
Fisher Efficient Inference of Intractable Models
Supplementary

A Examples

A.1 Examples of Stein Features Tθf(x)

Example 3. Let p = N (0, 1), TN (0,1)1 = 0, then TN (0,1)x = −x and TN (0,1)x
2/2 = −x2 + 1.

As we see, Stein features with respect to N (0, 1) using monomials of x are same-order polynomial
terms of x which have been widely used as function basis in various function fitting applications.

A.2 Assumption 2 Examples

Example 4. When f(x) = 0, by the definition of Stein feature at Section 3.1, Tθf(x) ≡ 0. Our
density ratio model does not have any discriminative power and become a constant function 1. We
can see Hδ,δ = 0, Hδ,θ = 0 regardless what δ and θ are chosen. Thus, Assumption 2 is not satisfied
here. See (14) and (15) in Section B.2 in Appendix for the exact formulas of Hδ,δ and Hδ,θ.

Example 5. When f(x) := x and p(x; θ) := N (θ, 1), our density ratio model becomes a linear
discriminative function (See Example 3). From (14) and (15) we can see, when θ = θ∗ and
δ = 0, H∗δ,δ = − 1

nq

∑nq

i=1(x
(i)
q − θ∗)2 which is essentially the negative sample variance and

H∗δ,θ = 1
nq

∑nq

i=1∇θ(x
(i)
q − θ) = −1. Given nq is sufficiently large, Λmin and Λ′min is reasonably

small and Λmax is reasonably large, Assumption 2 should hold at the optimal point (θ∗, 0) with high
probability. We omit the analysis when δ and θ are slightly deviated from their optimal values due to
the page limit. Nonetheless, it can be analysed with some extra regularity conditions.

A.3 Example of Asymptotic Efficient Choice of f(x)

Example 6. Consider the univariate Gaussian distribution p(x;θ) = exp
{
θ1x+ θ2x

2
}
/Z(θ) for

x ∈ R,θ = (θ1, θ2), where θ1 ∈ R, θ2 < 0, and Z(θ) is the normalization constant. The score
function is s1(x;θ) = x− 1

Z(θ)∂θ1Z(θ), s2(x;θ) = x2 − 1
Z(θ)∂θ2Z(θ). Let us consider the Stein

feature vector for f(x) = (x, x2/2)>, Tθf(x) = (θ1 + 2θ2x, 1 + θ1x + 2θ2x
2)>. We know that

θ1Z(θ) + 2θ2∂θ1Z(θ) = 0 and Z(θ) + θ1∂θ1Z(θ) + 2θ2∂θ2Z(θ) = 0 (see [11] for details). Thus,(
Tθf1(x)
Tθf2(x)

)
=

(
2θ2 0
θ1 2θ2

)(
s1

s2

)
. The coefficient matrix is invertible as long as θ2 6= 0. Hence,

the DLE with the above f achieves the asymptotic efficiency bound.

B Proofs

For simplicity, we write all
∑nq

i=1 g(x
(i)
q ) as

∑nq

i=1 g(x(i)) from now on as samples always come
from dataset Xq . See Table 1 for all defined notations.

B.1 Proof of Lemma 1

Proof. Our proof below is similar to the proof of Lemma 4 in [13]. It can be seen that

Epθ [Tθfi(x)] =

∫
p(x;θ)

[
〈∇x log p(x;θ),∇xfi(x)〉+ trace(∇2

xfi(x))
]

dx

=

∫
〈∇xp(x;θ),∇xfi(x)〉+ p(x;θ) · trace(∇2

xfi(x))dx.
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Table 1: Notations of Symbols

Symbol Definition
`(δ,θ) 1

nq

∑nq

i=1 log rθ(x
(i)
q ; δ), log likelihood ratio

∇`(δ0,θ0) ∇(δ,θ)`(δ0,θ0)|δ=δ0,θ=θ0

∇δ`(δ0,θ0) ∇δ`(δ0,θ0)
H ∇2

(δ,θ)`(δ,θ), Hessian of likelihood
Hδ,θ ∇δ∇θ`(δ,θ), submatrix of Hessian.

