
Kernel Stein Tests for Multiple Model Comparison
Supplementary

A Definitions and FPR proof

In this section, we define TPR and FPR, and prove that our proposals control FPR.

Recall the definitions of I− and I+ (see Section 3.3). I− is the set of models that are not worse than
PJ (the true best model). I+ is the set of models that are worse than PJ . We say that an algorithm
decides that a model Pi is positive if it decides that Pi is worse than PJ . We define true positive rate
(TPR) and false positive rate (FPR) to be

FPR =
1

|I−|
E[|{i ∈ I− : the algorithm decides that Pi is positive}|],

TPR =
1

|I+|
E[|{i ∈ I+ : the algorithm decides that Pi is positive}|].

Both TPR and FPR can be estimated by averaging the TPR and FPR with multiple independent trials
(as was done in Experiment H). We call this quantity the empirical TPR and FPR, denoted as T̂PR

and F̂PR respectively.

The following lemma shows that our proposals controls FPR.

Lemma A.1 (FPR Control). Define the selective type-I error for the ith model to be s(i, Ĵ) :=

P(reject H Ĵ
0,i | H Ĵ

0,i is true, PĴ is selected). If s(i, Ĵ) ≤ α for all i, Ĵ ∈ {1, . . . , l}, then FPR ≤ α.

Proof. From law of total expectation, we have

FPR =
1

|I−|
E[|{i ∈ I− : the algorithm decides that i is positive}|]

=
1

|I−|
E[E[|{i ∈ I− : the algorithm decides that i is positive}| | PĴ is selected]]

=
1

|I−|
E[E[

∑
i∈I−

I(The algorithm decides that i is positive) |PĴ is selected]]

=
1

|I−|
E[
∑
i∈I−

P(The algorithm decides that i is positive |PĴ is selected)]

=
1

|I−|
E[
∑
i∈I−

P(
√
n[D̂(Pi, R)− D̂(PĴ , R)] > t̂α |PĴ is selected)]

≤ 1

|I−|
E[
∑
i∈I−

α]

=
1

|I−|
|I−|α

= α,

where I is the indicator function.

B Algorithms

Algorithms for RelPSI (see Algorithm 1) and RelMulti (see Algorithm 2) proposed in Section 3 are
provided in this section.

In algorithm 2, FDRCorrection(p, α) takes a list of p-values p and returns a list of rejections for
each element of p such that the false discovery rate is controlled at α. In our experiments, we use
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Algorithm 1 RelPSI H0,i : D(PĴ , R) ≥ D(Pi, R) | PĴ is selected.

1: procedure RELPSI(M, R, α)
2: Estimate Σ̂ given in Theorem C.1 and Theorem C.2 for KSD and MMD respectively.
3: r ← (0, . . . , 0) ∈ {0, 1}l
4: z ← [

√
nD̂(P1, R),

√
nD̂(P2, R), . . . ,

√
nD̂(Pl, R)]>

5: Ĵ ← arg minj∈I D̂(Pj , R).
6: ComputeA and b (as defined in Section 3.1).
7: for i ∈ I : i 6= Ĵ do

8: η ← [0, . . . ,

Ĵ︷︸︸︷
−1 , . . . ,

i︷︸︸︷
1 , . . . , 0]>

9: σ̂ ←
√
η>Σ̂η

10: Compute V+ and V− (described in Lemma 3.1).

11: t̂α ← σ̂Φ−1

(
(1− α)Φ

(
V+

σ̂

)
+ αΦ

(
V−
σ̂

))
12: ri ← η>z > t̂α
13: end for
14: return r
15: end procedure

Algorithm 2 RelMulti H0,i : D(PĴ , R) ≥ D(Pi, R) | PĴ is selected.

