
Are Disentangled Representations Helpful for
Abstract Visual Reasoning?

Sjoerd van Steenkiste
IDSIA, USI, SUPSI
sjoerd@idsia.ch

Francesco Locatello
ETH Zurich, MPI-IS
locatelf@ethz.ch

Jürgen Schmidhuber
IDSIA, USI, SUPSI, NNAISENSE

juergen@idsia.ch

Olivier Bachem
Google Research, Brain Team

bachem@google.com

Abstract

A disentangled representation encodes information about the salient factors of
variation in the data independently. Although it is often argued that this repre-
sentational format is useful in learning to solve many real-world down-stream
tasks, there is little empirical evidence that supports this claim. In this paper, we
conduct a large-scale study that investigates whether disentangled representations
are more suitable for abstract reasoning tasks. Using two new tasks similar to
Raven’s Progressive Matrices, we evaluate the usefulness of the representations
learned by 360 state-of-the-art unsupervised disentanglement models. Based on
these representations, we train 3600 abstract reasoning models and observe that
disentangled representations do in fact lead to better down-stream performance. In
particular, they enable quicker learning using fewer samples.

1 Introduction

Learning good representations of high-dimensional sensory data is of fundamental importance to
Artificial Intelligence [4, 3, 6, 49, 7, 69, 67, 50, 59, 73]. In the supervised case, the quality of a
representation is often expressed through the ability to solve the corresponding down-stream task.
However, in order to leverage vasts amounts of unlabeled data, we require a set of desiderata that
apply to more general real-world settings.

Following the successes in learning distributed representations that efficiently encode the content
of high-dimensional sensory data [45, 56, 76], recent work has focused on learning representations
that are disentangled [6, 69, 68, 73, 71, 26, 27, 42, 10, 63, 16, 52, 53, 48, 9, 51]. A disentangled
representation captures information about the salient (or explanatory) factors of variation in the
data, isolating information about each specific factor in only a few dimensions. Although the
precise circumstances that give rise to disentanglement are still being debated, the core concept of a
local correspondence between data-generative factors and learned latent codes is generally agreed
upon [16, 26, 52, 63, 71].

Disentanglement is mostly about how information is encoded in the representation, and it is often
argued that a representation that is disentangled is desirable in learning to solve challenging real-world
down-stream tasks [6, 73, 59, 7, 26, 68]. Indeed, in a disentangled representation, information about
an individual factor value can be readily accessed and is robust to changes in the input that do not
affect this factor. Hence, learning to solve a down-stream task from a disentangled representation
is expected to require fewer samples and be easier in general [68, 6, 28, 29, 59]. Real-world
generative processes are also often based on latent spaces that factorize. In this case, a disentangled
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representation that captures this product space is expected to help in generalizing systematically in
this regard [18, 22, 59].

Several of these purported benefits can be traced back to empirical evidence presented in the recent
literature. Disentangled representations have been found to be more sample-efficient [29], less
sensitive to nuisance variables [55], and better in terms of (systematic) generalization [1, 16, 28,
35, 70]. However, in other cases it is less clear whether the observed benefits are actually due to
disentanglement [48]. Indeed, while these results are generally encouraging, a systematic evaluation
on a complex down-stream task of a wide variety of disentangled representations obtained by training
different models, using different hyper-parameters and data sets, appears to be lacking.

Contributions In this work, we conduct a large-scale evaluation1 of disentangled representations
to systematically evaluate some of these purported benefits. Rather than focusing on a simple single
factor classification task, we evaluate the usefulness of disentangled representations on abstract visual
reasoning tasks that challenge the current capabilities of state-of-the-art deep neural networks [30, 65].
Our key contributions include:

• We create two new visual abstract reasoning tasks similar to Raven’s Progressive Matrices [61]
based on two disentanglement data sets: dSprites [27], and 3dshapes [42]. A key design property
of these tasks is that they are hard to solve based on statistical co-occurrences and require reasoning
about the relations between different objects.