Ball(R,x0) `2 ball with radius R centered at x0

‖A‖ `2 norm of a vector A or the spectral norm of a matrix A

s(x;θ) ∈ Rdim(θ) ∇θ log p(x,θ), Score function of pθ
s s(x;θ∗)

Let us rewrite Epθ [Tθfi(x)] as nested integrals over each component of x:

Epθ [Tθfi(x)]

=

d∑
j=1

∫
x\j

∫
xj

∂xj
fi(x) · ∂xj

p(x;θ) + p(x;θ) · ∂2
xj
fi(x)dxjdx\j , (11)

=

d∑
j=1

∫
x\j

[
p(x;θ)∂xj

fi(x)
]xj→+∞
xj→−∞︸ ︷︷ ︸

0,by assumption

dx\j −
∫
x\j

∫
xj

p(x;θ)
[
∂2
xj
fi(x)− ∂2

xj
fi(x)

]
dxjdx\j

(12)
=0. (13)

where x\j contains all the components in x except the j-th component. The equality from (11) to (12)
is due to one dimensional integration by parts formula. The first term in (12) is zero as the product of
p(x) and ∂xjfi(x) is asssumed to be zero when xj takes the limit to +/−∞. Our assumption holds
for all i, j, so we can assert ∀iEpθ [Tθfi(x)] = 0 and Epθ [Tθf(x)] = 0 by its construction.

B.2 Derivations of∇2
δ`(δ,θ) and∇δ,θ`(δ,θ) with f(x) : Rd → R

∇2
δ`(δ,θ) = − 1

nq

nq∑
i=1

[
Tθf(x(i))

]2
r2
θ(x(i); δ)

+ 0, (14)

∇δ,θ`(δ,θ) = − 1

nq

nq∑
i=1

Tθf(x(i))

r2
θ(x(i); δ)

∇θrθ(x(i); δ) +
1

nq

nq∑
i=1

1

rθ(x(i); δ)
∇θTθf(x(i)). (15)

B.3 Proof of Proposition 2

Proof. First, the definition of ∆nq
gives the boundedness of our ratio, i.e., 1

Cratio
≤ rθ(x; δ) ≤

Cratio,∀x ∈ Xq,∀θ ∈ Θ.

Second,−Hδ,δ = 1
nq

∑nq

i=1
1

r2θ(x(i);δ)
·Tψ(i)Tψ(i)>, where Tψ(i) is an abbreviation of Tθψ(x(i)).

It is a sum over ratio weighted positive semi-definite matrices so we can lower bound its minimum
eigenvalue using the lower bound of the ratio:

λmin(−Hδ,δ) ≥
1

C2
ratio

λmin

(
1

nq

nq∑
i=1

Tψ(i)Tψ(i)>
)
>

Λ′′min

C2
ratio

> 0,with high prob.,

due to our assumption. Similarly, we can also upper-bound its maximum eigenvalue

λmax(−Hδ,δ) ≤ C2
ratioλmax

(
1

nq

nq∑
i=1

Tψ(i)Tψ(i)>
)
≤ C2

ratioΛ′′max,with high prob.,
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Third, −Hθ,θ = 1
nq

∑nq

i=1
1

r2θ(x(i);δ)
Jxψ(x(i))Jxψ(x(i))>δδ>Jxψ(x(i))>Jxψ(x(i)). We can

see

‖Hθ,θ‖ ≤
C2

ratio · ‖δ‖2

nq

nq∑
i=1

‖Jxψ(x(i))‖4 ≤ C2
ratioC2 · ‖δ‖2 ≤

C2
ratioC2T

σ(nq)2
.

Fourth, using the fact that −Hδ,δ is a positive definite matrix, which we have just proved, we can see

λmin

{
−Hθ,δH

−1
δ,δHδ,θ

}
= λmin(−H−1

δ,δHδ,θHθ,δ)

≥ λmin(−H−1
δ,δ)λmin(Hδ,θHθ,δ)

=
λmin(Hδ,θHθ,δ)

λmax(−Hδ,δ)
≥ λmin(Hδ,θHθ,δ)

C2
ratioΛ′′max

,

where 2nd line is due to Theorem 7, [21]. So we only need to find a lower bound for λmin(Hδ,θHθ,δ).
We can writeHθ,δ as

Hθ,δ =
1

nq

nq∑
i=1

1

rθ(x(i); δ)
Jxψ(x(i))Jxψ(x(i))>︸ ︷︷ ︸
A

(16)

− 1

nq

nq∑
i=1

1

r2
θ(x(i); δ)

Jxψ(x(i))Jxψ(x(i))>δTθψ(x(i))>︸ ︷︷ ︸
B

(17)

ThereforeHδ,θHθ,δ can be written as

AA> −AB> −BA> +BB>.

