Fisher Efficient Inference of Intractable Models
Supplementary

A Examples

A.1 Examples of Stein Features Tp f ()
Example 3. Let p = N'(0,1), Tiro,1y1 = 0, then Trr(o,1yx = —x and Thr(o,1y2%/2 = —a* + 1.

As we see, Stein features with respect to A (0, 1) using monomials of x are same-order polynomial
terms of = which have been widely used as function basis in various function fitting applications.

A.2 Assumption 2 Examples

Example 4. When f(x) = 0, by the definition of Stein feature at Section 3.1, Tpf(x) = 0. Our
density ratio model does not have any discriminative power and become a constant function 1. We
can see Hs s = 0, Hs 9 = 0 regardless what 6 and 6 are chosen. Thus, Assumption 2 is not satisfied
here. See (14) and (15) in Section B.2 in Appendix for the exact formulas of Hs s and Hs .

Example 5. When f(z) := z and p(z;0) := N(0,1), our density ratio model becomes a linear

discriminative function (See Example 3). From (14) and (15) we can see, when 8 = 0* and
6 =0 Hi; = —% Z?z“l(w((;) — 0%)2 which is essentially the negative sample variance and

min

Hj,= n% S Vo (;L'((;) — 0) = —1. Given ng is sufficiently large, Awin and Al is reasonably

small and Ay ax is reasonably large, Assumption 2 should hold at the optimal point (6*,0) with high
probability. We omit the analysis when § and 0 are slightly deviated from their optimal values due to
the page limit. Nonetheless, it can be analysed with some extra regularity conditions.

A.3 Example of Asymptotic Efficient Choice of f(x)

Example 6. Consider the univariate Gaussian distribution p(z;6) = exp {61z + 62x*} /Z(0) for
x € R,0 = (61,02), where 61 € R, 05 < 0, and Z(0) is the normalization constant. The score
Sunction is s1(x;0) = x — ﬁ@ng(O), so(w;0) = 2% — %892Z(0). Let us consider the Stein

feature vector for f(x) = (z,22/2)", Tof(x) = (01 + 209z, 1 + 612 + 20222) T. We know that
01Z(0) + 20209, Z(0) = 0 and Z(0) + 6109, Z(0) + 20209, Z(0) = O (see [11] for details). Thus,

T9f1 (:E) _ 292 0 S1 . e .
(T0f2 @) = \o 20,) \sn) The coefficient matrix is invertible as long as 0> #* 0. Hence,

the DLE with the above f achieves the asymptotic efficiency bound.

B Proofs

For simplicity, we write all Y., g(wgi)) as Y1, g(x™) from now on as samples always come

from dataset X,. See Table 1 for all defined notations.

B.1 Proof of Lemma 1

Proof. Our proof below is similar to the proof of Lemma 4 in [13]. It can be seen that

E,, [Tofi(x)] = /p(a:; 0) [(Vm logp(x;0), Vafi(x)) + trace(Vifi(a:))] dx

= /<Vmp(w; 0), Vafi(x)) +p(x;0) - trace(Vy, fi(x))dw.
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Table 1: Notations of Symbols

Symbol Definition
0(8,0) n—lq S logre(x; 8), log likelihood ratio
V£(8o,00) V(5.6)£(80,00)|5=5,,6=0,
Vsl(80,600) Vsl(80,00)
H Vis.6)0(8,0), Hessian of likelihood
Hso VsVel(d,0), submatrix of Hessian.
Ball(R, x0) {5 ball with radius R centered at xo
A 25 norm of a vector A or the spectral norm of a matrix A
s(x; 0) € RI=©® Ve log p(z, 8), Score function of pg
s s(x;0%)

Let us rewrite E,, [Ty f;(x)] as nested integrals over each component of a:

Epe [TG fi (x)}

= Z/ ' Oz, fi(x) - O, p(x; 0) + p(x; 0) - aijfi(a:)dxjda:\j, (11)

d
= (:0)0,, fi(2)] 7" day; — (x;0) |02 fi(x) — 02 fi(x)| dz;day
Z/m\ [p ]J \J /m\j/sz { 5 5 LjAT;

0,by assumption

(12)
—0. (13)

where @\ ; contains all the components in & except the j-th component. The equality from (11) to (12)
is due to one dimensional integration by parts formula. The first term in (12) is zero as the product of
p(x) and O, fi(x) is asssumed to be zero when x; takes the limit to +/ — co. Our assumption holds
for all ¢, j, so we can assert V;E,, [Ty f;(x)] = 0 and E,,, [Tg f(x)] = 0 by its construction. O

B.2 Derivations of V2/(6, ) and V; ¢¢(J,0) with f(z) : R? —» R

n : 2
1 & [Tof(x®)
V%f(é,@) = _%ZW-FO? (14)
i=1 ’
1 < Ty fz) (). 1 1 (%)
V[S)gf((s, 0) = —n7q £ vapm(w ,(5) + g Zl WVngf(w ) (15)

B.3 Proof of Proposition 2

Proof. First, the definition of Anq gives the boundedness of our ratio, i.e., & ,1( < ro(z;8) <
Cratioavw S Xq,VO € 0.

n 3 N T AN . . >
Second, —Hs,5 = = 1) m T T where T1pV is an abbreviation of Ty (z(?).
q To\Z )

It is a sum over ratio weighted positive semi-definite matrices so we can lower bound its minimum
eigenvalue using the lower bound of the ratio:

1 1 v T A2,
Amin(—H 5,5) > CT)\min (n ZT,,/,(Z)T,/,(Z) ) > —zt- > 0, with high prob.,
7 =1

ratio ratio

due to our assumption. Similarly, we can also upper-bound its maximum eigenvalue

n
1 — , AT
Amax(—H s.6) < C2 1o dmax (n Z Top O Tp® ) < C2 A ., with high prob.,
4 =1
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Third, ~He,e = ;- >.i% W JoP(2 D) T pp (D) T 88T T pap (D) T T pap(2)). We can
see

I 2, CaT
[Heooll < ratlo ” ” ZHJ N < C2,.Co - ||6]7 < < Yratio“24

ti
ratio o (nq ) 2
Fourth, using the fact that —H s s is a positive definite matrix, which we have just proved, we can see

Amin {—He,aHﬁ;Ha,e} = Ain(—Hy sHs0Ho 5)
2 )\min(_H;}S)Amin(HS,OHB,é)
_ )\min(Hé,BHG,&) > /\Inln(H6 OHG,J)
)\max(_HS.ﬁ) B CQ A ’

ratio” *max

where 2nd line is due to Theorem 7, [21]. So we only need to find a lower bound for Apin(H 5,0 Ho.5)-
We can write Hyg s as

g

1 1 . .
_ = (1) (T
Hos = g ;:1: Tg(ac(i);ts)wa(m )Tz (x') (16)
A
1 1 , : ,
= (7) (T (T
Y ;:1 Tg(mu);a)']”d’(“’ ) zp(x') §Tptp(z') (17)

B
Therefore H s gH g s can be written as

AA" —AB" - BA" + BB'.

Since we are analyzing the minimum eigenvalue, we can safely ignore the last term BB Tasitis
positive semi-definite. This gives the following inequality:

Amin {AAT _ABT - BAT} > Amin {AAT} + Amin {—ABT _ BAT}
> Amin {AAT} —|ABT + BAT||

As A is a sum of ratio weighted positive semi-definite matrices, we can use the same trick in the
second step to lower bound its eigenvalue using the lower bound of the density ratio, eventually, using

n i) 76) T
our assumption on )\min{,% > JO g } > C, we can get,

Cs . 2
)\min(A) 2 -~ )‘min(AA ) Z )\min(A) : >\min(A) > b}
C(ratio Cr'mtlo

Now we analyze |AB' + BA" | which is further upperbounded by 2||A|||| B||.