• We train 360 unsupervised disentanglement models spanning four different disentanglement
approaches on the individual images of these two data sets and extract their representations. We
then train 3600 Wild Relation Networks [65] that use these disentangled representations to perform
abstract reasoning and measure their accuracy at various stages of training.

• We evaluate the usefulness of disentangled representations by comparing the accuracy of these
abstract reasoning models to the degree of disentanglement of the representations (measured using
five different disentanglement metrics). We observe compelling evidence that more disentangled
representations yield better sample-efficiency in learning to solve the considered abstract visual
reasoning tasks. In this regard our results are complementary to a recent prior study of disentangled
representations that did not find evidence of increased sample efficiency on a much simpler
down-stream task [52].

2 Background and Related Work on Learning Disentangled Representations

Despite an increasing interest in learning disentangled representations, a precise definition is still
a topic of debate [16, 26, 52, 63]. In recent work, Eastwood et al. [16] and Ridgeway et al. [63]
put forth three criteria of disentangled representations: modularity, compactness, and explicitness.
Modularity implies that each code in a learned representation is associated with only one factor of
variation in the environment, while compactness ensures that information regarding a single factor
is represented using only one or few codes. Combined, modularity and compactness suggest that a
disentangled representation implements a one-to-one mapping between salient factors of variation
in the environment and the learned codes. Finally, a disentangled representation is often assumed
to be explicit, in that the mapping between factors and learned codes can be implemented with a
simple (i.e. linear) model. While modularity is commonly agreed upon, compactness is a point of
contention. Ridgeway et al. [63] argue that some features (eg. the rotation of an object) are best
described with multiple codes although this is essentially not compact. The recent work by Higgins
et al. [26] suggests an alternative view that may resolve these different perspectives in the future.

Metrics Multiple metrics have been proposed that leverage the ground-truth generative factors
of variation in the data to measure disentanglement in learned representations. In recent work,
Locatello et al. [52] studied several of these metrics, which we will adopt for our purposes in this
work: the BetaVAE score [27], the FactorVAE score [42], the Mutual Information Gap (MIG) [10],
the disentanglement score from Eastwood et al. [16] referred to as the DCI Disentanglement score,
and the Separated Attribute Predictability (SAP) score [48].

1Reproducing these experiments requires approximately 2.73 GPU years (NVIDIA P100).
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The BetaVAE score, FactorVAE score, and DCI Disentanglement score focus primarily on modularity.
The former assess this property through interventions, i.e. by keeping one factor fixed and varying all
others, while the DCI Disentanglement score estimates this property from the relative importance
assigned to each feature by a random forest regressor in predicting the factor values. The SAP score
and MIG are mostly focused on compactness. The SAP score reports the difference between the top
two most predictive latent codes of a given factor, while MIG reports the difference between the top
two latent variables with highest mutual information to a certain factor.

The degree of explicitness captured by any of the disentanglement metrics remain unclear. In
prior work it was found that there is a positive correlation between disentanglement metrics and
down-stream performance on single factor classification [52]. However, it is not obvious whether
disentangled representations are useful for down-stream performance per se, or if the correlation is
driven by the explicitness captured in the scores. In particular, the DCI Disentanglement score and
the SAP score compute disentanglement by training a classifier on the representation. The former
uses a random forest regressor to determine the relative importance of each feature, and the latter
considers the gap in prediction accuracy of a support vector machine trained on each feature in
the representation. MIG is based on the matrix of pairwise mutual information between factors
of variations and dimensions of the representation, which also relates to the explicitness of the
representation. On the other hand, the BetaVAE and FactorVAE scores predict the index of a fixed
factor of variation and not the exact value.

We note that current disentanglement metrics each require access to the ground-truth factors of
variation, which may hinder the practical feasibility of learning disentangled representations. Here
our goal is to assess the usefulness of disentangled representations more generally (i.e. assuming it is
possible to obtain them), which can be verified independently.