Since we are analyzing the minimum eigenvalue, we can safely ignore the last term BB> as it is
positive semi-definite. This gives the following inequality:

λmin

{
AA> −AB> −BA>

}
≥ λmin

{
AA>

}
+ λmin

{
−AB> −BA>

}
≥ λmin

{
AA>

}
− ‖AB> +BA>‖

As A is a sum of ratio weighted positive semi-definite matrices, we can use the same trick in the
second step to lower bound its eigenvalue using the lower bound of the density ratio, eventually, using

our assumption on λmin{ 1
nq

∑nq

i=1 J
(i)J (i)>} ≥ C3, we can get,

λmin(A) ≥ C3

Cratio
, λmin(AA>) ≥ λmin(A) · λmin(A) ≥ C2

3

C2
ratio

.

Now we analyze ‖AB> +BA>‖ which is further upperbounded by 2‖A‖‖B‖.
Similarly to how λmin(A) is bounded, we can upper-bound ‖A‖ using the upperbound of the

ratio: ‖A‖ ≤ CratioC4. Let us write B = 1
nq

∑nq

i=1
1
r2i
J (i)J (i)>δTψ(i)> where J (i) and ri are

abbreviations of Jxψ(x(i)) and rθ(x(i); δ). It can be seen that

‖B‖ ≤ 1

nq

nq∑
i=1

‖ 1

r2
i

J (i)J (i)>‖ · ‖δTψ(i)‖ ≤ 1

nq

nq∑
i=1

‖ 1

r2
i

J (i)J (i)>‖ · ‖δ‖ · ‖Tψ(i)‖,

≤ C2
ratio · C5T/σ(nq).

Now we can bound

λmin

{
AA> −AB> −BA> +BB>

}
≥ λmin

{
AA>

}
− 2‖A‖‖B‖

≥ C2
3

C2
ratio

− C3
ratioC4 · C5T/σ(nq)
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There exists a constant N > 0, such that when nq > N ,

λmin

{
−Hθ,δH

−1
δ,δHδ,θ

}
≥ λmin(Hδ,θHθ,δ)

C2
ratioΛ′′max

≥ C2
3

C4
ratioΛ′max

− CratioC4 · C5T

σ(nq)Λ′′max

≥C
2
ratioC2T

σ(nq)2
≥ ‖Hθ,θ‖.

Finally we analyze
∥∥∥Hθ,δH

−1
δ,δ

∥∥∥.
∥∥∥Hθ,δH

−1
δ,δ

∥∥∥ ≤ ‖Hθ,δ‖·
∥∥∥H−1

δ,δ

∥∥∥. As−Hδ,δ is positive definite,
the operator norm of its inverse is the inverse of its minimum eigenvalue, which is upperbounded

by C2
ratio/Λ

′′
min. On the other hand, we can rewrite (16) as Hθ,δ = 1

nq

∑nq

i=1
1
ri
· J (i)J (i)> ·(

Iden− 1
ri
· δTψ(i)>

)
, so

‖Hθ,δ‖ ≤
1

nq

nq∑
i=1

1

ri
·
∥∥∥∥J (i)J (i)> ·

(
Iden− 1

ri
· δTψ(i)>

)∥∥∥∥
≤ Cratio

nq

nq∑
i=1

‖J (i)J (i)>‖ · ‖Iden− 1

ri
· δTψ(i)>‖︸ ︷︷ ︸
C

From calculation, we know ‖C‖ ≤ 1 + |(ri − 1)/ri| ≤ 2 + Cratio. Therefore ‖Hθ,δ‖ ≤
C2

ratio+2Cratio

nq

∑nq

i=1 ‖J
(i)J (i)>‖ ≤ (C2

ratio + 2Cratio)C4. Therefore
∥∥∥Hθ,δH

−1
δ,δ

∥∥∥ is upperbounded

by (C4
ratio + 2C3

ratio)C4/Λ
′′
min.

Refer to [21, 6] for inequalities of eigenvalue of matrix summation and product.

B.4 Proof of Theorem 1

Proof. We denote HessianH as a block matrix:

H = ∇2`(δ,θ) =

(
H11 H12

H21 H22

)
=

(
∇2
δ`(δ,θ) ∇δ∇θ`(δ,θ)

∇θ∇δ`(δ,θ) ∇2
θ`(δ,θ)

)
,

then Assumption 2 states that for every δ ∈ ∆nq
and θ ∈ Θ, λ(H21H

−1
11 H12) is lower bounded by

2 ‖H22‖ and
∥∥H21H

−1
11

∥∥ is upper bounded.