Similarly to how Apin(A) is bounded, we can upper-bound ||A|| using the upperbound of the
ratio: ||A|| < CratioCy. Let us write B = niq Y % J( g’ 8T " where J@ and r; are
abbreviations of J () and 7 (2(?); §). It can be seen that

Mg

1 h, 1 i) 70) T i i
||BH§TTZ||772J()J() ||'||5T¢()||< le L0 8- T @),
q ;=1 7

< Cratlo C5T/U(nq)
Now we can bound
Amin {AAT ~ABT - BA" + BBT} > Amin {AAT} —2)|A||||B]
02
> — CraioCa - C5Tfa(ng)

ratlo
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There exists a constant N > 0, such that when n, > N,

— Amin(-l—_-l—§ 9H0 5) O?? Cr'ltiOC4 : CST
Awin {~Ho,sHj sHs o} > 0208 > _
0.0 CrzatioAglax lelatioA;nax CT(nq)*/\“/r;lax
C2.,CoT
> ratio > ||H .
Tt > | Hol

inally we analyze osH5 5. 0.6HS 5| < 0.5l 5 5||. As —H g ¢ 1s positive definite,
Finally lyze |HosHy 5| ||[HosHy 5| < | Heosl|-|Hj |- As —Hs s is positive definit
the operator norm of its inverse is the inverse of its minimum eigenvalue, which is upperbounded
. T
by C2,.,/A”.,. On the other hand, we can rewrite (16) as Hgs = - S 04, L . @@ .

min* ng =1 7r;
N T
(Iden — Ti . 6T1,b(‘) ) )

Ng

1 1 N 1 T
1He.sll < —— > —- HJ@J@)T . <Iden — =0Ty )H

q = " i
Chratio i N T 1 aT
< Gt Sy 0.5 OT - fraen — L o707
[ R— Ti

C

From calculation, we know ||C|| < 1+ |(r; — 1)/ri] < 2 + Chagio- Therefore ||Hg 5| <
C2rtioT2Cratio \1 i) 76) T 1| ;
% > [JDTO | < (C2,. 4+ 2Catio) Cy. Therefore HH975H57}5H is upperbounded

by (CL,.. + 203 )Cy/A"

ratio ratio min*

Refer to [21, 6] for inequalities of eigenvalue of matrix summation and product. O

B.4 Proof of Theorem 1

Proof. We denote Hessian H as a block matrix:

i C(Hiy Hu\ [ V(6.0) VsVel(5,6)
H—Vé(‘s’a)—<H21 H22>—<vgv,;e(5,9) v20(6,0) )

then Assumption 2 states that for every 6 € A, and 6 € ©, ANH H fllH 12) is lower bounded by
2||H 22| and HH21H1_11 || is upper bounded.

We can write the optimality condition of (7) and expand them at (§* = 0, 6"):
V5£(3,é) =0= V&é(é*,e*) + .Hll(s — 5*) + .ng(é — 9*) (18)
Vol(8,8) = 0= Vel(6",0") + Ho (6 — 6) + Haz(6 — 67), (19)

where H is the Hessian evaluated at a (&, 8) which is in between (8, 0) and (8", 0*) in an element-
wise fashion. This expansion is basically one-dimensional mean-value theorem applied on each

individual dimension of V£(8,0) and V/(8,6).
Given (18) and (19) we can solve equations for § — §* and 6 — 6*.
From (18) we can get
6o =H' [fvae(a*, 0") — H2(0 — 0*)} . (20)
Substituting (20) into (19) we get
0= Vol(8",0%) — Ha H ' Vsl(8",6%) + |~ Har Hy  Hio + Hl (6-67).

