
A GAN and WGAN

In this appendix section, we briefly introduce and discuss two instances of the distance metric d,
which lead to two widely-used GANs: the original GAN [Goodfellow et al., 2014], and the WGAN
[Arjovsky et al., 2017]. Note that in practice, often the value of d(P,Q) is not directly computable,
and its variational form is used instead.

A.1 GAN: Jensen-Shannon divergence

Goodfellow et al. [2014] introduced the first GAN framework using the Jensen-Shannon divergence:

d(Pr,P✓) := JS(Pr,P✓) =
�

KL(Pr k Pm) + KL(P✓ k Pm)
�
/2,

where Pm = (Pr + P✓)/2. The Jensen-Shannon divergence admits the following equivalent form:

JS(Pr,P✓) = sup
f : X![0,1]
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o
. (4)

GANs were originally motivated by expression (4), and its equivalence to the Jensen-Shannon
divergence was shown later on. Think of f in equation (4) as a “discriminator” trying to tell apart real
data from “fake” data generated by g✓ as follows: f gives higher scores to samples which it thinks are
real, and gives lower scores otherwise. Thus the maximization in (4) looks for the best discriminator
f . On the other hand, the generator g✓ tries to fool the discriminator f , such that f cannot tell the
difference between real and fake samples. Thus minimizing JS(Pr,P✓) over ✓ looks for the best
generator g✓. Dropping the constants in (4) and parametrizing the discriminator f with a family of
neural networks {fw : X ! [0, 1], w 2 W}, the original algorithm of training GAN Goodfellow
et al. [2014] considers the following min-max optimization problem:
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. (5)

The generator and the discriminator (g✓, fw) are trained via stochastic gradient descent/ascent on
objective (5) with respect to ✓ and w iteratively, using the empirical distributions bPr and bP✓ induced
by the batch of samples at each step.
Remark 1. When minimizing ✓, one can drop the first term in (5) since it does not depend on ✓. Thus,

for a fixed w, the minimizing step of ✓ is equivalent to min✓ Ex⇠P✓

⇥
log(1� fw(x))

⇤
. Goodfellow

et al. [2014] suggested using maximization instead of minimization to speed up training for ✓. That

is, the training of GAN iterates between
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A.2 WGAN: Wasserstein Distance

Instead of minimizing JS(Pr,P✓), Arjovsky et al. [2017] proposed to use the Wasserstein distance:

d(Pr,P✓) := W (Pr,P✓) = inf
�2⇧(Pr,P✓)

n
E

(x,y)⇠�
kx� yk

o
,

where ⇧(Pr,P✓) = {�(x, y) :
R
y �(x, y)dy = Pr(x),

R
x �(x, y)dx = P✓(y)} denotes the set of

joint distributions whose marginals are Pr and P✓, respectively. By the Kantorovich-Rubinstein
duality [Villani, 2008], Wasserstein distance can also be written as

W (Pr,P✓) = sup
kfkL1
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⇤o
, (6)

where the supremum is taken over all 1-Lipschitz functions with respect to the metric k·k that defines
W (Pr,P✓). Again, we can view f as the discriminator, which aims to maximizes the difference
between its expected values on the real data and that on the fake data. In practice, Arjovsky et al.
[2017] set f to be a neural networks whose parameters w are limited within a compact set W , thus
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{fw : w 2W} is a set of K-Lipschitz functions for some constant K. Thus, the WGAN (Wasserstein
GAN) considered the following min-max optimization problem:

min
✓2⇥

max
w2W

n
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x⇠Pr
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fw(x)
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� E

x⇠P✓
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fw(x)

⇤o
. (7)

The training procedure of WGANs is similar to that of GANs [Goodfellow et al., 2014], where one
optimizes objective (7) using mini-batches with respect to ✓ and w iteratively.

Arjovsky et al. [2017] showed that the JS divergence of GAN is potentially not continuous with
respect to generator’s parameter ✓. On the other hand, under mild conditions, W (Pr,P✓) is continuous
everywhere and differentiable almost everywhere with respect to ✓, making it easier to train WGAN.

When training WGAN with (7), one need to clip the weights w to ensure that w 2W . More recently,
Gulrajani et al. [2017] found that weight clipping can lead to undesired behavior, such as capacity
underuse, and exploding or vanishing gradients. In view of this, they proposed to add a gradient
penalty to the objective of WGAN, as an alternative to weight clipping:
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,

where Pl indicates the uniform distribution along straight lines between pairs of points in Sr and S✓.
The construction of Pl is motivated by the optimality conditions.