We can write the optimality condition of (7) and expand them at (δ∗ ≡ 0,θ∗):

∇δ`(δ̂, θ̂) = 0 = ∇δ`(δ∗,θ∗) + H̄11(δ̂ − δ∗) + H̄12(θ̂ − θ∗) (18)

∇θ`(δ̂, θ̂) = 0 = ∇θ`(δ∗,θ∗) + H̄21(δ̂ − δ∗) + H̄22(θ̂ − θ∗), (19)

where H̄ is the Hessian evaluated at a (δ̄, θ̄) which is in between (δ̂, θ̂) and (δ∗,θ∗) in an element-
wise fashion. This expansion is basically one-dimensional mean-value theorem applied on each
individual dimension of ∇δ`(δ̂, θ̂) and ∇θ`(δ̂, θ̂).

Given (18) and (19) we can solve equations for δ̂ − δ∗ and θ̂ − θ∗.
From (18) we can get

δ̂ − δ∗ = H̄
−1
11

[
−∇δ`(δ∗,θ∗)− H̄12(θ̂ − θ∗)

]
. (20)

Substituting (20) into (19) we get

0 = ∇θ`(δ∗,θ∗)− H̄21H̄
−1
11 ∇δ`(δ

∗,θ∗) +
[
−H̄21H̄

−1
11 H̄12 + H̄22

] (
θ̂ − θ∗

)
.

Rearranging terms, we get

θ̂ − θ∗ =
[
H̄21H̄

−1
11 H̄12 − H̄22

]−1 (
∇θ`(δ∗,θ∗)− H̄21H̄

−1
11 ∇δ`(δ

∗,θ∗)
)

(21)

=
[
−H̄21H̄

−1
11 H̄12 + H̄22

]−1

H̄21H̄
−1
11 ∇δ`(δ

∗,θ∗). (22)
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The last line uses the fact that∇θ`(δ∗,θ∗) ≡ 0.

Weyl’s inequality states:

λmin(A+B) ≥ λmin(A) + λmin(B).

As δ̄ ∈ ∆nq
and θ̄ ∈ Θ, H̄ is regulated by Assumption 2. Since

λmin(−H̄21H̄
−1
11 H̄12) ≥ Λmin

and

λmin(H̄22) ≥ −‖H̄22‖ ≥ −
Λmin

2
which are assumed by Assumption 2, we have

λmin(−H̄21H̄
−1
11 H̄12 + H̄22) ≥ Λmin/2 > 0.

Denote −H̄21H̄
−1
11 H̄12 + H̄22 as H̄/H̄22 (it is actually the Schur Complement of H̄). Using

Holder’s inequality, we get

‖θ̂ − θ∗‖ ≤
∥∥∥[H̄/H̄22

]−1
∥∥∥ ∥∥∥H̄21H̄

−1
11

∥∥∥ ‖∇δ`(δ∗,θ∗)‖
≤

∥∥∥H̄21H̄
−1
11

∥∥∥
λmin

[
H̄/H̄22

] · ‖∇δ`(δ∗,θ∗)‖ ≤ 2Λmax

Λmin
· ‖∇δ`(δ∗,θ∗)‖ . (23)

Further, we have Eq [Tθ∗f(x)] = Epθ∗ [Tθ∗f(x)] = 0. The first equality is due to Assumption 1
and the second equality is given by Stein identity.

Therefore,∇δ`(δ∗,θ∗) = 1
nq

∑nq

i=1 Tθ∗f(x(i))−0 = 1
nq

∑nq

i=1 Tθ∗f(x(i))−Eq [Tθ∗f(x)], which
converges to 0 in `2 norm in probability due to Assumption 3. This gives the convergence in
probability of ‖θ̂ − θ∗‖. Finite sample convergence rate can be given if the convergence rate of
‖∇δ`(δ∗,θ∗)‖ is known.

