
Supplementary material for “Metric
Learning for Adversarial Robustness”

A Indiscrimination of Robust Representation of Adversarial Examples and
the True Class

Similar to Fig. 1 in the main text, we visualize the representations of clean and adversarial examples
from the same class for the remaining 9 classes on CIFAR-10 dataset across all models using t-SNE
[1]. Visualizations are shown in Fig. 1, Fig. 2, and Fig. 3.

Figure 1: t-SNE Visualizations of adversarial images from the same true class which are mistakenly
classified to false classes. From left to right: UM, AT, ALP, TLA. These are representations of second to last
layer of 1000 adversarial examples crafted from 1000 clean test examples from CIFAR-10 dataset, where the
true class is the same for all the figures in the same row and different for figures of different row. The different
colors represent different false classes. The gray dots further show 500 randomly sampled clean true images.
Notice that for (a) undefended model (UM), the adversarial attacks clearly separate the images from the true
category into different classes. (b) adversarial training (AT) and (c) adversarial logit pairing (ALP) method still
suffer from this problem at a reduced level. In contrast, proposed ATL (see (d)) clusters together all the examples
from the same true class, which improves overall robustness.
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B Separation of Robust Representations of Adversarial Examples to the
False Class

Similar to Fig. 2 in the main text, we provide more visualizations of the representations on CIFAR-10
using t-SNE to demonstrate the separation margin of adversarial samples to the corresponding false
class. We plot the representations of adversarial examples from classA which are finally misclassified
as class B. We also plot clean images from both A and B. Visualizations are shown in Fig. 4, Fig. 5,
and Fig. 6.
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Figure 2: t-SNE Visualizations of adversarial images from the same true class which are mistakenly
classified to different false classes (Same as Fig 1).
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C Experiment

C.1 Implementation Details

We add uniform random noise to the clean images x within the I(x, ε) corresponding to the allowed
perturbation scale for the natural images in the TLA training. We conduct all the experiments using a
single V100 GPU with 16GB memory. The black-box attack is evaluated Code is appended in the zip
file.

MNIST follows the setup of Madry et al. [4] and ALP [3], we use Adam with learning rate of 0.0001.
For ALP, we use λ = 0.5 as suggested in papers [3]. We conduct experiments using our modified
LeNet model (adding the batch normalization and replace 5× 5 convolution kernel with 3× 3). The
architecture is shown in Table 1. All experiments are conducted with batch size 50. To be consistent
with the results reported by ALP, we maintain the label smoothing with value equals to 0.1. We
achieve better accuracy for AT [4] and ALP [3] (The baselines are stronger than the original paper
because of the additional label smoothing and batch normalization). We set up the experiment we
reported in the table with the following hyper-parameters. For the TLA method, we adopt λ1 = 0.5,
λ2 = 0.001, margin α = 0.05, mini-batch size for the negative sample selection as 50. We run
the experiments for 200 epochs before it fully converges. We repeat the experiments for five times
and observe little oscillations for the performance. We select the one randomly with middle-level
performance and conduct all the evaluations above.

CIFAR10 follows the same WRN model as Madry et al [4] across all our models, as shown in Table
2. Also, we adopt the same SGD optimization method with the same learning rate decay strategy as
Madry’s, where we start with learning rate of 0.1 and decrease it to 0.01 at 50k iterations. We run it
for 55k iterations before stopping. We train all the models with a batch size of 50. We implement the
ALP on CIFAR-10 because it is not implemented in the original ALP paper, where we do improve the
adversarial accuracy significantly. To achieve a fair comparison, we all follow the hyper-parameters

2



Figure 3: t-SNE Visualizations of adversarial images from the same true class which are mistakenly
classified to different false classes (Same as Fig 1).
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Figure 4: Illustration of the separation margin of adversarial examples from the natural images of the
corresponding false class. From left to right: UM, AT, ALP, TLA. We show t-SNE visualization of the
second to last layer representation of test data from two different classes across four models. The blue and
green dots are 200 randomly sampled natural images from ”frog” and ”horse” classes respectively. The red
triangles denote adversarial (adv) perturbed ”frog” images but mispredicted as ”horse”. Notice that for (a) UM,
the adversarial examples are moved to the center of the false class which is hard to separate from the natural
images of the false class. (b) AT and (c) ALP achieve some robustness by separating adversarial and false natural
images, but they are still close to each other. Plot (d) shows proposed TLA promotes the mispredicted adversarial
examples to lie on edge and can still be separated from natural images of the false class, which improves the
robustness.