WGAN is closely related to DGAN. The definitions of Wasserstein distance (6) and discrepancy (1)
are syntactically the same, except that the former takes supremum over all 1-Lipschitz functions,
while the latter takes supremum over `H =

�
`
�
h(x), h0(x)

�
: h, h0 2 H

 
, a set that depends on

the loss and hypothesis set. Thus, Wasserstein distance can be viewed as discrepancy without the
hypothesis set and the loss function, which is one reason it cannot benefit from theoretical guarantees.

B Proofs

Theorem 1. Assume the true labeling function f : X ! Y is contained in the hypothesis set H.

Then, for any hypothesis h 2 H,
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Theorem 2. Assume that H = {h : X ! Y} is a family of µ-Lipschitz functions, and the loss

function ` is continuous and symmetric in its arguments, and bounded by M . Furthermore, ` admits

the triangle inequality, or it can be written as `(y, y0) = f(|y � y
0
|) for some Lipschitz function f .

Assume that g✓ : Z ! X is continuous in ✓. Then, discH,`(Pr,P✓) is continuous in ✓.

Proof. We first consider the case where ` admits triangle inequality. We will show that
discH,`(P✓,P✓0)! 0 as ✓ ! ✓
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where we used the triangle inequality and symmetry of `, such that 8a, b, c, d 2 Y ,
|`(a, b)� `(c, d)|  `(a, c) + `(b, d).

Thus,
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Since 8h 2 H is L-Lipschitz, for any x0 2 X ,
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converges uniformly over h 2 H. Furthermore, g✓ is continuous in ✓, it follows that for any fixed
z 2 Z ,

lim
✓!✓0

sup
h2H

`

⇣
h
�
g✓(z)

�
, h
�
g✓0(z)

�⌘
= 0,

thus converges point-wise as functions of z. Since `  M is bounded, by bounded convergence
theorem, we have
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Now we consider the case where `(a, b) = f(|a�b|), and f is a q-Lipschitz function: |f(x)�f(x0)| 
q|x� x

0
|. By definition,

discH,`(P✓,P✓0) = sup
h,h02H

���� E
z⇠Pz

h
`

⇣
h
�
g✓(z)

�
, h
0
�
g✓(z)

�⌘
� `

⇣
h
�
g✓0(z)

�
, h
0
�
g✓0(z)

�⌘i����

 sup
h,h02H

E
z⇠Pz

����`
⇣
h
�
g✓(z)

�
, h
0
�
g✓(z)

�⌘
� `

⇣
h
�
g✓0(z)

�
, h
0
�
g✓0(z)

�⌘����

= sup
h,h02H

E
z⇠Pz

����f
⇣��h

�
g✓(z)

�
� h

0
�
g✓(z)

���
⌘
� f

⇣��h
�
g✓0(z)

�
� h

0
�
g✓0(z)

���
⌘����

 q sup
h,h02H

E
z⇠Pz

����
���h
�
g✓(z)

�
� h

0
�
g✓(z)

�����
���h
�
g✓0(z)

�
� h

0
�
g✓0(z)

����
����

 q sup
h,h02H

E
z⇠Pz

����h
�
g✓(z)

�
� h

�
g✓0(z)

�
� h

0
�
g✓(z)

�
+ h

0
�
g✓0(z)

�����

 q sup
h,h02H

E
z⇠Pz

���h
�
g✓(z)

�
� h

�
g✓0(z)

����+
���h0

�
g✓(z)

�
� h

0
�
g✓0(z)

����
�

= 2q sup
h2H

E
z⇠Pz

���h
�
g✓(z)

�
� h

�
g✓0(z)

����

 2q E
z⇠Pz

sup
h2H

���h
�
g✓(z)

�
� h

�
g✓0(z)

����.

15



Then, by the same argument above,
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Finally, by the triangle inequality of discH,`, discH,`(Pr,P✓)� discH,`(Pr,P✓0)  discH,`(P✓,P✓0),
which completes the proof.

Theorem 3. Assume the loss is bounded, ` M . For any � > 0, with probability at least 1� � over

the drawn of Sr and S✓,
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⇣q

log(4/�)
2m +

q
log(4/�)

2n

⌘
.

