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Figure 1: Visualizations of ray marching progress and the final normal map. Note that the uniformly
colored background does not constrain the depth - as a result, the depth is unconstrained around the
silhouette of the object. Since the final normal map visualizes surface detail much better, we only
report the final normal map in the main document.

1 Additional Results on Neural Ray Marching

Computation of Normal Maps We found that normal maps visualize fine surface detail signifi-
cantly better than depth maps (see Fig. 1), and thus only report normal maps in the main submission.
We compute surface normals as the cross product of the numerical horizontal and vertical derivatives
of the depth map.

Ray Marching Progress Visualization The z-coordinates of running and final estimates of inter-
sections in each iteration of the ray marcher in camera coordinates yield depth maps, which visualize
every step of the ray marcher. Fig. 1 shows two example ray marches, along with their final normal
maps.

2 Comparison to DeepVoxels

We compare performance in single-scene novel-view synthesis with the recently proposed DeepVoxels
architecture [1] on their four synthetic objects. DeepVoxels proposes a 3D-structured neural scene
representation in the form of a voxel grid of features. Multi-view and projective geometry are
hard-coded into the model architecture. We further report accuracy of the same baselines as in [1]: a
Pix2Pix architecture [2] that receives as input the per-pixel view direction, as well as the methods
proposed by Tatarchenko et al. [3] as well as by Worrall et al. [4] and Cohen and Welling [5].

Table 1 compares PSNR and SSIM of the proposed architecture and the baselines, averaged over
all 4 scenes. We outperform the best baseline, DeepVoxels [1], by more than 3 dB. Qualitatively,
DeepVoxels displays significant multi-view inconsistencies in the form of flickering artifacts, while
the proposed method is almost perfectly multi-view consistent. We achieve this result with 550k
parameters per model, as opposed to the DeepVoxels architecture with more than 160M free variables.
However, we found that SRNs produce blurry output for some of the very high-frequency textural
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Figure 2: Qualitative results on DeepVoxels objects. For each object: Left: Normal map of recon-
structed geometry. Center: SRNs output. Right: Ground Truth.

Figure 3: Undersampled letters on the side of the cube (ground truth images). Lines of letters are less
than two pixels wide, leading to significant aliasing. Additionally, the 2D downsampling as described
in [1] introduced blur that is not multi-view consistent.

Figure 4: By using a U-Net renderer similar to [1], we can reconstruct the undersampled letters. In
exchange, we lose the guarantee of multi-view consistency. Left: Reconstructed normal map. Center:
SRNs output. Right: ground truth.
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PSNR SSIM
Tatarchenko et al. [3] 21.22 0.90
Worrall et al. [4] 21.22 0.90
Pix2Pix [2] 23.63 0.92
DeepVoxels [1] 30.55 0.97
SRNs 33.03 0.97

Table 1: Quantitative comparison to DeepVoxels [1]. With 3 orders of magnitude fewer parameters,
we achieve a 3dB boost, with reduced multi-view inconsistencies.

Figure 5: Architecture overview: at the heart of SRNs lies a continuous, 3D-aware neural scene
representation, Φ, which represents a scene as a function that maps (x, y, z) world coordinates to a
feature representation of the scene at those coordinates. To render Φ, a neural ray-marcher interacts
with Φ via world coordinates along camera rays, parameterized via their distance d to the camera
projective center. Ray Marching begins at a distance d0 close to the camera. In each step, the scene
representation network Φ is queried at the current world coordinates xi. The resulting feature vector
vi is fed to the Ray Marching LSTM that predicts a step length δi+1. The world coordinates are
updated according to the new distance to the camera, di+1 = di + δi+1. This is repeated for a fixed
number of iterations, n. The features at the final world coordinates vn = Φ(xn) are then translated to
an RGB color by the pixel generator.