Now we show the consistency of δ̂. From (20) we can see that

δ̂ − δ∗ = −H̄−1
11 ∇δ`(δ

∗,θ∗)− H̄−1
11 H̄12(θ̂ − θ∗),

and due to Holder’s inequality, we get∥∥∥δ̂ − δ∗∥∥∥ =
∥∥∥−H̄−1

11

∥∥∥ ‖∇δ`(δ∗,θ∗)‖+
∥∥∥H̄−1

11 H̄12

∥∥∥∥∥∥θ̂ − θ∗∥∥∥
≤ 1

Λ′min

‖∇δ`(δ∗,θ∗)‖+ Λmax

∥∥∥θ̂ − θ∗∥∥∥ . (24)

Combine (24) with (23) we get∥∥∥δ̂ − δ∗∥∥∥ ≤ 2Λ2
maxΛ′min + Λmin

ΛminΛ′min

· ‖∇δ`(δ∗,θ∗)‖

Again, due to Assumption 3, ‖∇δ`(δ∗,θ∗)‖
P→ 0. This completes the proof.

B.5 Proof of Theorem 2

Proof. Due to Assumption 4, it can be seen that H̄ P→ Eq
[
H̄
]
. Moreover, as θ̄ P→ θ∗ and

δ̄
P→ 0 (proved in Theorem 1), we can see Eq

[
H̄
] P→ Eq [H∗] due to continuous mapping. Thus

H̄ = Eq [H∗] + op(1). From now on, for simplicity, let us denote −Eq [H∗] as I 2.

2I for “information matrix”. Do not confuse with the identify matrix which is denoted as Iden in this paper
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We again write the optimality condition of (7) and apply asymptotic expansion at (δ∗ ≡ 0,θ∗):

∇δ`(δ̂, θ̂) = 0 = ∇δ`(δ∗,θ∗) + (−I11 + op(1))(δ̂ − δ∗) + (−I12 + op(1))(θ̂ − θ∗) (25)

∇θ`(δ̂, θ̂) = 0 = ∇θ`(δ∗,θ∗) + (−I21 + op(1))(δ̂ − δ∗) + (−I22 + op(1))(θ̂ − θ∗). (26)

Note we have replaced all H̄ with −I + op(1), and op(1) will be ignored in future algebraic
calculations.

We now get an asymptotic version of (22):

√
nq

(
θ̂ − θ∗

)
 −

(
I21I

−1
11 I12 − I22

)−1
I21I

−1
11 ∇δ`(δ

∗,θ∗) · √nq

= −
(
I21I

−1
11 I12

)−1
I21I

−1
11 ∇δ`(δ

∗,θ∗) · √nq
The last equality is due to I22 ≡ 0.

Noticing that I−1
11 ∇δ`(δ

∗,θ∗) · √nq is a sum of independent random variables with zero mean and
covariance −I−1

11 . Applying CLT on I−1
11 ∇δ`(δ

∗,θ∗) · √nq yields

I−1
11 ∇δ`(δ

∗,θ∗) N
(
0,−I−1

11

)
,

thus
√
nq

(
θ̂ − θ∗

)
 N

[
0,
(
−I21I

−1
11 I12

)−1
]
.

B.6 Proof of Lemma 3

Proof. Let us shorten the Stein feature vector Tθf(x) as t(x;θ) ∈ Rb and t as t(x;θ∗). We
start by computing each factors in the variance. Since rθ(x; δ∗) = 1 holds for all θ, we have
∇θrθ(x; δ∗) = 0. Then, we have

−Eq
[
H∗δ,δ

]
= −Eq

[
∇2
δ log rθ∗(x; δ∗)

]
= Eq

[
1

r(x; δ∗,θ∗)2
tt>
]

= Eq[tt>] ∈ Rb×b,

Eq[H∗θ,δ] = Eq
[

1

r
∇θt(x;θ∗)> − 1

r2
∇θrθ∗(x; δ∗)t(x;θ∗)>

]
= Eq

[
∇θt(x;θ∗)>

]
∈ Rdim(θ)×b.

Since the equality Epθ [t(x;θ)] = 0 holds for all θ, we have∇θEpθ [t(x;θ)] = 0. Exchangeability
of the integration and the derivative yields

∇θEpθ [t(x;θ)] = Epθ
[
s(x;θ)t(x;θ)>

]
+ Epθ

[
∇θt(x;θ)>

]
= 0.

As a result, we obtain
Eq[H∗θ,δ] = −Eq[st>].