Furthermore, when the loss function `(h, h0) is a q-Lipschitz function of h� h
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Proof. By triangle inequality of discH,`(·, ·),
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We first apply concentration inequality to the scaled loss `H/M :
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For the empirical Radmacher complexity, we have bRcH = cbRH. Thus, we have
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When the loss function `(h, h0) is a q-Lipschitz function of the difference of its two arguments, i.e.
`(a, b) = f(a� b), and f(·) is a q-Lipschitz function, the mapping of H H! `H is q-Lipschitz,
where H  H is defined as H  H = {h � h

0 : h, h0 2 H}. By Talagrand’s contraction lemma,
bR`H  2qRH H. Finally, by definition we have bRH H  2bRH. Putting everything together, when
the loss function `(h, h0) is a q-Lipschitz function of h� h
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Theorem 5. For any � > 0, with probability at least 1� � over the draw of samples,
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Proof. We first extend Theorem 3 to the case of GAN ensembles:
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For the first term,

discH,`(P↵,
bP↵)

 sup
h,h02H

���
pX

k=1

↵k

n
E

x⇠Pk

⇥
`
�
h(x), h0(x)

�⇤
� E

x⇠bPk

⇥
`
�
h(x), h0(x)

�⇤o���

 sup
h,h02H

pX

k=1

↵k

��� E
x⇠Pk

⇥
`
�
h(x), h0(x)

�⇤
� E

x⇠bPk

⇥
`
�
h(x), h0(x)

�⇤���



pX

k=1

↵k sup
h,h02H

��� E
x⇠Pk

⇥
`
�
h(x), h0(x)

�⇤
� E

x⇠bPk

⇥
`
�
h(x), h0(x)

�⇤���

=
pX

k=1

↵k discH,`(Pk,
bPk).

By concentration argument, with probability at least 1� � over the drawn of samples,
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Putting everything together, with probability at least 1� �, for any ↵ 2 �,
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By definition,
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Similarly,
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Proposition 4. When ` is the squared loss and H the family of linear functions with norm bounded
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C More Experiments

C.1 EDGAN: Toy datasets

In this section, we provide more results on mixing the 10 GANs generated by AdaGAN. Recall that
we are comparing the following methods:

• The baseline GAN algorithm, namely GAN1.
• The AdaGAN algorithm, ensembles of the first 5 GANs, namely Ada5.
• The AdaGAN algorithm, ensembles of the first 10 GANs, namely Ada10.
• The EDGAN algorithm, ensembles of the first 5 GANs, namely EDGAN5.
• The EDGAN algorithm, ensembles of the first 10 GANs, namely EDGAN10.

We considered two ways of computing average sample log-likelihood and used them as performance
metrics: the likelihood of the generated data under the true distribution L(S✓), and the likelihood of
the true data under the generated distribution L(Sr). To be more concrete,

L(S✓) = LPr (S✓) =
1

N

X

xi2S✓

log
�
Pr(xi)

�
, L(Sr) = LP✓ (Sr) =

1

N

X

xi2Sr

log
�
P✓(xi)

�
.

We used kernel density estimation with cross-validated bandwidth to approximate the density of both
P✓ and Pr.

Figure 7 displayed the true distribution (in red) and the generated distribution under various ensembles
of GANs. EDGAN5 and EDGAN10 improve the generated distribution over Ada5 and Ada10,
respectively.

Table 4 showed the average log-likelihoods over 10 repetitions, with standard deviations in parenthe-
ses, where a higher log-likelihood indicates better performance. We can see that for both metrics,
networks ensembles EDGAN5 and EDGAN10 by EDGAN outperformed AdaGAN with the same
number of base networks.

C.2 EDGAN: CIFAR10

In this section, we provide the mixture weights of each ensemble when learning EDGAN on CIFAR10
generators, as described in Section 4.2. The data is provided in Table 5. Only in one instance a
significant amount of the weight is allocated to one model.
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(a) Pr (b) Ada5 (c) Ada10

(d) GAN1 (e) EDGAN5 (f) EDGAN10

Figure 7: The true (red) and the generated (blue) distributions, using various ensembles of 10 GANs.

Table 4: Likelihood-based metrics of various ensembles of 10 GANs.

L(Sr) L(S✓)

GAN1 -12.39 (± 2.12) -796.05 (± 12.48)
Ada5 -5.02 (± 0.11) -296.45 (± 15.24)
Ada10 -4.33 (± 0.30) -266.60 (± 24.91)

EDGAN5 -4.85 (± 0.16) -172.52 (± 17.56)
EDGAN10 -3.99 (± 0.20) -148.97 (± 14.13)

Table 5: The mixture weights of each ensemble.