1: procedure RELMULTI(M, R, α, ρ)
2: Estimate Σ̂ as given in Theorem C.1 and Theorem C.2 for KSD and MMD respectively.
3: D0, D1 ← SplitData(M, R, ρ)
4: n1 ← ρn
5: (With D0) Ĵ ← arg minj∈I D̂(Pj , R).
6: ComputeA and b.
7: for i ∈ I : i 6= Ĵ do (with D1)
8: Compute z2 = [

√
n1D̂(P1, R),

√
n1D̂(P2, R), . . . ,

√
n1D̂(Pl, R)]>

9: η> = [0, . . . ,

Ĵ︷︸︸︷
−1 . . . ,

i︷︸︸︷
1 , . . . , 0]

10: σ̂ ←
√
η>Σ̂η

11: pi ← 1− Φ(η
>z2
σ̂ )

12: end for
13: return FDRCorrection(p, α)
14: end procedure

the Benjamini–Yekutieli procedure [1]. SplitData(M, R, ρ) is a function that splits the samples
generated by R andM (if it is represented by samples). It returns two datasets D0 and D1 such that
|D0| = (1− ρ)n and |D1| = ρn.

C Asymptotic distributions

In this section, we prove the asymptotic distribution of K̂SD
2

u and also provide the asymptotic

distribution of M̂MD
2

u for completeness.

Theorem C.1 (Asymptotic Distribution of KSD2
u

∧

). Let Pi, Pj be distributions with density functions
pi, pj respectively, and let R be the data generating distribution. Assume that Pi, Pj , R are distinct.

We denote a sample by Zn = Z ∼ R.
√
n

((
KSD
∧2

u(Pi, Z)

KSD
∧2

u(Pj , Z)

)
−
(

KSD2(Pi, R)
KSD2(Pj , R)

))
d−→ N (0,Σ),
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where Σ =

(
σ2
PiR

σPiRPjR
σPiRPjR σ2

PjR

)
, σPiRPjR = Covx∼R[Ex′∼R[upi(x, x

′)],Ex′∼R[upj (x, x
′)]] and

σ2
PiR

= Varx′∼R[Ex′∼R[upi(x, x
′)].

Proof. Let X = {xi}ni=1 be n i.i.d. random variables drawn from R and we have a model with its
corresponding gradient of its log density sPi(x) = ∇x log pi(x). The complete U-statistic estimate
of KSD between Pi and R is

KSD
∧2

u(Pi, R) = Ex,x′∼R[upi(x, x
′)] ≈ 1

n2

n∑
i 6=j

upi(xi, xj)

where upi(x, y) = spi(x)>spi(y)k(x, y)+spi(y)>∇xk(x, y)+spi(x)>∇yk(x, y)+tr[∇x,yk(x, y)]
and n2 = n(n− 1).

Similarly, for another model Pj and its gradient of its log density sPj (x) = ∇x log pj(x). Its
estimator is

KSD
∧2

u(Pj , R) = Ex,x′∼R[upjx, x
′)] ≈ 1

n2

n∑
i 6=j

upj (xi, xj)

where upj (x, y) = spj (x)>spj (y)k(x, y) + spj (y)>∇xk(x, y) + spj (x)>∇yk(x, y) +
tr[∇x,yk(x, y)].

The covariance matrix of a U-statistic with a kernel of order 2 is

Σ =
4(n− 2)

n(n− 1)
ζ +Op(n−2)

where, for the variance term and covariance term, we have ζii = Varx∼R(Ey∼R[upi(x, y)]) and
ζij = Covx∼R(Ey∼R[upi(x, y)],Ey∼R[upj (x, y)]) respectively.

The asymptotic distribution is provided below and is shown to be the case by Bounliphone et al. [4].

Theorem C.2 (Asymptotic Distribution of MMD
∧2

u [4]). Assume that Pi, Pj and R are distinct. We
denote samples X ∼ Pi, Y ∼ Pj , Z ∼ R.

√
n

((
MMD
∧2

u(Pi, Z)

MMD
∧2

u(Pj , Z)

)
−
(

MMD2(Pi, R)
MMD2(Pj , R)

))
d−→ N (0,Σ)

where Σ =

(
σ2
PiR

σPiRPjR
σPiRPjR σ2

PjR

)
and σPiRPjR = Cov[Ex′∼Pi×R[h(X,x′)],Ex′∼Pj×R[g(X,x′)]]

and σ2
PjR

= Var[Ex′∼Pj×R[h(X,x′)].