Methods Several methods have been proposed to learn disentangled representations. Here we are
interested in evaluating the benefits of disentangled representations that have been learned through
unsupervised learning. In order to control for potential confounding factors that may arise in using
a single model, we use the representations learned from four state-of-the-art approaches from the
literature: β-VAE [27], FactorVAE [42], β-TCVAE [10], and DIP-VAE [48]. A similar choice of
models was used in a recent study by Locatello et al. [52].

Using notation from Tschannen et al. [73], we can view all of these models as Auto-Encoders that
are trained with the regularized variational objective of the form:

Ep(x)[Eqφ(z|x)[− log pθ(x|z)]] + λ1Ep(x)[R1(qφ(z|x))] + λ2R2(qφ(z)). (1)

The output of the encoder that parametrizes qφ(z|x) yields the representation. Regularization serves
to control the information flow through the bottleneck induced by the encoder, while different
regularizers primarily vary in the notion of disentanglement that they induce. β-VAE restricts the
capacity of the information bottleneck by penalizing the KL-divergence, using β = λ1 > 1 with
R1(qφ(z|x)) := DKL[qφ(z|x)||p(z)], and λ2 = 0; FactorVAE penalizes the Total Correlation [77] of
the latent variables via adversarial training, using λ1 = 0 and λ2 = 1 with R2(qφ(z)) := TC(qφ(z));
β-TCVAE also penalizes the Total Correlation but estimates its value via a biased Monte Carlo
estimator; and finally DIP-VAE penalizes a mismatch in moments between the aggregated posterior
and a factorized prior, using λ1 = 0 and λ2 ≥ 1 with R2(qφ(z)) := ||Covqφ(z) − I||2F .

Other Related Works Learning disentangled representations is similar in spirit to non-linear
ICA, although it relies primarily on (architectural) inductive biases and different degrees of supervi-
sion [13, 2, 39, 36, 37, 38, 25, 33, 32]. Due to the initial poor performance of purely unsupervised
methods, the field initially focused on semi-supervised [62, 11, 57, 58, 44, 46] and weakly supervised
approaches [31, 12, 40, 21, 78, 20, 15, 35, 80, 54, 47, 64, 8]. In this paper, we consider the setup of the
recent unsupervised methods [27, 26, 48, 42, 9, 52, 71, 10]. Finally, while this paper focuses on eval-
uating the benefits of disentangled features, these are complementary to recent work that focuses on
the unsupervised “disentangling” of images into compositional primitives given by object-like repre-
sentations [17, 23, 24, 22, 60, 74, 75]. Disentangling pose, style, or motion from content are classical
vision tasks that has been studied with different degrees of supervision [72, 79, 80, 34, 19, 14, 21, 36].
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Figure 1: Examples of RPM-like abstract visual reasoning tasks using dSprites (left) and 3dshapes
(right). The correct answer and additional samples are available in Figure 17 in Appendix C.

3 Abstract Visual Reasoning Tasks for Disentangled Representations

In this work we evaluate the purported benefits of disentangled representations on abstract visual
reasoning tasks. Abstract reasoning tasks require a learner to infer abstract relationships between
multiple entities (i.e. objects in images) and re-apply this knowledge in newly encountered set-
tings [41]. Humans are known to excel at this task, as is evident from experiments with simple visual
IQ tests such as Raven’s Progressive Matrices (RPMs) [61]. An RPM consists of several context
panels organized in multiple sequences, with one sequence being incomplete. The task consists of
completing the final sequence by choosing from a given set of answer panels. Choosing the correct
answer panel requires one to infer the relationships between the panels in the complete context
sequences, and apply this knowledge to the remaining partial sequence.