GAN1 GAN2 GAN3 GAN4 GAN5

InceptionLogits 0.0007 0.4722 0.5252 0.0009 0.0009
InceptionPool 0.0042 0.7504 0.0139 0.0102 0.2213
MobileNet 0.0008 0.3718 0.3654 0.2416 0.0205
PNasNet 0.3325 0.0087 0.1400 0.5142 0.0044
NasNet 0.2527 0.7431 0.0021 0.0012 0.0009
AmoebaNet 0.9955 0.0005 0.0008 0.0026 0.0006

C.3 Addition DGAN experimental details

All experiments for DGAN used Adam. On MNIST, we trained for 200 epochs at batch size 32 with
learning rates of 3⇥10�5 for the generator and 1⇥10�5 for discriminator. For CIFAR10 and CIFAR
100, we trained for 256 epochs at batch size 32 with learning rates of 3⇥ 10�5 for the generator and
1⇥ 10�5 for discriminator. For CelebA, larger batch sizes and learning rates were necessary: batch
size 256 and learning rates of 2⇥ 10�4 for the generator and 5⇥ 10�4 for discriminator.

D Domain Adaptation

We first introduce additional notation for the domain adaptation task. Let Ds and Dt denote the
source and target distribution over X ⇥ Y , and let bDs and bDt denote the empirical distribution
induced by samples drawn according to Ds and Dt, respectively. For any distribution D, denote by
DX its marginal distribution on the input space X . Finally, for any marginal distribution DX and
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Table 6: DGAN architectures based on Miyato et al. [2018]. Let b be the batch size, (h,w, c) be
the shape of an input image, f be the width of the discriminator’s output embedding, and g = 4 for
CIFAR and g = 16 for CelebA. The italicized layers in the discriminators are skipped for CIFAR
(resulting in a shallower model), but are included for CelebA.

Discriminator

Images x 2 Rb⇥h⇥w⇥c

3⇥ 3, stride 1, conv. 64, BN, ReLU
4⇥ 4, stride 2, conv. 64, BN, ReLU

3⇥ 3, stride 1, conv. 128, BN, ReLU
4⇥ 4, stride 2, conv. 128, BN, ReLU

3⇥3, stride 1, conv. 256, BN, ReLU

4⇥4, stride 2, conv. 256, BN, ReLU

3⇥ 3, stride 1, conv. 512, BN, ReLU

dense! Rb⇥f

Generator

noise z 2 Rb⇥128

dense! g
2
⇥ 512

4⇥ 4, stride 2, deconv. 256, BN, ReLU

4⇥ 4, stride 2, deconv. 128, BN, ReLU

4⇥ 4, stride 2, deconv. 64, BN, ReLU

3⇥ 3, stride 1, conv. 3, Tanh

a feature mapping M : X ! Z that maps input space X to some feature space Z , we denote by
M(DX ) the distribution of M(x) where x ⇠ DX .

D.1 Adversarial Discriminative Domain Adaptation (ADDA)

Tzeng et al. [2017] considered a domain adaptation framework, Adversarial Discriminative Domain
Adaptation (ADDA), which has a very similar motivation to GANs. Given a pre-trained source
domain feature mapping Ms, ADDA simultaneously optimizes a target domain feature mapping Mt

and an adversarial discriminator, such that the best discriminator cannot tell apart the mapped features
from source and target domain. At test time, ADDA applies the classifier trained on source feature
mapping and labels to the learned target feature mapping, to predict target label. Take the multi-class
classification task for example, the ADDA consists of three stages:

1. Pre-training. Given labeled samples (Xs, Ys) from source domain, learn a source feature
mapping Ms and a classifier C under cross-entropy loss:

min
Ms,C

n
� E

(xs,ys)⇠(Xs,Ys)

KX

k=1

1k=ys logC(Ms(xs))
o
,

where K is the number of label classes.
2. Adversarial adaptation. Given pre-trained source feature mapping Ms and unlabeled samples

Xt from target domain, jointly learn a discriminator D and a target feature mapping Mt:

min
D

n
� E

xs⇠Xs

⇥
logD(Ms(xs))

⇤
� E

xt⇠Xt

⇥
log(1�D(Mt(xt)))

⇤o
, (Learn D)

min
Mt

n
� E

xt⇠Xt

⇥
logD(Mt(xt))

⇤o
. (Learn Mt)

3. Testing. Predict label for target data based on C(Mt(xt)).

Note that the second stage (adversarial adaptation) is very similar to the GAN framework, where
the discriminator has the same functionality, and the generator is now mapping from the target data,
instead of from a random latent variable, to a desired feature space.