D Relative Kernelized Stein Discrepancy (RelKSD)

In this section, we describe the testing procedure for relative tests with KSD (a simple extension of
RelMMD [4]). Currently, there is no test of relative fit with Kernelized Stein Discrepancy, and so

we propose such a test using the complete estimator KSD
∧2

u which we call RelKSD. The test mirrors

the proposal of Bounliphone et al. [4] and, given the asymptotic distribution of KSD
∧2

u, it is a simple
extension since its cross-covariance is known (see Theorem C.1).

Given two candidate models P1 and P2 with a reference distribution R with its samples denoted as

Z ∼ R, we define our test statistic as
√
n[KSD
∧2

u(P1, Z) − KSD
∧2

u(P2, Z)]. For the test of relative
similarity, we assume that the candidate models (P1 and P2) and unknown generating distribution R
are all distinct. Then, under the null hypothesis H0 : KSD2(P1, R) − KSD2(P2, R) ≤ 0, we can
derive the asymptotic null distribution as follows. By the continuous mapping theorem and Theorem
C.1, we have
√
n[KSD
∧2

u(P1, Z)−KSD
∧2

u(P2, Z)]−
√
n[KSD2(P1, R)−KSD2(P2, R)]

d−→ N
(

0, σ2

)
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where σ2 =

(
1
−1

)>
Σ

(
1
−1

)
= σ2

P1R
− 2σP1RP2R + σ2

P2R
, and Σ is defined in Theorem C.1

(which we assume is positive definite). We will also use the most conservative threshold by letting the

rejection threshold tα be the (1− α)-quantile of the asymptotic distribution of
√
n[KSD
∧2

u(P1, Z)−
KSD
∧2

u(P2, Z)] with mean zero (see Bounliphone et al.[4]). If our statistic is above the tα, we reject
the null.

E Calibration of the test

In this section, we will show that the p-values obtained are well calibrated, when two distributions
are equal, measured by either MMD or KSD. The distribution of p-values should be uniform. Figure
3 shows the empirical CDF of p-values and should lie on the line if it is calibrated. Additionally, we
show the empirical distribution of p values for a three of different mean shift problems where observed
distribution is R = N (0, 1) and our candidate models are P1 = N (µ1, 1) and P2 = N (µ2, 1)
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Figure 3: Mean shift experiment described in experiments with (a) µ1 = 0.5 and µ2 = −0.5, (b)
µ1 = 2.5 and µ2 = 2.5, (c) µ1 = 2.5 and µ2 = −2.5.

F Performance analysis for two models

In this section, we analyse the performance of our two proposed methods: RelPSI and RelMulti
for l = 2 candidate models. We begin by computing the probability that we select the best model
correctly (and selecting incorrectly). Then provide a closed form formula for computing the rejection
threshold, and from this we were able to characterize the probability of rejection and proof our
theoretical result.

F.1 Cumulative distribution function of a truncated normal

The cumulative distribution function (CDF) of a truncated normal is given by

Ψ(x | µ, σ,V−,V+) =
Φ(x−µσ )− Φ(V

−−µ
σ )

Φ(V
+−µ
σ )− Φ(V

−−µ
σ )

,

where Φ is the CDF of the standard normal distribution [5, Section 3.3].
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F.2 Characterizing the selection event

Under the null and alternative hypotheses, for both M̂MD
2

u(P,R) and K̂SD
2

u(P,R), the test statistic
is asymptotically normal i.e., for a sufficiently large n, we have

√
n
[
D̂(P2, R)− D̂(P1, R)− µ

]
∼ N (0, σ2),

where µ := D(P2, R)−D(P1, R) is the population difference and D(·, ·) can be either MMD2 or
KSD2. The probability of selecting the model P1, i.e., PĴ = P1, is equivalent to the probability of
observing D̂(P1, R) < D̂(P2, R). The following lemma derives this quantity.

Lemma F.1. Given two models P1 and P2, and the test statistic
√
n[D̂(P2, R) − D̂(P1, R)] such

that
√
n
[
D̂(P2, R) − D̂(P1, R) − µ

] d→ N (0, σ2), where µ := D(P2, R) − D(P1, R), then the
probability that we select P1 as the reference is

P(PĴ = P1) = P(D̂(P1, R) < D̂(P2, R)) ≈ Φ

(√
nµ

σ

)
.