detail - this is most notable with the letters on the sides of the cube. Fig. 3 demonstrates why this
is the case. Several of the high-frequency textural detail of the DeepVoxels objects are heavily
undersampled. For instance, lines of letters on the sides of the cube often only occupy a single pixel.
As a result, the letters alias across viewing angles. This violates one of our key assumptions, namely
that the same (x, y, z) ∈ R3 world coordinate always maps to the same color, independent of the
viewing angle. As a result, it is impossible for our model to generate these details. We note that detail
that is not undersampled, such as the CVPR logo on the top of the cube, is reproduced with perfect
accuracy. However, we can easily accommodate for this undersampling by using a 2D CNN renderer.
This amounts to a trade-off of our guarantee of multi-view consistency discussed in Sec. 3 of the
main paper with robustness to faulty training data. Fig. 2 shows the cube rendered with a U-Net
based renderer – all detail is replicated truthfully.

3 Reproducibility

In this section, we discuss steps we take to allow the community to reproduce our results. All code
and datasets will be made publicly available. All models were evaluated on the test sets exactly once.

3.1 Architecture Details

Scene representation network Φ In all experiments, Φ is parameterized as a multi-layer perceptron
(MLP) with ReLU activations, layer normalization before each nonlinearity [6], and four layers with
256 units each. In all generalization experiments in the main paper, its weights φ are the output of the
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hypernetwork Ψ. In the DeepVoxels comparison (see Sec.2), where a separate Φ is trained per scene,
parameters of φ are directly initialized using the Kaiming Normal method [7].

Hypernetwork Ψ In generalization experiments, a hypernetwork Ψ maps a latent vector zj to
the weights of the respective scene representation φj . Each layer of Φ is the output of a separate
hypernetwork. Each hypernetwork is parameterized as a multi-layer perceptron with ReLU activations,
layer normalization before each nonlinearity [6], and three layers (where the last layer has as many
units as the respective layer of Φ has weights). In the Shapenet and Shepard-Metzler experiments,
where the latent codes zj have length 256, hypernetworks have 256 units per layer. In the Basel
face experiment, where the latent codes zj have length 224, hypernetworks have 224 units per layer.
Weights are initialized by the Kaiming Normal method, scaled by a factor 0.1. We empirically found
this initialization to stabilize early training.

Ray marching LSTM In all experiments, the ray marching LSTM is implemented as a vanilla
LSTM with a hidden state size of 16. The initial state is set to zero.

Pixel Generator In all experiments, the pixel generator is parameterized as a multi-layer perceptron
with ReLU activations, layer normalization before each nonlinearity [6], and five layers with 256
units each. Weights are initialized with the Kaiming Normal method [7].

3.2 Time & Memory Complexity

Scene representation network Φ Φ scales as a standard MLP. Memory and runtime scale linearly
in the number of queries, therefore quadratic in image resolution. Memory and runtime further scale
linearly with the number of layers and quadratically with the number of units in each layer.

Hypernetwork Ψ Ψ scales as a standard MLP. Notably, the last layer of Ψ predicts all parameters
of the scene representation Φ. As a result, the number of weights scales linearly in the number
of weights of Φ, which is significant. For instance, with 256 units per layer and 4 layers, Φ has
approximately 2 × 105 parameters. In our experiments, Ψ is parameterized with 256 units in all
hidden layers. The last layer of Ψ then has approximately 5× 107 parameters, which is the bulk of
learnable parameters in our model. Please note that Ψ only has to be queried once to obtain Φ, at
which point it could be discarded, as both the pixel generation and the ray marching only need access
to the predicted Φ.

Differentiable Ray Marching Memory and runtime of the differentiable ray marcher scale linearly
in the number of ray marching steps and quadratically in image resolution. As it queries Φ repeatedly,
it also scales linearly in the same parameters as Φ.

Pixel Generator The pixel generator scales as a standard MLP. Memory and runtime scale linearly
in the number of queries, therefore quadratic in image resolution. Memory and runtime further scale
linearly with the number of layers and quadratically with the number of units in each layer.