Rearranging terms, we get

00" = [HoyH [ Hiy— Ha|  (Vol(6".07) — HnHL'V50(5°.0%) @

I rr— L 13 I I rr— * *
- [—H21H111H12 +H22} Ho H{'V50(57,07). 22)
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The last line uses the fact that Vg/(6",0%) = 0
Weyl’s inequality states:
Amin(A + B) 2 )\min(A) + )\min(B)~
Asé € A, and 0 € ©, H is regulated by Assumption 2. Since
)\min(_ﬂZI-H;fﬂlQ) 2 Amin
and
Amin

)\mm(H22) _HH22H > _?

which are assumed by Assumption 2, we have

)\min(*ﬁmﬂﬂlﬂlz + H22) > Amin/2 > 0.

Denote —H oy H{ H1s + Hoy as H/Hs (it is actually the Schur Complement of H). Using
Holder’s inequality, we get

16— 6| < | [/ He) 7| | oL 1950067, 67))

AIIldX
IVst(8%,67)| < ———

<4 . * * )
= Anin [H/Hg ] A [Vsl(86*,0%)] . (23)

Further, we have E, [Tg- f(x)] = E,,. [To~ f(x)] = 0. The first equality is due to Assumption 1
and the second equality is given by Stein identity.

Therefore, V/(8*,0%) = an To-f(zW)—0= L Z L To+ f (D) —E, [Te- f(z)], which
converges to 0 in £3 norm in probability due to Assumptlon 3. This gives the convergence in

probability of Hé — 07||. Finite sample convergence rate can be given if the convergence rate of
IVs(8*,0%)|| is known.

Now we show the consistency of 4. From (20) we can see that
§— 6" =—H'Vsl(6",07) — Hy; Hi2(0 — 6%),
and due to Holder’s inequality, we get

56 Er;fH IV5£(5%,0%)] + Hﬂ;fﬂlgu Hé—a*
A' ||V5€(5* 0*)” + Amax 66" (24)
Combine (24) with (23) we get
] 202 A4 A
—_ 85l < max**min min | * 0*
R o e AR
Again, due to Assumption 3, ||Vs£(6*,0)|| % 0. This completes the proof.
O

B.5 Proof of Theorem 2

Proof. Due to Assumption 4, it can be seen that H ﬂ Eq [I_{ } Moreover, as 6 ﬂ 0" and

§50 (proved in Theorem 1), we can see [, [f{ ] 5 E, [H"] due to continuous mapping. Thus
H =E,[H"] + 0,(1). From now on, for simplicity, let us denote —E, [H*] as I 2.

2I for “information matrix”. Do not confuse with the identify matrix which is denoted as Iden in this paper
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We again write the optimality condition of (7) and apply asymptotic expansion at (6* = 0, 0"):
Vsl(8,0) = 0= Vsl(6",0%) + (—I11 + 0,(1))(8 — %) + (—L12 +0,(1)) (8 — 67)  (29)
Vol(8,0) = 0= Vol(6",0) + (—Is1 +0,(1))(8 — 8") + (—Ia2s + 0,(1))(6 — 87).  (26)

Note we have replaced all H with —I + 0,(1), and 0,(1) will be ignored in future algebraic
calculations.

We now get an asymptotic version of (22):
. . _ -1 _ .
N (0 0 ) s — (In I Ty — To) " Iy 17V s0(87,67) - /g
— -1 — * *
= — (IglIlllIlg) I21I111V5€(6 ,0 ) *4/Nyg
The last equality is due to I52 = 0.
Noticing that I7;'Vs¢(6*,0*) - /n is a sum of independent random variables with zero mean and
covariance —I;". Applying CLT on I;'V5¢(5*,0%) - | /m; yields
I'Vsl(6,6%) ~ N (0,—I),

thus

Vig (0-67) ~ N [0, (-In 15 1a) ]

B.6 Proof of Lemma 3

Proof. Let us shorten the Stein feature vector Ty f(x) as t(x;60) € R® and t as t(x;0"). We
start by computing each factors in the variance. Since rg(x;8") = 1 holds for all 8, we have
Vere(xz;d*) = 0. Then, we have

-E, [Hg’é] = —-E, [V% log rg*(:n;é*)}
1

=E, | ———=tt' | =E [tt"] € R®®
q |:7"(2E,6*,0*)2 :| q[ ]6 ’

1 1
E,[Hp 5] = E, [ Vgt(a:;B*)T - ﬁVgrg*(x; 6”‘)t(:1:;0*)T

r

Eq [V@t((ﬂ, 0*)T] c Rdim(@)xb.

