
Adversarial Self-Defense for Cycle-Consistent GANs
Supplementary Material

Dina Bashkirova 1, Ben Usman1, and Kate Saenko 1,2

1Boston University
2MIT-IBM Watson AI Lab

{dbash,usmn,saenko}@bu.edu

1 Model description and parameters

In our experiments, we used the implementation of CycleGAN provided at https://github.com/
junyanz/pytorch-CycleGAN-and-pix2pix. For all CycleGAN models we used (original, noisy
and guess-loss based) we set all the CycleGAN parameters to the default ones provided in the
implementation except for the weights of the cycle-consistency loss. You can find the code of our
project at https://github.com/dbash/pix2pix_cyclegan_guess_noise.

The CycleGAN parameters used in our experiments are:

• Generator architecture – ResNet with 9 residual block layers
• Discriminator architecture – 3-layer PatchGAN with patch size 70x70 .
• Weight initialization – gaussian
• Instance normalization
• GAN objective – LSGAN
• Optimizer – Adam with momentum 0.5
• Learning rate – 0.0002 with linear policy
• Trained for 200 epochs.

The parameters specific to the proposed defense techniques are:

• For training with additive noise: standard deviation of noise σ that should lie in the interval
[0, 1]. The higher is the value of σ, the harder it is for the model to perform the self-
adversarial attack. We chose the minimal value which results in the reconstruction that lacks
the high-frequency details that should be lost after the translation, such as road texture or
color.

• For the guess loss – weight of the guess loss λguess. We chose λguess and the cycle-
consistency losses weights λA and λB such that their corresponding loss values are of the
similar magnitude during training. In other words, we choose the loss weights to be such
that they all lie within one range and none of them dominates in the overall loss.

• For the guess loss + noise – weight of the guess loss λguess and standard deviation of noise
σ.

For the GTA dataset, the defense-specific parameters are:

• CycleGAN: λA = 10, λB = 10. We performed the experiments with on the CycleGAN
with the smaller weights λA and λB that are proportional to the cross-domain relation as
for the guess loss approach (e.g. λA = 5 and λB = 3), and this resulted in unreliable
translation.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/dbash/pix2pix_cyclegan_guess_noise


• CycleGAN + noise: σ = 0.06, λA = 5, λB = 3.
• CycleGAN + guess loss: λguess = 2, λA = 1.5, λB = 1.
• CycleGAN + guess loss + noise: λguess = 2.5, λA = 2, λB = 1.5, σ = 0.03.

For the SynAction, the defense-specific parameters are:

• CycleGAN: λA = 10, λB = 10.
• CycleGAN + noise: σ = 0.1, λA = 10, λB = 10.
• CycleGAN + guess loss: λguess = 1, λA = 2, λB = 2.
• CycleGAN + guess loss: λguess = 2, λA = 25., λB = 2.5, σ = 0.05.

For the Google Maps dataset, we used the following parameters:

• CycleGAN: λA = 10, λB = 10.
• CycleGAN + noise: σ = 0.06, λA = 10, λB = 10.
• CycleGAN + guess loss: λguess = 1, λA = 1, λB = 2.
• CycleGAN + guess loss + noise: λguess = 3, λA = 2, λB = 2.5, σ = 0.05.

We based our experiments on the UNIT and MUNIT models on their original implementation:
https://github.com/NVlabs/MUNIT.

UNIT architecture and parameters are:

• Optimizer – Adam with momentum 0.5 and second momentum 0.999
• Initialization – Kaiming
• Learning rate – 0.0001 with step decay policy (decay weight 0.5, step size 10000 iterations)
• weight on image reconstruction loss – 10
• weight on cycle-consistency loss – 10
• – weight of KL loss for cycle consistency – 0.01.
• Discriminator – 4-layer multiscale LSGAN with leaky ReLU activation function and 3

scales.
• Generator – VAE with ReLU activations, with 64 filters in the first layer, 2 downsampling

layers and 4 residual blocks for the content encoder and decoder.
• Padding – reflect.

MUNIT parameters are:

• Optimizer – Adam with momentum 0.5 and second momentum 0.999
• Initialization – Kaiming
• Learning rate – 0.0001 with step decay policy (decay weight 0.5, step size 10000 iterations)
• weight on image reconstruction loss – 10
• weight on explicit cycle-consistency loss – 1
• – weight of KL loss for cycle consistency – 0.01.
• Discriminator – 4-layer multiscale LSGAN with leaky ReLU activation function and 3

scales.
• Generator – VAE with ReLU activations, with 64 filters in the first layer, with 256 filters in

MLP, 2 downsampling layers and 4 residual blocks for the content encoder and decoder.
• Padding – reflect.
• Length of style code – 8

The code for the guess loss CycleGAN and noisy CycleGAN can be found in files "cy-
cle_gan_guess_model.py" and "cycle_gan_noisy.py" respectively. In order to train or test the
model, please add them to the folder "models" of the original CycleGAN project (https://
github.com/junyanz/pytorch-CycleGAN-and-pix2pix) and specify the model parameter as
"cycle_gan_guess" or "cycle_gan_noisy" instead of "cycle_gan".

2

https://github.com/NVlabs/MUNIT
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


Figure 1: GTA.Left: Difference in the error distribution of the non-quantized vs quantized recon-
structions, right: Reconstruction Honesty distributions.

Figure 2: Google Maps. Left: Difference in the error distribution of the non-quantized vs quantized
reconstructions, right: Reconstruction Honesty distributions.

2 Statistics

3



Figure 3: Sensitivity to noise on the Google Maps dataset. Left: translation from map to photo to
map, right: translation from photo to map to photos.

Figure 4: Sensitivity to noise on the SynAction dataset. Left: translation from actor A to actor B,
right: translation from actor B to actor A.

3 Translation Results Figures.

4



Figure 5: Results of translation of GTA frames to semantic segmentation maps.

Figure 6: Example of translation and reconstruction with CycleGAN + guess loss.

5



Figure 7: Noisy reconstruction.

Figure 8: Truck translation and reconstruction example with CycleGAN + guess loss.

6



Figure 9: Noisy reconstruction.

7



Figure 10: Quantized reconstruction of CycleGAN, UNIT and MUNIT.

8



Figure 11: Quantized reconstruction of CycleGAN, CycleGAN + noise and CycleGAN + guess loss.

Figure 12: Translation result with the proposed defense techniques.

9



Figure 13: Noisy reconstruction result.

Figure 14: Noisy reconstruction.

10



Figure 15: Results of translation of SynAction actors.

11


	Model description and parameters
	Statistics
	Translation Results Figures.