In recent work, Santoro et al. [65] evaluated the abstract reasoning capabilities of deep neural
networks on this task. Using a data set of RPM-like matrices they found that standard deep neural
network architectures struggle at abstract visual reasoning under different training and generalization
regimes. Their results indicate that it is difficult to solve these tasks by relying purely on superficial
image statistics, and can only be solved efficiently through abstract visual reasoning. This makes this
setting particularly appealing for investigating the benefits of disentangled representations.

Generating RPM-like Matrices Rather than evaluating disentangled representations on the Proce-
durally Generated Matrices (PGM) dataset from Barrett et al. [65] we construct two new abstract
RPM-like visual reasoning datasets based on two existing datasets for disentangled representation
learning. Our motivation for this is twofold: it is not clear what a ground-truth disentangled represen-
tation should look like for the PGM dataset, while the two existing disentanglement data sets include
the ground-truth factors of variation. Secondly, in using established data sets for disentanglement, we
can reuse hyper-parameter ranges that have proven successful. We note that our study is substantially
different to recent work by Steenbrugge et al. [70] who evaluate the representation of a single trained
β-VAE [27] on the original PGM data set.

To construct the abstract reasoning tasks, we use the ground-truth generative model of the dSprites [27]
and 3dshapes [42] data sets with the following changes2: For dSprites, we ignore the orientation
feature for the abstract reasoning tasks as certain objects such as squares and ellipses exhibit rotational
symmetries. To compensate, we add background color (5 different shades of gray linearly spaced
between white and black) and object color (6 different colors linearly spaced in HUSL hue space)
as two new factors of variation. Similarly, for the abstract reasoning tasks (but not when learning
representations), we only consider three different values for the scale of the object (instead of 6) and
only four values for the x and y position (instead of 32). For 3dshapes, we retain all of the original
factors but only consider four different values for scale and azimuth (out of 8 and 16) for the abstract
reasoning tasks. We refer to Figure 7 in Appendix B for samples from these data sets.

For the modified dSprites and 3dshapes, we now create corresponding abstract reasoning tasks. The
key idea is that one is given a 3× 3 matrix of context image panels with the bottom right image panel
missing, as well as a set of six potential answer panels (see Figure 1 for an example). One then has to
infer which of the answers fits in the missing panel of the 3× 3 matrix based on relations between

2These were implemented to ensure that humans can visually distinguish between the different values of
each factor of variation.
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image panels in the rows of the 3× 3 matrices. Due to the categorical nature of ground-truth factors
in the underlying data sets, we focus on the AND relationship in which one or more factor values are
equal across a sequence of context panels [65].

We generate instances of the abstract reasoning tasks in the following way: First, we uniformly
sample whether 1, 2, or 3 ground-truth factors are fixed across rows in the instance to be generated.
Second, we uniformly sample without replacement the set of underlying factors in the underlying
generative model that should be kept constant. Third, we uniformly sample a factor value from the
ground-truth model for each of the three rows and for each of the fixed factors3. Fourth, for all other
ground-truth factors we also sample 3× 3 matrices of factor values from the ground-truth model with
the single constraint that the factor values are not allowed to be constant across the first two rows (in
that case we sample a new set of values). After this we have ground-truth factor values for each of
the 9 panels in the correct solution to the abstract reasoning task, and we can sample corresponding
images from the ground-truth model. To generate difficult alternative answers, we take the factor
values of the correct answer panel and randomly resample the non-fixed factors as well as a random
fixed factor until the factor values no longer satisfy the relations in the original abstract reasoning
task. We repeat this process to obtain five incorrect answers and finally insert the correct answer in a
random position. Examples of the resulting abstract reasoning tasks can be seen in Figure 1 as well
as in Figures 18 and 19 in Appendix C.