15 10 5 0 5 10 15 20 25

40

20

0

20

40 natural
frog
horse

misclassified adv
frog

misclassified adv
frog

30 20 10 0 10 20 30 40 40 20 0 20 40 10 5 0 5 10 15

set-up in [4]. It took a day and a half before our training converges. We set the λ = 0.5 for ALP
and do not use label smoothing. For TLA method, we adopt λ1 = 2, λ2 = 0.001, margin α = 0.03,
mini-batch size for the negative sample selection as 500. Our TLA improves the robust accuracy over
ALP baseline for 4.12% and AT baseline for 4.82%.

Tiny-ImageNet follows the well studied Resnet-50 model. We apply a stride of 2 for the first
convolution to reduce the computational intensity. We use the Adam optimizer for AT and ALP
trained with batch size of 32. We start from learning rate of 0.1 and decrease the learning rate to
0.01 at the 110-th epochs and 0.001 at the 130th epochs. We train it for 150 epochs. For TLA
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Figure 5: Same as Fig 4 except the two classes are ”horse” and ”airplane”.
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Figure 6: Same as Fig 4 except the two classes are ”horse” and ”airplane”.
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training, we fintuning on the AT model with batch-size of 20 because of GPU memory budget.
We use the untargeted attacks for the adversarial examples generation during both the training and
testing procedure, so that it is consistent with the attack conducted in the evaluation. We use data
augmentation (crop, flip, saturation, etc.) for all the models. The training time for the models requires
about 2 days on a single Nvidia V100 GPU. We set the λ = 0.5 for ALP. We use label smoothing
with parameter equal to 0.1 across all of our experiments. For the TLA method, we adopt λ1 = 0.2,
λ2 = 0.001, margin α = 0.01, mini-batch size for the negative sample selection as 50.

Table 1: Illustration of MNIST architecture, which shows all the details of our modified LeNet
Architecture by using smaller Convolution (Conv) kernels and batch normalization. Where the
Feature-In/Out for the convolution and fully connected (FC) denotes the number of the channel and
hidden neurons respectively.

Layer Type Feature-In Dimension Feature-Out Dimension Kernel-Size

Conv 1 32 3× 3
BatchNormalization 32 32 -

ReLU - - -
Conv 32 64 3× 3

BatchNormalization 64 64 -
ReLU - - -

Max Pooling 2× 2
Conv 64 128 3× 3

BatchNormalization 128 128 -
ReLU - - -
Conv 128 256 3× 3

BatchNormalization 256 256 -
ReLU - - -

Max Pooling 2× 2
Fully Connected 7× 7× 256 1024 -

BatchNormalization 1024 1024 -
ReLU - -

Fully Connected 1024 10 -
Softmax
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Table 2: Illustration of wide residual network architecture which is the same as Madry et al. [4]. The
matrix denotes the set up of the residual block, and × denotes to repeat this for the following number
of times.

layer name output size layer setup

Conv 32× 32 3× 3, 16, stride 1

conv2_x 16× 16

[
3× 3, 160
3× 3, 160

]
× 6

conv3_x 8× 8

[
3× 3, 320
3× 3, 320

]
× 6

conv4_x 4× 4

[
3× 3, 640
3× 3, 640

]
× 6

classifier 1× 1 average pool, 10-d fc, softmax

C.2 Effect of TLA on Bring Adversarial vs. Natural Image of the Same Class Together

We also define a similar metric to show TLA tends to pull closer the adversary images to their true
class. For every dataset, we compute a complementary ratio (denoted as r′) that measures how
adversary images are pulled back to their true class on different models. We reformulate the definition
of {c′qk } to be the embedded representations of all the adversarial examples crafted based on the clean
images of true class ck in the test set. The results are shown in Table 3. Notice that lower value of r′
is desirable here, indicating the examples of the same class are pulled together.

As we can see, adversarial attack tends to bring the representation of an image far away from its true
class. For UM, the adversarial examples are far away from the clean examples of the same class.
With AT and ALP (baseline) methods, the adversarial examples are getting closer to the clean images
of the true class to some extent. Our method TLA brings even closer the adversarial examples to the
clean examples on CIFAR-10 and Tiny-ImageNet and achieves comparable performance on MNIST.
This further implies that our method promotes the adversarial and clean images from the same class
to lie on the same manifold and thus improves the robustness of the model.