It follows that P(PĴ = P2) ≈ Φ(−
√
nµ
σ ).

Proof. For some sufficiently large n, we have

P(PĴ = P1) = P(
√
nD̂(P1, R) <

√
nD̂(P2, R))

= P(
√
n[D̂(P2, R)− D̂(P1, R)] > 0)

≈ 1− Φ(−
√
nµ

σ
) = Φ

(√
nµ

σ

)
,

and P(PĴ = P2) = 1− P(PĴ = P1) ≈ Φ(−
√
nµ
σ ).

It can be seen that as n gets larger the selection procedure is more likely to select the correct model.

F.3 Truncation points of RelPSI

To study the performance of RelPSI, it is necessary to characterize the truncation points in the
polyhedral lemma (Theorem 3.1). In the case of two candidate models, the truncation points are
simple as shown in Lemma F.2.

Lemma F.2. Consider two candidate models P1 and P2 and the selection algorithm described in
Section 3.1, with the test statistic

√
n[D̂(P2, R)− D̂(P1, R)]. The upper truncation point V+ and

lower truncation point V− (see Theorem 3.1) when the selection procedure observes D̂(P1, R) <

D̂(P2, R), i.e., PĴ = P1, are
V− = 0, V+ =∞.

When the selection procedure observes D̂(P2, R) < D̂(P1, R), i.e., PĴ = P2, then the truncation
points are

V− = −∞, V+ = 0.

Proof. If the selection procedure observes that D̂(P1, R) < D̂(P2, R) then Ĵ = 1 and our test
statistic is

√
n[D̂(P2, R)− D̂(PĴ , R)] =

√
n[D̂(P2, R)− D̂(P1, R)] = η>z where η = (−1 1)

>

and z =
√
n

(
D̂(P1, R)

D̂(P2, R)

)
. Then the affine selection event can be written as Az ≤ b where

A = (1 −1) and b = 0. It follows from the definition of V+ and V− (see Theorem 3.1) that we
have V− = 0 and V+ =∞.

A similar result holds for the case where the selection event observes D̂(P2, R) < D̂(P1, R) (i.e.,
Ĵ = 2). The test statistic is

√
n[D̂(P1, R)− D̂(P2, R)]. The selection event can be described with

A = (−1 1) and b = 0. Following from their definitions, we have V− = −∞ and V+ = 0.
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F.4 Test threshold

Given a significance level α ∈ (0, 1), the test threshold is defined to the (1 − α)-quantile of the
truncated normal for RelPSI, and normal for RelMulti. The test threshold of the RelPSI is

tRelPSI(α) = Ψ−1(1− α |µ = 0, σ,V−,V+)

= µ+ σΦ−1

(
(1− α)Φ

(
V+ − µ
σ

)
+ αΦ

(
V− − µ
σ

))
= σΦ−1

(
(1− α)Φ

(
V+

σ

)
+ αΦ

(
V−

σ

))
,

where Ψ−1(· |µ, σ,V−,V+) is the inverse of the CDF of the truncated normal with mean µ, standard
deviation σ, and lower and upper truncation points denoted V−,V+, and Φ−1 is the inverse of
the CDF of the standard normal distribution. Note that under the null hypothesis, µ ≤ 0 (recall
µ := D(P2, R) −D(P1, R)), we set µ = 0 which results in a more conservative test for rejecting
the null hypothesis. Furthermore, we generally do not know σ; instead we use its plug-in estimator σ̂.

Given two candidate models P1 and P2, the truncation points (V−,V+) are either (see Lemma F.2):

• Case 1: V− = 0, V+ =∞, or
• Case 2: V− = −∞, V+ = 0.

The two cases result in different level-α rejection thresholds since the value of the rejection threshold
is dependent on the truncation points.

For Case 1, the threshold is
tRelPSI
1 (α) = σ̂Φ−1

(
1− α

2

)
.

For Case 2, the threshold is

tRelPSI
2 (α) = σ̂Φ−1

(
1

2
− α

2

)
.