3.3 Dataset Details

Shepard-Metzler objects We modified an open-source implementation of a Shepard-Metzler ren-
derer (https://github.com/musyoku/gqn-dataset-renderer.git) to generate meshes of Shepard-Metzler
objects, which we rendered using Blender to have full control over camera intrinsic and extrinsic
parameters consistent with other presented datasets.

Shapenet v2 cars We render each object from random camera perspectives distributed on a sphere
with radius 1.3 using Blender. We disabled specularities, shadows and transparencies and used
environment lighting with energy 1.0. We noticed that a few cars in the dataset were not scaled
optimally, and scaled their bounding box to unit length. A few meshes had faulty vertices, resulting
in a faulty bounding box and subsequent scaling to a very small size. We discarded those 40 out of
2473 cars.
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Shapenet v2 chairs We render each object from random camera perspectives distributed on a
sphere with radius 2.0 using Blender. We disabled specularities, shadows and transparencies and
used environment lighting with energy 1.0.

Faces dataset We use the Basel Face dataset to generate meshes with different identities at random,
where each parameter is sampled from a normal distribution with mean 0 and standard deviation
of 0.7. For expressions, we use the blendshape model of Thies et al. [8], and sample expression
parameters uniformly in (−0.4, 1.6).

DeepVoxels dataset We use the dataset as presented in [1].

3.4 SRNs Training Details

3.4.1 General details

Multi-Scale training Our per-pixel formulation naturally allows us to train in a coarse-to-fine
setting, where we first train the model on downsampled images in a first stage, and then increase
the resolution of images in stages. This allows larger batch sizes at the beginning of the training,
which affords more independent views for each object, and is reminiscent of other coarse-to-fine
approaches [9].

Solver For all experiments, we use the ADAM solver with β1 = 0.9, β2 = 0.999.

Implementation & Compute We implement all models in PyTorch. All models were trained on
single GPUs of the type RTX6000 or RTX8000.

Hyperparameter search Training hyperparameters for SRNs were found by informal search – we
did not perform a systematic grid search due to the high computational cost.

3.4.2 Per-experiment details

For a resolution of 64× 64, we train with a batch size of 72. Due to the memory complexity being
quadratic in the image sidelength, we decrease the batch size by a factor of 4 when we double the
image resolution. λdepth is always set to 1× 10−3 and λlatent is set to 1. The ADAM learning rate is
set to 4× 10−4 if not reported otherwise.

Shepard-Metzler experiment We directly train our model on images of resolution 64 × 64 for
352 epochs.

Shapenet cars We train our model in 2 stages. We first train on a resolution of 64 × 64 for 5k
iterations. We then increase the resolution to 128 × 128. We train on the high resolution for 70
epochs. The ADAM learning rate is set to 5× 10−5.

Shapenet chairs We train our model in 2 stages. We first train on a resolution of 64× 64 for 20k
iterations. We then increase the resolution to 128× 128. We train our model for 12 epochs.

Basel face experiments We train our model in 2 stages. We first train on a resolution of 64× 64
for 15k iterations. We then increase the resolution to 128× 128 and train for another 5k iterations.

DeepVoxels experiments We train our model in 3 stages. We first train on a resolution of 12× 128
with a learning rate of 4 × 10−4 for 20k iterations. We then increase the resolution to 256 × 256,
and lower the learning rate to 1 × 10−4 and train for another 30k iterations. We then increase the
resolution to 512× 512, and lower the learning rate to 4× 10−6 and train for another 30k iterations.