Table 3: Average (over all classes) ratio (r′) of the mean of pairwise distance between adversary images and
natural images of the same class over the mean inner-class distance. The results illustrate that TLA decreases the
relative distance of adversarial images w.r.t. the natural images of the respective true classes. The best results of
each column are in bold.

Dataset MNIST CIFAR-10 Tiny-ImageNet
Perturbation Level L∞ = 0.03 L∞ = 0.3 L∞ = 8

255 L∞ = 25
255 L∞ = 8

255 L∞ = 25
255

M
et

ho
ds

UM 1.071 2.159 3.604 3.682 1.319 1.480
AT 1.004 1.042 1.342 1.714 1.053 1.204
ALP 1.006 1.068 2.313 3.796 1.040 1.151
TLA 1.005 1.072 1.191 1.491 1.044 1.174

D TLA Algorithm

The Triplet Loss Adversarial Training (TLA) is introduced in the Algorithm 1. It is a simple approach
which can be done within one Loop.

E The effect of the hyper-parameter

We use MNIST dataset to explore the influence of the hyper-parameters. We conclude that a higher
accuracy is usually achieved with a margin between 0.01 to 0.1, the weight λ should be between 0.5
to 2. The results for different margin and λ plot in the following graph. Overall, our TLA algorithm
does not sensitive to the specific hyper-parameters set up. In a wide range, it is able to achieve
significant improvement over the baseline models.
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Algorithm 1 Metric Learning for Adversarial Robustness (Triplet Loss Adversarial (TLA) method)

1: Input: Data D = {(x(i), y(i)}Ni=1, training iterations Tt, learning rate ρt, initialized
trainable model parameters θ. A minibatch of size K for each iteration is denoted as
{(X(k), Y (k))}k∈{i1,...,iK}.

2: for t = 1 : Tt do
3: Sample a minibatch of data X and Xpos of the same class from D

4: Generate adversarial attack images Xadv based on X.

5: Sample a subset of data Xextra and calculate a negative minibatch X−negcorresponding to
Xadv with strategy mentioned in section 3.2.

6: Calculate Lall (as defined in Sec 4.2) on the sampled batches.

7: Update parameters: θ ← θ − ρt
∑
k ∇θLall.

8: end for

Table 4: Adversarial accuracy under 100 steps of PGD attack when model is trained using different
λ1 parameters on MNIST. We conclude that setting the λ1 within range of 0.5 to 2 is all reasonable.

λ 0 0.025 0.5 1 2 4

TLA 94.82% 96.31% 96.96% 96.57% 96.72% 96.26%

F Visualization

F.1 More Visualization of the Nearest Neighbor Retrival on Learned Embeddings

We show more visualizations of the nearest neighbor retrieval based on the representation learned on
different methods. The results are shown in Fig 7.

F.2 Visualization of the Loss Landscape

To demonstrate that our approach does not rely on the obfuscated gradients by having a distorted loss
landscape [2], we visualize the loss landscape of the loss function on two random directions in Fig 8.
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Table 5: Adversarial accuracy under 100 steps of PGD attack with λ1 = 2 when model is trained
using different α parameter on MNIST. The best accuracy is achieved with margin 0.05 according to
our experiment.

α 0 0.025 0.05 0.1 0.2

TLA 96.60% 96.47% 96.72% 96.36% 96.35%

Table 6: Adversarial robustness accuracy under 100 steps of PGD of model trained on different
representation layers with ATL on MNIST. All the models using λ1 = 2.The result demonstrate our
choice of the second to last layer achieve the best performance.

Representation Layer Lower Middle Higher (Ours) Logit (ALP)

TLA 96.14% 96.48% 96.72% 96.34%

Nearest Neighbor Retrived Nearest Neighbor RetrivedQuery
(Clean)

Query
(Adv)

AT
(baseline)

ALP
(baseline)

TLA
(ours)

Figure 7: Visualization of nearest neighbor images while querying about a "deer" on models
using AT, ALP, and TLA training separately. The clean image query is shown on the left column,
and the adversarial perturbed image query is shown on the right column. As we can see, while both
baseline methods are unable to retrieve the correct nearest neighbors under adversarial attacks, our
TLA method (bottom) retrieve the correct images.
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AT

ALP

TLA

Image1 Image2 Image3

Figure 8: Visualization of loss landscape of each model of Tiny ImageNet. We visualize the loss
using heatmap of three randomly sampled example (each column has the same direction). For each
line, we show the result of baseline methods and our methods. As we can see, TLA (last row) has a
slightly smoother loss landscape compared with AT and ALP baselines.
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