B.7 Proof of Theorem 5

Proof. Use Taylor series to expand Eq
[
`(δ̂, θ̂)

]
on (θ∗, δ∗), we get

Eq
[
`(δ̂, θ̂)

]
=Eq [`(δ∗,θ∗)] +∇δEq [`(δ∗,θ∗)]

>
[
δ̂ − δ∗

]
+∇θEq [`(δ∗,θ∗)]

>
[
θ̂ − θ∗

]
+

1

2
[η̂ − η∗]>∇2

ηEq [`(η̄)] [η̂ − η∗]

=0 + 0 + 0 +
1

2
[η̂ − η∗]>∇2

ηEq [`(η̄)] [η̂ − η∗] (27)
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where we denote η :=

[
δ
θ

]
for short and η̄ is defined in between η̂ and η∗ in an element-wise fashion.

The second equality is due to δ∗ = 0 and Eq [∇δ`(δ∗,θ∗)] = 0, which is given by Stein identity.
Similarly we can expand

`(δ̂, θ̂) =∇δ`(δ∗,θ∗)>
[
δ̂ − δ∗

]
+

1

2
[η̂ − η∗]>∇2

η`(¯̄η) [η̂ − η∗] , (28)

where ¯̄η is similarly defined as η̄. It can be seen that ∇2
η`(¯̄η)

P→ −I and ∇2
ηEq [`η̄]

P→ −I due
to Assumption 4 and our consistency results. Taking the difference between (27) and (28) after
multiplying nq yields

nqEq
[
`(δ̂, θ̂)

]
− nq`(δ̂, θ̂) = −nq∇δ`(δ∗,θ∗)>

[
δ̂ − δ∗

]
+ op(1).

Substitute (δ̂ − δ∗) with (20) we get

nqEq
[
`(δ̂, θ̂)

]
− nq`(δ̂, θ̂) = nq∇δ`(δ∗,θ∗)>

[
H̄
−1
11 ∇δ`(δ

∗,θ∗) + H̄
−1
11 H̄12(θ̂ − θ∗)

]
+ op(1).

Substitute (θ̂ − θ∗) using (22), we get

nqEq
[
`(δ̂, θ̂)

]
− nq`(δ̂, θ̂) =nq∇δ`(δ∗,θ∗)>H̄

−1
11 ∇δ`(δ

∗,θ∗)

−nq∇δ`(δ∗,θ∗)>H̄
−1
11 H̄12

[
H̄/H̄22

]−1
H̄21H̄

−1
11 ∇δ`(δ

∗,θ∗) + op(1)
(29)

Replacing submatrices of H̄a,b using submatrices of −Ia,b in (29) and using the fact that I22 ≡ 0
(due to δ∗ = 0),

nqEq
[
`(δ̂, θ̂)

]
− nq`(δ̂, θ̂) = −√nq∇δ`(δ∗,θ∗)>I−1

11 ∇δ`(δ
∗,θ∗)

√
nq

+
√
nq∇δ`(δ∗,θ∗)>I−1

11 I12

[
I21I

−1
11 I12

]−1
I21I

−1
11 ∇δ`(δ

∗,θ∗)
√
nq + op(1)

(30)

Taking the expectation,

nqE
{
Eq
[
`(δ̂, θ̂)

]
− `(δ̂, θ̂)

}
=− trace(I11I

−1
11 ) + trace(I−1

11 I12

[
I21I

−1
11 I12

]−1
I21) + op(1)

=− rank(I11) + rank
(
I21I

−1
11 I12

)
+ op(1).

In the case when I11 ∈ Rb×b, I12 ∈ Rb×dim(θ) are full-rank and dim(θ) ≤ b, rank(I11) = b and
rank

(
I21I

−1
11 I12

)
= dim(θ), which completes the proof.

B.8 The Asymptotic Distribution of 2nq`(δ̂, θ̂)

We show 2nq`(δ̂, θ̂) follows a χ2 distribution based on previously assumed assumptions.

Theorem 6. Suppose Assumption 1, 2, 3 and 4 holds, Eq
[
H∗δ,δ

]
is invertible and Eq

[
H∗δ,θ

]
are

full-rank and dim(θ) < b, then 2nq`(δ̂, θ̂) χ2(b− dim(θ)).

Proof. First we expand 2nq`(δ̂, θ̂) using mean value theorem:

2nq`(δ̂, θ̂) = 2nq∇δ`(δ∗,θ∗)>dδ + nqdδH̄11dδ + nqdδH̄12dθ + nqdθH̄21dδ + nqdθH̄22dθ
(31)

where dt is short for t̂− t∗. Note `(δ∗,θ∗) = 0. Now we analyze each term.