4 Relationship to per-pixel autoregressive methods

With the proposed per-pixel generator, SRNs are also reminiscent of autoregressive per-pixel archi-
tectures, such as PixelCNN and PixelRNN [10, 11]. The key difference to autoregressive per-pixel

6



architectures lies in the modeling of the probability p(I) of an image I ∈ RH×W×3. PixelCNN
and PixelRNN model an image as a one-dimensional sequence of pixel values I1, ..., IH×W , and
estimate their joint distribution as

p(I) =

H×W∏
i=1

p(Ii|I1, ..., Ii−1). (1)

Instead, conditioned on a scene representation Φ, pixel values are conditionally independent, as our
approach independentaly and deterministically assigns a value to each pixel. The probability of
observing an image I thus simplifies to the probability of observing a scene Φ under extrinsic E and
intrinsic K camera parameters

p(I) = p(Φ)p(E)p(K). (2)

This conditional independence of single pixels conditioned on the scene representation further
motivates the per-pixel design of the rendering function Θ.

5 Baseline Discussions

5.1 Deterministic Variant of GQN

Deterministic vs. Non-Deterministic Eslami et al. [12] propose a powerful probabilistic frame-
work for modeling uncertainty in the reconstruction due to incomplete observations. However, here,
we are exclusively interested in investigating the properties of the scene representation itself, and this
submission discusses SRNs in a purely deterministic framework. To enable a fair comparison, we
thus implement a deterministic baseline inspired by the Generative Query Network [12]. We note that
the results obtained in this comparison are not necessarily representative of the performance of the
unaltered Generative Query Network. We leave a formulation of SRNs in a probabilistic framework
and a comparison to the unaltered GQN to future work.

Architecture As representation network architecture, we choose the "Tower" representation, and
leave its architecture unaltered. However, instead of feeding the resulting scene representation r
to a convolutional LSTM architecture to parameterize a density over latent variables z, we instead
directly feed the scene representation r to a generator network. We use as generator a deterministic,
autoregressive, skip-convolutional LSTM C, the deterministic equivalent of the generator architecture
proposed in [12]. Specifically, the generator can be described by the following equations:

Initial state (c0,h0,u0) = (0,0,0) (3)
Pre-process current canvas pl = κ(ul) (4)
State update (cl+1,hl+1) = C(E, r, cl,hl,pl) (5)
Canvas update ul+1 = ul + ∆(hl+1) (6)
Final output x = η(uL), (7)

with timestep l and final timestepL, LSTM output cl and cell hl states, the canvas ul, a downsampling
network κ, the camera extrinsic parameters E, an upsampling network ∆, and a 1× 1 convolutional
layer η. Consistent with [12], all up- and downsampling layers are convolutions of size 4× 4 with
stride 4. To account for the higher resolution of the Shapenet v2 car and chair images, we added a
further convolutional layer / transposed convolution where necessary.

Training On both the cars and chairs datasets, we trained for 180, 000 iterations with a batch size
of 140, taking approximately 6.5 days. For the lower-resolution Shepard-Metzler objects, we trained
for 160, 000 iterations at a batch size of 192, or approximately 5 days.

Testing For novel view synthesis on the training set, the model receives as input the 15 nearest
neighbors of the novel view in terms of cosine similarity. For two-shot reconstruction, the model
receives as input whichever of the two reference views is closer to the novel view in terms of cosine
similarity. For one-shot reconstruction, the model receives as input the single reference view.
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Figure 6: Architecture of the baseline method proposed in Worrall et al. [4].

5.2 Tatarchenko et al.

Architecture We implement the exact same architecture as described in [3], with approximately
70 · 106 parameters.

Training For training, we choose the same hyperparameters as proposed in Tatarchenko et al. [3].
As we assume no knowledge of scene geometry, we do not supervise the model with a depth map.
As we observed the model to overfit, we stopped training early based on model performance on the
held-out, official Shapenet v2 validation set.

Testing For novel view synthesis on the training set, the model receives as input the nearest neighbor
of the novel view in terms of cosine similarity. For two-shot reconstruction, the model receives
as input whichever of the two reference views is closer to the novel view. Finally, for one-shot
reconstruction, the model receives as input the single reference view.