Since the equality E,, [t(x; 8)] = 0 holds for all 8, we have VoE,, [t(x; 8)] = 0. Exchangeability
of the integration and the derivative yields

VoE,, [t(z;0)] = E,, [s(x;0)t(x;0)"| + E,, [Vot(z;0)"] = 0.

As a result, we obtain -
Eq[Hg 5] = —Eq[st'].

O
B.7 Proof of Theorem 5
Proof. Use Taylor series to expand E, {5(3, é)] on (6%,8"), we get
E, [z([s, é)] =E, [¢(6%,0")] + V5E, [¢(6",0%)] [8 - 5*} + VoE, [((6%,0")]" [é - 9*}
byl =T V3E, @) [ - ']
=040+ 0+ [y — '] VAE, [e(m)] [ — '] 27)

2
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where we denote 1 := [g} for short and 7 is defined in between 7) and * in an element-wise fashion.

The second equality is due to " = 0 and E, [V5¢(d",0")] = 0, which is given by Stein identity.
Similarly we can expand

(6,0) =Vs0(5",67)7 [6—6"| + Sl — ) Vae@) [ -, 8)

1
2
where 7) is similarly defined as 7. It can be seen that V2 /(7)) 5 _Iand VIE, (7] 5 T due
to Assumption 4 and our consistency results. Taking the difference between (27) and (28) after
multiplying n, yields

nqEq [z(s, é)} — ngl(8,0) = —n,Vs0(87,0%)7 [Zs - 5*} +0,(1).
Substitute (& — &%) with (20) we get
nqEq [z(s, é)] — 1gl(8,8) = n,Vsl(6",0%)T [ﬁ;fvae(a*, 0") + Hy, H (0 — 9*)] +0,(1).
Substitute (6 — %) using (22), we get
nqEq [z(s,é)} — ngl(8,0) =n,Vsl(6",0")T H,, ' V5((5",0%)
—n,Vsl(8,6°) H ' Hyy [H/Hy) ' Hy Hy, Vst (5*,6%) -(i-z 9057(1)

Replacing submatrices of H a,b Using submatrices of —1I 5 in (29) and using the fact that Io; = 0
(due to 6" = 0),

ngEq [£8,0)] = nyl(8,0) = —/agVsl(6",07) TH!Vsl(8",0%) /g

* ek — — -1 - * ek
+ \/TTqVJZ((S ,0 )TllllIlg [1211111112] IglIlllv,;E(é ,0 )\/E—i- Op<1)
(30)
Taking the expectation,
A c A — _ _ -1
an {Eq [6(6, 9>i| - f(é, 0)} = — tI‘aCQ(IllIlll) + tI‘a.C6<1111112 [IglIlllIlg] 121) + Op(l)
= — rank(IH) + rank (I21II11I12) + Op(l)

In the case when I1; € RP*? I, € RP*dim(@) are fyll-rank and dim(6) < b, rank(I1;) = b and
rank (I2117;' I12) = dim(8), which completes the proof. O

B.8 The Asymptotic Distribution of 2n,¢(5, 6)

We show 2n4 ¢ (3, é) follows a x2 distribution based on previously assumed assumptions.
Theorem 6. Suppose Assumption 1, 2, 3 and 4 holds, E, [Hf;,(;] is invertible and |E, [Hz,o} are
full-rank and dim(6) < b, then 2n,((8,0) ~ x2(b — dim(0)).