Note that since Φ−1(·) is monotonically increasing, we have tRelPSI
2 (α) < 0 < tRelPSI

1 (α).

For RelMulti, the threshold is given by the (1− α)-quantile of the asymptotic null distribution which
is a normal distribution (with the mean µ adjusted to 0):

tRelMulti(α) = σ̂Φ−1(1− α).

F.5 Rejection probability

Consider the test statistic
√
nµ̂ :=

√
n
[
D̂(P2, R)− D̂(P1, R)

]
.

RelPSI Depending on whether Ĵ = 1 or Ĵ = 2, the rejection probability for RelPSI is given by
P(
√
nµ̂ > tRelPSI

1 (α) |PĴ = P1) or

P(
√
nµ̂ > tRelPSI

2 (α) |PĴ = P2).

Assume n is sufficiently large. The rejection probability of RelPSI when PĴ = P1 is

P(
√
nµ̂ > tRelPSI

1 (α) |PĴ = P1) ≈ 1−
Φ(

σ̂Φ−1(1−α2 )−
√
nµ

σ )− Φ(−
√
nµ
σ )

1− Φ(−
√
nµ
σ )

(∗)
≈ 1−

Φ(Φ−1(1− α
2 )−

√
nµ
σ )− Φ(−

√
nµ
σ )

1− Φ(−
√
nµ
σ )

. (1)

When PĴ = P2, it is

P(
√
nµ̂ > tRelPSI

2 (α) |PĴ = P2) ≈ 1−
Φ(

σ̂Φ−1( 1
2−

α
2 )−
√
nµ

σ )

Φ(−
√
nµ
σ )

(∗)
≈ 1−

Φ(Φ−1( 1
2 −

α
2 )−

√
nµ
σ )

Φ(−
√
nµ
σ )

. (2)
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RelMulti For RelMulti, it is P(
√
nµ̂ > tRelMulti(α)). The rejection probability of RelMulti is

P(
√
nµ̂ > tRelMulti(α)) ≈ 1− Φ(

σ̂Φ−1(1− α)−
√
nµ

σ
)

(∗)
≈ 1− Φ

(
Φ−1(1− α)−

√
nµ

σ

)
, (3)

where we use the fact that
√
n(µ̂ − µ)

d→ N (0, σ2). We note that at (∗) we use the fact that as
n→∞, σ̂ converges to σ in probability.

F.6 True positive rates of RelPSI and RelMulti

For the remainder of the section, we assume without loss of generality that D(P1, R) < D(P2, R),
i.e., P1 is the better model, so we have µ = D(P2, R)−D(P1, R) > 0.

RelPSI The TPR (for RelPSI) is given by

TPRRelPSI = E

[
Number of True Positives assigned Positive

Number of True Positives︸ ︷︷ ︸
=1

]

(a)
= P(decide that P2 is worse)

= P(decide that P2 is worse | P1 is selected)P(P1 is selected)

+ P(decide that P2 is worse | P2 is selected)P(P2 is selected)

(b)
= P(decide that P2 is worse | P1 is selected)P(P1 is selected)

= P(Reject H0 : D(P1, R) ≥ D(P2, R) |P1 is selected)P(P1 is selected)

= P(
√
nµ̂ > tRelPSI

1 (α) |PĴ = P1)P (PĴ = P1),

where we note that at (a), deciding that P2 is worse than P1 is the same as assigning positive to P2.
The equality at (b) holds due to the design of our procedure that only tests the selected reference
against other candidate models to decide whether they are worse than the reference model. By
design, we will not test the selected reference model against itself. So, P(decide that P2 is worse |
P2 is selected) = 0. Using Equation 1 and Lemma F.1, we have

TPRRelPSI ≈

[
1−

Φ(Φ−1(1− α
2 )−

√
nµ
σ )− Φ(−

√
nµ
σ )

1− Φ(−
√
nµ
σ )

][
1− Φ(−

√
nµ

σ
)

]

= 1− Φ(−
√
nµ

σ
)− Φ(Φ−1(1− α

2
)−
√
nµ

σ
) + Φ(

−
√
nµ

σ
)