Models We will make use of the Wild Relation Network (WReN) to solve the abstract visual
reasoning tasks [65]. It incorporates relational structure, and was introduced in prior work specifically
for such tasks. The WReN is evaluated for each answer panel a ∈ A = {a1, ..., a6} in relation to all
the context-panels C = {c1, ..., c8} as follows:

WReN(a,C) = fφ(
∑

e1,e2∈E
gθ(e1, e2)) , E = {CNN(c1), ...,CNN(c8)} ∪ {CNN(a)} (2)

First an embedding is computed for each panel using a deep Convolutional Neural Network (CNN),
which serve as input to a Relation Network (RN) module [66]. The Relation Network reasons about
the different relationships between the context and answer panels, and outputs a score. The answer
panel a ∈ A with the highest score is chosen as the final output.

The Relation Network implements a suitable inductive bias for (relational) reasoning [5]. It separates
the reasoning process into two stages. First gθ is applied to all pairs of panel embeddings to consider
relations between the answer panel and each of the context panels, and relations among the context
panels. Weight-sharing of gθ between the panel-embedding pairs makes it difficult to overfit to the
image statistics of the individual panels. Finally, fφ produces a score for the given answer panel in
relation to the context panels by globally considering the different relations between the panels as a
whole. Note that in using the same WReN for different answer panels it is ensured that each answer
panel is subject to the same reasoning process.

4 Experiments

4.1 Learning Disentangled Representations

We train β-VAE [27], FactorVAE [42], β-TCVAE [10], and DIP-VAE [48] on the panels from the
modified dSprites and 3dshapes data sets4. For β-VAE we consider two variations: the standard
version using a fixed β, and a version trained with the controlled capacity increase presented by
Burgess et al. [9]. Similarly for DIP-VAE we consider both the DIP-VAE-I and DIP-VAE-II variations
of the proposed regularizer [48]. For each of these methods, we considered six different values for
their (main) hyper-parameter and five different random seeds. The remaining experimental details are
presented in Appendix A.

After training, we end up with 360 encoders, whose outputs are expected to cover a wide variation
of different representational formats with which to encode information in the images. Figures 9
and 10 in the Appendix show histograms of the reconstruction errors obtained after training, and

3Note that different rows may have different values.
4Code is made available as part of disentanglement_lib at https://git.io/JelEv.
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the scores that various disentanglement metrics assigned to the corresponding representations. The
reconstructions are mostly good (see also Figure 7), which confirms that the learned representations
tend to accurately capture the image content. Correspondingly, we expect any observed difference
in down-stream performance when using these representations to be primarily the result of how
information is encoded. In terms of the scores of the various disentanglement metrics, we observe a
wide range of values. It suggests that in going by different definitions of disentanglement, there are
large differences among the quality of the learned representations.

4.2 Abstract Visual Reasoning

We train different WReN models where we control for two potential confounding factors: the
representation produced by a specific model used to embed the input images, as well as the hyper-
parameters of the WReN model. For hyper-parameters, we use a random search space as specified in
Appendix A. We used the following training protocol: We train each of these models using a batch
size of 32 for 100K iterations where each mini-batch consists of newly generated random instances
of the abstract reasoning tasks. Similarly, every 1000 iterations, we evaluate the accuracy on 100
mini-batches of fresh samples. We note that this corresponds to the statistical optimization setting,
sidestepping the need to investigate the impact of empirical risk minimization and overfitting5.

4.2.1 Initial Study

First, we trained a set of baseline models to assess the overall complexity of the abstract reasoning
task. We consider three types of representations: (i) CNN representations which are learned from
scratch (with the same architecture as in the disentanglement models) yielding standard WReN, (ii)
pre-trained frozen representations based on a random selection of the pre-trained disentanglement
models, and (iii) directly using the ground-truth factors of variation (both one-hot encoded and integer
encoded). We train 30 different models for each of these approaches and data sets with different
random seeds and different draws from the search space over hyper-parameter values.

0 20000 40000 60000 80000 100000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

CNN

Pre-trained

True factors (onehot)

True factors (integers)

Figure 2: Average down-stream accuracy of
baselines, and models using pre-trained repre-
sentations on dSprites. Shaded area indicates
min and max accuracy.

