
‖x∗‖22

)]
.

(C.17)

Note that g(x) = x log(x) is convex with respect to x, thus we have E[−A log(A)] ≤
− log(E[A])E[A]. Plugging this into (C.17) yields

dE[A]

dt
≤ E[A]

(
− γm

8M
log
(
E[A]

)
+

4λu(2d+ b)

γ
+

2λum

γ
‖x∗‖22

)
, (C.18)

where we abuse the notation A for simplification. Dividing E[A] on both sides of (C.18) and
rearranging terms give

d log(E[A])

dt
≤ − γm

8M
log
(
E[A]

)
+

4λu(2d+ b)

γ
+

2λum

γ
‖x∗‖22.

This further lead to

log(E[A(Xt,Vt)]) ≤ log(E[A(X0,V0)]) +
16Mλu

[
4d+ 2b+m‖x∗‖22)

]
γ2m

= λE(X0,V0) +
16Mλu

[
4d+ 2b+m‖x∗‖22)

]
γ2m

. (C.19)

Moreover, note that we have ‖a‖22 + ‖b‖22 ≥ ‖a− b‖22/2, therefore,

E(x,v) ≥ ‖x‖22/2 + ‖v/γ‖22. (C.20)

Let γ <
√

2, we have E(x,v) ≥ (‖x‖22 + ‖v‖22)/2. Thus

log
(
E
[
eλ(‖Xt‖22+‖Vt‖22)

])
≤ log

(
E
[
e2λE(Xt,Vt)

])
≤ 2λE(X0,V0) +

32Mλu
[
4d+ 2b+m‖x∗‖22)

]
γ2m

,

where the last inequality is obtained by replacing λ with 2λ in (C.19), and thus we require λ ≤
min{γ2/(128u),m/32}. This completes the proof.

C.4 Proof of Lemma B.6

Proof. By Assumption 3.1, we have

f(x) ≤ f(x∗) +
M

2
‖x− x∗‖22 ≤ f(x∗) +M‖x‖22 +M‖x∗‖22,

where the second inequality is by Yong’s inequality, which implies

f(x) + u−1γ2‖x‖22/4− f(x∗) +M‖x∗‖22 ≤ (M + u−1γ2/4)‖x‖22.

Divide both side by (M + u−1γ2/4)/m, and we have

m(f(x) + u−1γ2‖x‖22/4− f(x∗) +−M‖x∗‖22)

M + u−1γ2/4
≤ m‖x‖22.

According to Assumption 3.2, we have

〈∇f(x),x〉 ≥ m‖x‖22 − b ≥
m(f(x) + u−1γ2‖x‖22/4

M + u−1γ2/4
− f(x∗) +M‖x∗‖22)

M + u−1γ2/4
− b,

which directly completes the proof by dividing both side by 2.
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D Proof of additional lemmas

In this section we prove the additional supporting lemmas.

D.1 Proof of Lemma C.1

Proof. Applying Assumption 3.1 and noting that x0 = 0, we have

‖∇fi(x)‖2 ≤ ‖∇fi(x0)‖2 +M‖x− x0‖2 = ‖∇fi(0)‖2 +M‖x‖2.

By setting G = maxi∈[n] ‖∇fi(0)‖2, we complete the proof.

D.2 Proof of Lemma C.2

Proof. By the formula of gk, and let k = jm+ l denote the l-th iterate in the j-th epoch of Algorithm
1, we have

E[‖gk+1 −∇f(xk+1)‖22] = E
[∥∥∥∥ 1

B

( ∑
i∈Bk+1

[
∇fi(xk+1)−∇fi(xk)

])
+ gk −∇f(xk+1)

∥∥∥∥2

2

]

= E
[∥∥∥∥ 1

B

( ∑
i∈Bk+1

[
∇fi(xk+1)−∇fi(xk)

])
−
(
∇f(xk+1)−∇f(xk)

)∥∥∥∥2

2

]
+ E[‖gk −∇f(xk)‖22].

By Lemma A.1 in [36], we know that

E
[∥∥∥∥ 1

B

( ∑
i∈Bk+1

[
∇fi(xk+1)−∇fi(xk)

])
−
(
∇f(xk+1)−∇f(xk)

)∥∥∥∥2

2

]
≤ 1

B
E[‖∇fi(xk+1)−∇fi(xk)‖22].