= 1− Φ(Φ−1(1− α

2
)−
√
nµ

σ
)

= Φ

(√
nµ

σ
− Φ−1(1− α

2
)

)
. (4)

RelMulti For RelMulti, we perform data splitting to create independent sets of our data for testing
and selection. Suppose we have n samples and a proportion of samples to be used for testing
ρ ∈ (0, 1), we have m1 = ρn samples used for testing and m0 = n(1− ρ) samples for selection.
Then TPR for RelMulti can be derived as

TPRRelMulti = P(decide that P2 is worse | P1 is selected)P(P1 is selected)

= P(decide that P2 is worse)P(P1 is selected)

= P(
√
m1µ̂ > tRelMulti(α))P(

√
m0µ̂ > 0).

Using Equation 3 (with nρ samples) and Lemma F.1 (with n(1− ρ) samples), we have

TPRRelMulti ≈

[
1− Φ(Φ−1(1− α)−

√
nρµ

σ
)

]
Φ(

√
n(1− ρ)µ

σ
). (5)
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We note that both TPRRelPSI → 1 and TPRRelMulti → 1, as n→∞. We are ready to prove Theorem
4.1. We first recall the theorem from the main text:
Theorem 4.1 (TPR of RelPSI and RelMulti). Let P1, P2 be two candidate models, and R be a data
generating distribution. Assume that P1, P2 and R are distinct. Given α ∈ [0, 1

2 ] and split proportion
ρ ∈ (0, 1) for RelMulti so that (1− ρ)n samples are used for selecting PĴ and ρn samples for testing,

for all n� N =
(σΦ−1(1−α2 )

µ(1−√ρ)
)2

, we have TPRRelPSI ' TPRRelMulti.

Proof. Assume without loss of generality that D(P1, R) < D(P2, R), i.e., P1 is the best model, and
µ := D(P2, R)−D(P1, R) > 0 is the population difference of two discrepancy measures (which
can be either MMD or KSD) and σ is the standard deviation of our test statistic. Since n > N , we
have √

nµ

σ
(1−√ρ) ≥ Φ−1(1− α

2
)

(a)
=⇒

√
nµ

σ
−
√
nρµ

σ
≥ Φ−1(1− α

2
)−

≥0︷ ︸︸ ︷
Φ−1(1− α)

≡
√
nµ

σ
− Φ−1(1− α

2
) ≥
√
nρµ

σ
− Φ−1(1− α)

(b)
=⇒ Φ

(√
nµ

σ
− Φ−1(1− α

2
)

)
≥ Φ

(√
nρµ

σ
− Φ−1(1− α)

)
,

where at (a), we have Φ−1(1− α) ≥ 0 because α ∈ [0, 1/2]. At (b), we use the fact that a 7→ Φ(a)
is increasing. We note that the left hand side is the same as Equation (4) and it follows that

TPRRelPSI ' Φ

(√
nρµ

σ
− Φ−1(1− α)

)
Φ(

√
n(1− ρ)µ

σ
)︸ ︷︷ ︸

∈(0,1)

=

[
1− Φ(Φ−1(1− α)−

√
nρµ

σ
)

][
Φ(

√
n(1− ρ)µ

σ
)

]
(c)

' TPRRelMulti,

where at (c) we use Equation (5).

G Test consistency

In this section, we describe and prove the consistency result of our proposal RelPSI and RelMulti for
both MMD and KSD.
Theorem 3.2 (Consistency of RelPSI-MMD). Given two models P1, P2 and a data distribution R
(which are all distinct). Let Σ̂ be a consistent estimate of the covariance matrix defined in Theorem

C.2. and η be defined such that η>z =
√
n[MMD
∧2

u(P2, R) −MMD
∧2

u(P1, R)]. Suppose that the
threshold t̂α is the (1 − α)-quantile of T N (0,η>Σ̂η,V−,V+) where V+ and V− are defined in
Theorem 3.1. Under H0 : η>µ ≤ 0 |PĴ is selected, the asymptotic type-I error is bounded above by
α. Under H1 : η>µ > 0 |PĴ is selected, we have P(η>z > t̂α)→ 1 as n→∞.