Proof. First we expand 2nq€(3 , @) using mean value theorem:

2m40(8,0) = 2n,V50(8*,0%) T dd + nydd H1,dd + n,dd H 15d0 + n,d0 Ho1dd + n,d6 Hoyd0
(3D

where dt is short for t — t*. Note £(6*,0*) = 0. Now we analyze each term.

From the proof in Section B.7 we know
2n,Vsl(6*,0%)Tds =2n,V50(6%,0%) " I'Vsl(5*,0%)

* * — —_ -1 —_ * *
—2ngVsl(8*,0°) T I Ino [Io1 17 T1a]  Ia1I77' Vsl(8*,0%) + 0,(1).
(32)
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With the help of (20) and (22) and a few algebra we can see that
nyddI11ds = n,Vsl(6*,0%) I7'Vsl(5*,0%)
* * — — -1 — * *
—ngVel(6*,0°) I I [In I T1a]  IoiI7'Vsl(5*,0) +0,(1).  (33)

Similar calculations also show n,dd H12d0 = n,d0H2dé = 0,(1) and n,d0H22d6 = 0,(1).
Combine (31), (32) and (33), we can see that

2n0(8,0) =n,Vsl(6*,0°) I Vsl(5%,6%)
* )k — — -1 — *  k
—an5£(5 s 0 )TIlllIlg [IglIlllIlg] I211111V5€(5 y 0 ) + 0p(1)
* * — - -1 - * *

= /an5£(5 y 0 )TIlll {Iden — I12 |:I21I111I12] I21I111} V(;Z(é s 0 ). /Tq + Op(l),
where Iden is identify matrix. Denote Iden — It [I2117; I12] Y . as A. One can verify
that V0(6*,0%) T I{' A has covariance I;;'A 3. By checking the eigenvalues of A*, it can be
seen that rank(A) = db — dim(@) and assuming I;" is full rank, rank(I;;'A) = db — dim(8).
Therefore , /iy V50(8*,0)T I;' A is asymptotically a degenerated multivariate normal variable with
covariance matrix I7;' A.

We can rewrite /7, Vsl(6*,0°) T I AVs((6*,0%),/ng as
JaVsl(85,0°) I A I A] ' T AV0(6*,6%) /g,

where T is the pseudoinverse. This quadratic form has a x? distribution with degree of freedom
rank(I7'A) = db — dim(8). O

B.9 Proof of Proposition 3

Proof. We convert the SDRE problem (5) as the following equivalent problem:
q
. T i
n;ix;log € st.Vie{l...ng}, o Tgf(.’l)g)) +1=g¢.

Let us introduce Lagrangian multipliers pi1 . .. pi,,, Over all the constraints. We can write the La-
grangian:

) q Tq . :
mﬁn n%aex; (loge;) — ; b (5 Tgf(a:fl )) +1- ei) (34)
Solve the inner max problem with respect to €,
Ng Mg
max Y _loge; + pic; = y [~ (log —p) — 1], (35)
=1 =1
when €; = —}% This also implies the relationship between the dual parameter p; and the primal
parameter 4: 7"9(1:((;); d) = JTTpef(mgi)) +l=¢=—=1.

Hi
The inner optimization with respect to 4, i.e., maxs — Z?:‘Il 1i0 Ty f (a:,gi)) is a linear programming
and is only bounded when >, 11;Tp f(wgf)) = 0 and achieves the optimal value 0.

Substituting the optimal values of these two maximization results into the Lagrangian and adding

constraint ZZZI wile f(w((;)) = 0 gives the Lagrangian dual (9). Moreover, the primal problem in
(5) is concave, we can verify the Slater’s condition holds at 6 = 0, e = 1 thus the strong duality
holds. O

*Some calculations show AT I'A = I7'A.
*eig(Iden — T') = 1 — eig(T) and eig(ST) = eig(T'S).
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