From the proof in Section B.7 we know

2nq∇δ`(δ∗,θ∗)>dδ =2nq∇δ`(δ∗,θ∗)>I−1
11 ∇δ`(δ

∗,θ∗)

−2nq∇δ`(δ∗,θ∗)>I−1
11 I12

[
I21I

−1
11 I12

]−1
I21I

−1
11 ∇δ`(δ

∗,θ∗) + op(1).
(32)
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With the help of (20) and (22) and a few algebra we can see that

nqdδI11dδ = nq∇δ`(δ∗,θ∗)>I−1
11 ∇δ`(δ

∗,θ∗)

− nq∇δ`(δ∗,θ∗)>I−1
11 I12

[
I21I

−1
11 I12

]−1
I21I

−1
11 ∇δ`(δ

∗,θ∗) + op(1). (33)

Similar calculations also show nqdδH̄12dθ = nqdθH̄21dδ = op(1) and nqdθH̄22dθ = op(1).
Combine (31), (32) and (33), we can see that

2nq`(δ̂, θ̂) =nq∇δ`(δ∗,θ∗)>I−1
11 ∇δ`(δ

∗,θ∗)

−nq∇δ`(δ∗,θ∗)>I−1
11 I12

[
I21I

−1
11 I12

]−1
I21I

−1
11 ∇δ`(δ

∗,θ∗) + op(1)

=
√
nq∇δ`(δ∗,θ∗)>I−1

11

{
Iden− I12

[
I21I

−1
11 I12

]−1
I21I

−1
11

}
∇δ`(δ∗,θ∗)

√
nq + op(1),

where Iden is identify matrix. Denote Iden − I12

[
I21I

−1
11 I12

]−1
I21I

−1
11 as A. One can verify

that ∇δ`(δ∗,θ∗)>I−1
11 A has covariance I−1

11 A
3. By checking the eigenvalues of A4, it can be

seen that rank(A) = db − dim(θ) and assuming I−1
11 is full rank, rank(I−1

11 A) = db − dim(θ).
Therefore√nq∇δ`(δ∗,θ∗)>I−1

11 A is asymptotically a degenerated multivariate normal variable with
covariance matrix I−1

11 A.

We can rewrite√nq∇δ`(δ∗,θ∗)>I−1
11 A∇δ`(δ

∗,θ∗)
√
nq as

√
nq∇δ`(δ∗,θ∗)>I−1

11 A
[
I−1

11 A
]+
I−1

11 A∇δ`(δ
∗,θ∗)

√
nq,

where T+ is the pseudoinverse. This quadratic form has a χ2 distribution with degree of freedom
rank(I−1

11 A) = db− dim(θ).

B.9 Proof of Proposition 3

Proof. We convert the SDRE problem (5) as the following equivalent problem:

max
δ,ε

nq∑
i=1

log εi s.t. :∀i ∈ {1 . . . nq}, δ>Tθf(x(i)
q ) + 1 = εi.

Let us introduce Lagrangian multipliers µ1 . . . µnq over all the constraints. We can write the La-
grangian:

min
µ

max
δ,ε

nq∑
i=1

(log εi)−
nq∑
i=1

µi

(
δ>Tθf(x(i)

q ) + 1− εi
)

(34)

Solve the inner max problem with respect to ε,

max
ε

nq∑
i=1

log εi + µiεi =

nq∑
i=1

[−(log−µi)− 1], (35)

when εi = − 1
µi

. This also implies the relationship between the dual parameter µi and the primal

parameter δ: rθ(x
(i)
q ; δ) = δ>Tpθf(x

(i)
q ) + 1 = εi = − 1

µi
.

The inner optimization with respect to δ, i.e., maxδ −
∑nq

i=1 µiδ
>Tθf(x

(i)
q ) is a linear programming

and is only bounded when
∑nq

i=1 µiTθf(x
(i)
q ) = 0 and achieves the optimal value 0.

Substituting the optimal values of these two maximization results into the Lagrangian and adding
constraint

∑nq

i=1 µiTθf(x
(i)
q ) = 0 gives the Lagrangian dual (9). Moreover, the primal problem in

(5) is concave, we can verify the Slater’s condition holds at δ = 0, ε = 1 thus the strong duality
holds.

3Some calculations show A>I−1
11 A = I−1

11 A.
4eig(Iden− T ) = 1− eig(T ) and eig(ST ) = eig(TS).

19