5.3 Worrall et al.

Architecture Please see Fig. 6 for a visualization of the full architecture. The design choices in
this architecture (nearest-neighbor upsampling, leaky ReLU activations, batch normalization) were
made in accordance with Worrall et al. [4].

Training For training, we choose the same hyperparameters as proposed in Worrall et al. [4].

Testing For novel view synthesis on the training set, the model receives as input the nearest neighbor
of the novel view in terms of cosine similarity. For two-shot reconstruction, the model receives
as input whichever of the two reference views is closer to the novel view. Finally, for one-shot
reconstruction, the model receives as input the single reference view.
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6 Differentiable Ray-Marching in the context of classical renderers

The proposed neural ray-marcher is inspired by the classic sphere tracing algorithm [13]. Sphere
tracing was originally developed to render scenes represented via analytical signed distance functions.
It is defined by a special choice of the step length: each step has a length equal to the signed distance
to the closest surface point of the scene. Since this distance is only zero on the surface of the scene,
the algorithm takes non-zero steps until it has arrived at the surface, at which point no further steps
are taken. A major downside of sphere-tracing is its weak convergence guarantee: Sphere tracing
is only guaranteed to converge for an infinite number of steps. This is easy to see: For any fixed
number of steps, we can construct a scene where a ray is parallel to a close surface (or falls through
a slim tunnel) and eventually intersects a scene surface. For any constant number of steps, there
exists a surface parallel to the ray that is so close that the ray will not reach the target surface. In
classical sphere-tracing, this is circumvented by taking a large number of steps that generally take the
intersection estimate within a small neighborhood of the scene surface – the color at this point is then
simply defined as the color of the closest surface. However, this heuristic can still fail in constructed
examples such as the one above. Extensions of sphere tracing propose heuristics to modifying the step
length to speed up convergence [11]. The Ray-Marching LSTM instead has the ability to learn the
step length. The key driver of computational and memory cost of the proposed rendering algorithm is
the ray-marching itself: In every step of the ray-marcher, for every pixel, the scene representation φ
is evaluated. Each evaluation of φ is a full forward pass through a multi-layer perceptron. See 3.2 for
an exact analysis of memory and computational complexity of the different components.

Other classical rendering algorithms usually follow a different approach. In modern computer
graphics, scenes are often represented via explicit, discretized surface primitives - such as is the case
in meshes. This allows rendering via rasterization, where scene geometry is projected onto the image
plane of a virtual camera in a single step. As a result, rasterization is computationally cheap, and has
allowed for real-time rendering that has approached photo-realism in computer graphics.

However, the image formation model of rasterization is not appropriate to simulate physically accurate
image formations that involve proper light transport, view-dependent effects, participating media,
refraction, translucency etc. As a result, physics-based rendering usually uses ray-tracing algorithms,
where for each pixel, a number of rays are traced from the camera via all possible paths to light
sources through the scene. If the underlying scene representations are explicit, discrete representations
– such as meshes – the intersection testing required is again cheap. Main drivers of computational
complexity in such systems are then the number of rays that need to be traced to appropriately sample
all paths to lights sources that contribute to the value of a single pixel.

In this context, the proposed ray-marcher can be thought of as a sphere-tracing-inspired ray-tracer for
implicitly defined scene geometry. It does not currently model multi-bounce ray-tracing, but could
potentially be extended in the future (see 8).

7 Trade-offs of the Pixel Generator vs. CNN-based renderers

As described in the main paper, the pixel generator comes with a guarantee of multi-view consistency
compared to a 2D-CNN based rendering network. On the flip side, we cannot make use of progress
in the design of novel CNN architectures that save memory by introducing resolution bottlenecks and
skip connections, such as the U-Net [14]. This means that the pixel generator is comparably memory-
hungry, as each layer operates on the full resolution of the image to be generated. Furthermore, CNNs
have empirically been demonstrated to be able to generate high-frequency image detail easily. It is
unclear what the limitations of the proposed pipeline are with respect to generating high-frequency
textural detail. We note that the pixel generator is not a necessary component of SRNs, and can be
replaced by a classic 2D-CNN based renderer, as we demonstrate in 2.