Proof. Let t̂α and tα be (1 − α) quantiles of distributions T N (0,η>Σ̂η,V−,V+) and
T N (0,η>Ση,V−,V+) respectively. Given that Σ̂

p→ Σ, T N (0,η>Σ̂η,V−,V+) converges
to T N (0,η>Ση,V−,V+) in probability, hence, t̂α converges to tα. Note that t̂α is random and is
determined by which model is selected to be PĴ (which changes the truncation points V− and V+).

Under H0 : η>µ ≤ 0 |PĴ is selected, for some sufficiently large n the rejection rate is

lim
n→∞

PH0(η>z > t̂α) = lim
n→∞

PH0(η>z > tRelPSI
1 (α) |PĴ = P1)P(PĴ = P1)

+ lim
n→∞

PH0
(η>z > tRelPSI

2 (α)|PĴ = P2)P(PĴ = P2).
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Using Lemma F.1 with Equation 1 and Equation 2, we have

lim
n→∞

PH0(η>z > t̂α) = 1− lim
n→∞

Φ(Φ−1(1− α

2
)−
√
nη>µ

σ
)

+ lim
n→∞

Φ(−
√
nη>µ

σ
)− lim

n→∞
Φ(Φ−1(

1

2
− α

2
)−
√
nη>µ

σ
).

≤ 1− Φ(Φ−1(1− α

2
))

+
1

2
− Φ(Φ−1(

1

2
− α

2
))

≤ α.

Under H1 : η>µ > 0 |PĴ is selected, similarly to H0 we have

lim
n→∞

PH1
(η>z > t̂α) = lim

n→∞
PH1

(η>z > t̂α|PĴ = P1)P(PĴ = P1)

+ lim
n→∞

PH1(η>z > t̂α|PĴ = P2)P(PĴ = P2)

= 1− lim
n→∞

Φ(Φ−1(1− α

2
)−
√
nη>µ

σ
)

+ lim
n→∞

Φ(−
√
nη>µ

σ
)− lim

n→∞
Φ(Φ−1(

1

2
− α

2
)−
√
nη>µ

σ
),

where η>µ is the population difference of the two discrepancy measures, and σ the standard deviation.

Since the alternative hypothesis is true, i.e., η>µ > 0, we have limn→∞ PH1
(η>z > t̂α) = 1.

Theorem G.1 (Consistency of RelPSI-KSD). Given two models P1, P2 and reference distribution R
(which are all distinct). Let Σ̂ be the covariance matrix defined in Theorem C.1 and η be defined

such that η>z =
√
n[KSD
∧2

u(P1, R)−KSD
∧2

u(P2, R)]. Suppose that the threshold t̂α is the (1− α)-
quantile of the distribution of T N (0,η>Σ̂η,V−,V+) where V+ and V− is defined in Theorem 3.1.
Under H0 : η>µ ≤ 0 |PĴ is selected, the asymptotic type-I error is bounded above by α. Under
H1 : η>µ > 0 |PĴ is selected, we have P(η>z > t̂α)→ 1 as n→∞.

H Additional experiments

In this section, we show results of two experiments. The first investigates the behaviour of RelPSI
and RelMulti for multiple candidate models; and the second focuses on empirically verifying the
implication of Theorem 4.1.

H.1 Multiple candidate models experiment

In the following experiments, we demonstrate our proposal for synthetic problems when there are
more than two candidate models and report the empirical true positive rate T̂PR, empirical false
discovery rate F̂DR, and empirical false positive rate F̂PR. We consider the following problems:

1. Mean shift (l = 10): There are many candidate models that are equally good. We set nine
models to be just as good, compared to the reference R = N (0, I), with one model that is
worse than all of them. To be specific, the set of equally good candidates are defined as I− =
{N (µi, I) : µi ∈ {[0.5, 0, . . . , 0], [−0.5, 0, . . . , 0], [0, 0.5, . . . , 0], [0,−0.5, . . . , 0], . . .}}
and for the worst model, we have Q = N ([1, 0, . . . , 0], I). Our candidate model list is
defined asM = I− ∪ {Q}. Each model is defined on R10.