An overview of the training behaviour and the ac-
curacies achieved can be seen in Figures 2 and 11
(Appendix B). We observe that the standard WReN
model struggles to obtain good results on average,
even after having seen many different samples at
100K steps. This is due to the fact that training from
scratch is hard and runs may get stuck in local minima
where they predict each of the answers with equal
probabilities. Given the pre-training and the expo-
sure to additional unsupervised samples, it is not
surprising that the learned representations from the
disentanglement models perform better. The WReN
models that are given the true factors also perform
well, already after only few steps of training. We
also observe that different runs exhibit a significant
spread, which motivates why we analyze the average
accuracy across many runs in the next section.

It appears that dSprites is the harder task, with models
reaching an average score of 80%, while reaching an
average of 90% on 3dshapes. Finally, we note that
most learning progress takes place in the first 20K
steps, and thus expect the benefits of disentangled representations to be most clear in this regime.

4.2.2 Evaluating Disentangled Representations

Based on the results from the initial study, we train a full set of WReN models in the following manner:
We first sample a set of 10 hyper-parameter configurations from our search space and then trained
WReN models using these configurations for each of the 360 representations from the disentanglement

5Note that the state space of the data generating distribution is very large: 106 factor combinations per panel
and 14 panels for each instance yield more than 10144 potential instances (minus invalid configurations).
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-1 -16 -30 -17 -38 -55 -52
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Figure 3: Rank correlation between various metrics and down-stream accuracy of the abstract visual
reasoning models throughout training (i.e. for different number of samples).

models. We then compare the average down-stream training accuracy of WReN with the BetaVAE
score, the FactorVAE score, MIG, the DCI Disentanglement score, and the Reconstruction error
obtained by the decoder on the unsupervised learning task. As a sanity check, we also compare with
the accuracy of a Gradient Boosted Tree (GBT10000) ensemble and a Logistic Regressor (LR10000)
on single factor classification (averaged across factors) as measured on 10K samples. As expected, we
observe a positive correlation between the performance of the WReN and the classifiers (see Figure 3).

Differences in Disentanglement Metrics Figure 3 displays the rank correlation (Spearman) be-
tween these metrics and the down-stream classification accuracy, evaluated after training for 1K, 2K,
5K, 10K, 20K, 50K, and 100K steps. If we focus on the disentanglement metrics, several interesting
observations can be made. In the few-sample regime (up to 20K steps) and across both data sets
it can be seen that both the BetaVAE score, and the FactorVAE score are highly correlated with
down-stream accuracy. The DCI Disentanglement score is correlated slightly less, while the MIG and
SAP score exhibit a relatively weak correlation.

These differences between the different disentanglement metrics are perhaps not surprising, as they
are also reflected in their overall correlation (see Figure 8 in Appendix B). Note that the BetaVAE
score, and the FactorVAE score directly measure the effect of intervention, i.e. what happens to
the representation if all factors but one are varied, which is expected to be beneficial in efficiently
comparing the content of two representations as required for this task. Similarly, it may be that MIG
and SAP score have a more difficult time in differentiating representations that are only partially
disentangled. Finally, we note that the best performing metrics on this task are mostly measuring
modularity, as opposed to compactness. A more detailed overview of the correlation between the
various metrics and down-stream accuracy can be seen in Figures 12 and 13 in Appendix B.

Disentangled Representations in the Few-Sample Regime If we compare the correlation of the
disentanglement metric with the highest correlation (FactorVAE) to that of the Reconstruction error
in the few-sample regime, then we find that disentanglement correlates much better with down-stream
accuracy. Indeed, while low Reconstruction error indicates that all information is available in the
representation (to reconstruct the image) it makes no assumptions about how this information is
encoded. We observe strong evidence that disentangled representations yield better down-stream
accuracy using relatively few samples, and we therefore conclude that they are indeed more sample
efficient compared to entangled representations in this regard.