8 Future work

Applications outside of vision. SRNs have promising applications outside of vision. Neural
scene representations are a core aspect of artificial intelligence, as they allow an agent to model
its environment, navigate, and plan interactions. Thus, natural applications of SRNs lie in robotic
manipulation or as the world model of an independent agent.
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Extending SRNs to other image formation models. SRNs could be extended to other image
formation models, such as computer tomography or magnetic resonance imaging. All that is required
is a differentiable forward model of the image formation. The ray-marcher could be adapted
accordingly to integrate features along a ray or to sample at pre-defined locations. For image
formation models that observe scenes directly in 3D, the ray-marcher may be left out completely, and
φ may be sampled directly.

Probabilistic formulation. An interesting avenue of future work is to extend SRNs to a probabilis-
tic model that can infer a probability distribution over feasible scenes consistent with a given set
of observations. In the following, we formulate one such approach, very similar to the formulation
of Kumar et al. [15], which is in turn based on the work of Eslami et al. [12]. Please note that this
formulation is not experimentally verified in the context of SRNs and is described here purely to
facilitate further research in this direction.

Formally, the model can be summarized as:
ri = M(Ii,Ei,Ki) (8)

r =
∑
i

ri (9)

z ∼ PΘ(z|r) (10)
φ = Ψ(z) (11)
I = Θ(Φφ,E,K) (12)

We assume that we are given a set of instance datasets D = {Cj}Mj=1, where each Cj consists of
tuples {(Ii,Ei,Ki)}Ni=1. For a single scene C with n observations, we first replicate and concatenate
the camera pose Ei and intrinsic parameters Ki of each observations to the image channels of the
corresponding 2D image Ii. Using a learned convolutional encoder M , we encode each of the n
observations to a code vector ri. These code vectors ri are then summed to form a permutation-
invariant representation of the scene r. Via an autoregressive DRAW model [16], we form a
probability distribution Pθ that is conditioned on the code vector r and sample latent variables z. z
is decoded into the parameters of a scene representation network, φ, via a hypernetwork Ψ(z) = φ.
Lastly, via our differentiable rendering function Θ, we can render images I from Φφ as described
in the main paper. This allows to train the full model end-to-end given only 2D images and their
camera parameters. We note that the resulting optimization problem is intractable and requires the
optimization of an evidence lower bound via an approximate posterior, which we do not derive here –
please refer to [15]. Similarly to [15], this formulation will lead to multi-view consistent renderings
of each scene, as the scene representation Φ stays constant across queries of Θ.

View- and lighting-dependent effects, translucency, and participating media. Another exciting
direction for future work is to model further aspects of realistic scenes. One such aspect is view-
and lighting dependent effects, such as specularities. For fixed lighting, the pixel generator could
receive as input the direction of the camera ray in world coordinates, and could thus reason about the
view-dependent color of a surface. To model simple lighting-dependent effects, the pixel generator
could further receive the light ray direction as an input (assuming no occlusions). Lastly, the proposed
formulation could also be extended to model multiple ray bounces in a ray-casting framework. To
model translucency and participating media, the ray-marcher could be extended to sum features along
a ray instead of only sampling a feature at the final intersection estimate.

Complex 3D scenes and compositionality. While SRNs can represent room-scale scenes (see
supplementary video), generalization across such complex, cluttered 3D environments is an open
problem. To the best of our knowledge, is has not yet been demonstrated that low-dimensional
embeddings are a feasible representation for photo-realistic, general 3D environments. Recent
work in meta-learning could enable generalization across scenes without the limitation to a highly
low-dimensional manifold [17].
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