Thus, it follows that

E[‖gk+1 −∇f(xk+1)‖22] ≤ 1

B
E[‖∇fi(xk+1)−∇fi(xk)‖22] + E[‖gk −∇f(xk)‖22]

≤ 1

B

jm+l∑
s=jm

E[‖∇fi(xs+1)−∇fi(xs)‖22] + E[‖gjm −∇f(xjm)‖22]

≤ M2

B

jm+l∑
s=jm

E[‖xs+1 − xs‖22] +
1

B0
E[‖∇fi(xjm)‖22] · 1(B0 < n)

≤ M2

B

jm+l∑
s=jm

E[‖xs+1 − xs‖22] +
2

B0
E[‖xjm‖22 +G2] · 1(B0 < n),

where the first inequality is by Young’s inequality, the second inequality is by Assumption 3.1, the
third inequality follows Lemma A.1 in [36], the last inequality is by Lemma C.1. This completes the
proof.

E Additional experimental results

In this section, we provide additional experimental results.

E.1 Comparison of posterior distributions

Here we conduct additional comparison in terms of sampled posterior distributions for ICA. In detail,
we use HMC with metropolis hasting correction to generate the ground truth. Similar to [23], we
randomly choose two variables (W1,1 and W5,17) from the parameter matrix W and display their
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Table 2: Summary of datasets for Bayesian logistic classification.

Dataset pima a3a mushroom a9a

n (training) 600 3185 6000 32,561
n (test) 168 29376 2124 16281
d 8 123 122 123

marginal distributions after 1000 data passes in Figures 4(a)-4(f) (row 1) and Figures 4(g)-4(l) (row
2) respectively. It can be observed that the proposed SRVR-HMC (as well as SVRG-LD and SVR-
HMC) can well approximate the ground truth, while SGLD and SGHMC cannot provide accurate
approximation. This further validates the superior performance of SRVR-HMC and other variance
reduced algorithms (SVRG-LD, SVR-HMC).
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Figure 4: Marginal distributions of the posterior samples generated by Langevin dynamics based
algorithms (red line) including SGLD, SGHMC, SG-UL-MCMC, SVRG-LD, SVR-HMC and SRVR-
HMC, as well as the ground truth (green line). (Here we use SUL-MCMC to denote SG-UL-MCMC
due to the space limit.)

E.2 ICA with larger dataset

We also ran additional experiments for ICA on a larger dataset (extract a larger subset from
the original dataset, i.e., n = 10000), which is displayed in Figure 5. It can be seen
that the proposed SRVR-HMC algorithm achieves the best performance among all methods.
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Figure 5: Results for ICA on
a larger dataset (training sam-
ple size: n = 10000). X-
axis represents the number of
data passes and Y -axis repre-
sents the negative log likeli-
hood on the test dataset.

E.3 Bayesian Logistic Regression

Assume we are given data {xi, yi}i=1,...,n where xi denotes the fea-
ture vector and yi ∈ {−1, 1} denotes the corresponding label. Then
the probability density function of the label y given the feature xi
and model vector β is modeled as p(y|xi,β) = 1/(1 + e−yiβ

>xi).
We further assume the model vector β follows a Gamma prior
p(β) ∝ ‖β‖−λ2 exp(−θ‖β‖2), where λ and β are fixed parameter.
In the Bayesian logistic classification task, we aim to sample the
posterior distribution

p(β|{xi, yi}i=1,...,n) = p(β)

n∏
i=1

p(yi|xi,β).

Let f(β) = − log p(β|{xi, yi}i=1,...,n). Each function fi(β) in
(1.3) takes the form of fi(β) = −n log(p(yi|xi,β))+λ log(‖β‖2)+
θ‖β‖2.
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Figure 6: Comparison of different algorithms for Bayesian logistic regression, where Y-axis denotes
the negative log likelihood on test datasets and X-axis denotes number of data passes.

We compare the performance of the proposed algorithm with SGLD [50], SGHMC [16], SG-UL-
MCMC [18], SVRG-LD [25], and SVR-HMC [55] on pima, a3a, mushroom, and a9a dataset, which
are available in UCI5 [11] and LibSVM6 [38] libraries. We summarize the detail of these datasets in
Table 2. We run all algorithms on the training dataset, where the hyper parameters are tuned under
the guidance of their theory. Moreover, we compute the sample path average of the position variable
as the output. Then, such output is applied to conduct classification tasks on the test datasets, and
we plot the negative log likelihood in Figures 6(a) - 6(d). It can be seen that the proposed algorithm
SRVR-HMC outperforms all baseline algorithms on these four dataset, which is consistent with our
theory.

5https://archive.ics.uci.edu/ml/
6https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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