Figure 4 demonstrates the down-stream accuracy of the WReNs throughout training, binned into
quartiles according to their degree of being disentangled as measured by the FactorVAE score
(left), and in terms of Reconstruction error (right). It can be seen that representations that are more
disentangled give rise to better relative performance consistently throughout all phases of training. If
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Figure 4: Down-stream accuracy of the WReN models throughout training, binned in quartiles based
on the values assigned by the FactorVAE score (left), and Reconstruction error (right).

we group models according to their Reconstruction error then we find that this (reversed) ordering is
much less pronounced. An overview for all other metrics can be seen in Figures 14 and 15.

Disentangled Representations in the Many-Sample Regime In the many-sample regime (i.e.
when training for 100K steps on batches of randomly drawn instances in Figure 3) we find that there
is no longer a strong correlation between the scores assigned by the various disentanglement metrics
and down-stream performance. This is perhaps not surprising as neural networks are general function
approximators that, given access to enough labeled samples, are expected to overcome potential
difficulties in using entangled representations. The observation that Reconstruction error correlates
much more strongly with down-stream accuracy in this regime further confirms that this is the case.
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Figure 5: Difference in down-stream accuracy
between top 50% and bottom 50%, according
to various metrics on dSprites.

A similar observation can be made if we look at the
difference in down-stream accuracy between the top
and bottom half of the models according to each
metric in Figures 5 and 16 (Appendix B). For all
disentanglement metrics, larger positive differences
are observed in the few-sample regime that gradually
reduce as more samples are observed. Meanwhile,
the gap gradually increases for Reconstruction error
upon seeing additional samples.

Differences in terms of Final Accuracy In our fi-
nal analysis we consider the rank correlation between
down-stream accuracy and the various metrics, split
according to their final accuracy. Figure 6 shows the
rank correlation for the worst performing fifty per-
cent of the models after 100K steps (top), and for the
best performing fifty percent (bottom). While these
results should be interpreted with care as the split
depends on the final accuracy, we still observe inter-
esting results: It can be seen that disentanglement
(i.e. FactorVAE score) remains strongly correlated
with down-stream performance for both splits in the
few-sample regime. At the same time, the benefit of lower Reconstruction error appears to be limited
to the worst 50% of models. This is intuitive, as when the Reconstruction error is too high there
may not be enough information present to solve the down-stream tasks. However, regarding the top
performing models (best 50%), it appears that the relative gains from further reducing reconstruction
error are of limited use.
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Figure 6: Rank correlation between various metrics and down-stream accuracy of the abstract visual
reasoning models throughout training (i.e. for different number of samples). The results in the top
row are based on the worst 50% of the models (according to final accuracy), and those in the bottom
row based on the best 50% of the models. Columns correspond to different data sets.

5 Conclusion

In this work we investigated whether disentangled representations allow one to learn good models for
non-trivial down-stream tasks with fewer samples. We created two abstract visual reasoning tasks
based on existing data sets for which the ground truth factors of variation are known. We trained a
diverse set of 360 disentanglement models based on four state-of-the-art disentanglement approaches
and evaluated their representations using 3600 abstract reasoning models. We observed compelling
evidence that more disentangled representations are more sample-efficient in the considered down-
stream learning task. We draw three main conclusions from these results: First, these results provide
concrete motivation why one might want to pursue disentanglement as a property of learned repre-
sentations in the unsupervised case. Second, we still observed differences between disentanglement
metrics, which should motivate further work in understanding what different properties they capture.
None of the metrics achieved perfect correlation in the few-sample regime, which also suggests that
it is not yet fully understood what makes one representation better than another in terms of learning.
Third, it might be useful to extend the methodology in this study to other complex down-stream tasks,
or include an investigation of other purported benefits of disentangled representations.
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