2. Restricted Boltzmann Machine (l = 7): This experiment is similar to Experiment 1. Each
candidate model is a Gaussian Restricted Boltzmann Machine with different perturbations of
the unknown RBM parameters (which generates our unknown distributionR). We show how
the behaviour of our proposed test vary with the degree of perturbation ε of a single model
while the rest of the candidate models remain the same. The perturbation changes the model
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from the best to worse than the best. Specifically, we have ε ∈ {0.18, 0.19, 0.20, 0.22} and
the rest of the six models have fixed perturbation of {0.2, 0.3, 0.35, 0.4, 0.45, 0.5}. This
problem demonstrates the sensitivity of each test.

The results from the mean shift experiment are shown in Figure 4 and results from RBM experiment
are shown in Figure 5. Both experiments show that F̂PR and F̂DR is controlled for RelPSI and
RelMulti respectively. As before, KSD-based tests exhibits the highest T̂PR in the RBM experiment.
In the mean shift example, RelPSI has lower T̂PR compared with RelMulti and is an example
where condition on the selection event results in a lower T̂PR (lower than data splitting). In both
experiments, for RelMulti 50% of the data is used for selection and 50% for testing.

RelPSI MMD-U RelPSI MMD-Lin RelPSI KSD-U RelPSI KSD-Lin RelMulti KSD-U RelMulti MMD-U
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Figure 4: Mean Shift Experiment: Rejection rates (estimated from 300 trials) for the six tests with
α = 0.05 is shown.
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Figure 5: RBM Experiment. Rejection rates (estimated from 300 trials) for the six tests with α = 0.05
is shown.

H.2 TPR experiment

For this experiment, our goal is to empirically evaluate and validate Theorem 4.1 where l = 2. For
some sufficiently large n, it states that the TPR of RelPSI will be an upper bound for the TPR of
RelMulti (for both MMD and KSD). We consider the following two synthetic problems:

1. Mixture of Gaussian: The candidate models and unknown distribution are 1-d mixture of
Gaussians where M(ρ) = ρN (1, 1) + (1 − ρ)N (−1, 1) with mixing portion ρ ∈ (0, 1).
We set the reference to be R = M(0.5), and two candidate models to P1 = M(0.7) and
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Figure 6: l = 2: The empirical true positive rate T̂PR of M̂MD
2

u (a) for the mixture problem of (b).

We show empirical T̂PR of K̂SD
2

u (c) for rotation problem of (d). S:a T:b indicates that a% of the
original dataset is used for selection and b% of the dataset used for testing.

P2 = M(0.75) (see Figure 6b). In this case, P1 is closer to the reference distribution but
only by a small amount. In this problem, we apply MMD and report the behaviour of the
test as n increases.

2. Rotating Gaussian: The two candidate models and our reference distributions are 2-d
Gaussian distributions that differ by rotation (see Figure 6d). We fix the sample size to
n = 500. Instead, we rotate the Gaussian distribution P1 away from P2 such that P1

continues to get closer to the reference R with each rotation. They are initially the same
distribution but P1 becomes a closer relative fit (with each rotation). In this problem, we
apply KSD and report the empirical TPR as the Gaussian rotates and becomes an easier
problem.

For each problem we consider three possible splits of the data: 25%, 50%, 25% of the original
samples for selection (and the rest for testing). Both problems use a Gaussian kernel with bandwidth
set to 1. The overall results are shown in Figure 6.

In Figure 6a, we plot the T̂PR for RelPSI-MMD and RelMulti-MMD for the Mixture of Gaussian
problem. RelPSI performs the best with the highest empirical T̂PR confirming with Theorem 4.1.
The next highest is RelMulti that performs a S:25% T:75% selection test split. The worst performer
is the RelMulti with S:75% T:25% selection test split which can be explained by noting that most
of the data has been used in selection, there is an insufficient amount of remaining data points to

reject the hypothesis. The same behaviour can be observed in Figure 6c for K̂SD
2

u. Overall, this
experiment corroborates with our theoretical results that TPR of RelPSI will be higher in population.
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