The key idea of ADDA is very similar to GAN: the adversarial training step is in fact minimizing
the Jensen-Shannon divergence between the mapped source distribution and the mapped target
distribution:

min
Mt

JS
⇣
Ms(D

X

s ),Mt(D
X

t )
⌘
.

Since discrepancy is originally designed for domain adaptation, it is natural to use discrepancy as the
distance metric, instead of the Jensen-Shannon divergence, in this ADDA framework. We give more
details below.
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D.2 DGAN for Domain Adaptation

The procedure of ADDA with discrepancy is very similar to the original ADDA, which is described
below.

1. Pre-training. Given labeled samples from source domain, or equivalently an empirical
distribution bDs, learn a source feature mapping Ms and a classifier bhs 2 H:

Ms,
bhs = argmin

M,h

n
E

(x,y)⇠bDs

h
`

⇣
h(M(x)), y

⌘io

2. Adversarial adaptation. Given pre-trained source feature mapping Ms and unlabeled samples
from target domain (or equivalently, bDX

t ), learn a target feature mapping Mt, such that the
distribution of Ms(bDX

s ) and Mt(bDX

t ) are small under discrepancy:

Mt = argmin
M

n
discH,`

⇣
Ms(bDX

s ),M(bDX

t )
⌘o

= argmin
M

n
sup

h,h02H

��� E
z⇠Ms(bDX

s )

h
`

⇣
h(z), h0(z)

⌘i
� E

z⇠M(bDX

t )

h
`

⇣
h(z), h0(z)

⌘i���
o
.

(9)

3. Testing. Predict label for target data using bhs(Mt(·)).

Suppose the target mapping Mt is parameterized by and continuous in ✓. Then, under the same
assumptions of Theorem 2, the objective function in (9) is continuous in ✓.

To analyze the adaptation performance, for the fixed mapping Ms and Mt, we define the risk
minimizers h⇤s and h

⇤

t :

h
⇤

s = argmin
h2H

E
(x,y)⇠Ds

h
`

⇣
h(Ms(x)), y

⌘i
, h

⇤

t = argmin
h2H

E
(x,y)⇠Dt

h
`

⇣
h(Mt(x)), y

⌘i
.

We have the following learning guarantees for ADDA with discrepancy.
Theorem 7. Assume the loss function `(·, ·) is symmetric and obeys triangle inequality. Then,

E
(x,y)⇠Dt

h
`

⇣
bhs(Mt(x)), y

⌘i

 E
x⇠DX

s

h
`

⇣
bhs(Ms(x)), h

⇤

s(Ms(x))
⌘i

+ discH,`

⇣
Mt(D

X

t ),Ms(D
X

s )
⌘

+ E
x⇠DX

t

h
`

⇣
h
⇤

s(Mt(x)), h
⇤

t (Mt(x))
⌘i

+ E
(x,y)⇠Dt

h
`

⇣
h
⇤

t (Mt(x)), y
⌘i

.

Proof. By triangle inequality of `, we have

E
(x,y)⇠Dt

h
`

⇣
bhs(Mt(x)), y

⌘i

 E
(x,y)⇠Dt

h
`

⇣
bhs(Mt(x)), h

⇤

s(Mt(x))
⌘i

+ E
(x,y)⇠Dt

h
`

⇣
h
⇤

s(Mt(x)), h
⇤

t (Mt(x))
⌘i

+ E
(x,y)⇠Dt

h
`

⇣
h
⇤

t (Mt(x)), y
⌘i

 E
x⇠DX

s

h
`

⇣
bhs(Ms(x)), h

⇤

s(Ms(x))
⌘i

+ discH,`

⇣
Mt(D

X

t ),Ms(D
X

s )
⌘

+ E
x⇠DX

t

h
`

⇣
h
⇤

s(Mt(x)), h
⇤

t (Mt(x))
⌘i

+ E
(x,y)⇠Dt

h
`

⇣
h
⇤

t (Mt(x)), y
⌘i

Let us examine each item in Theorem 7:
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• The first term is the estimation error of bhs, which should be small when a large set of source
data is available.

• The second term is the true discrepancy between Mt(DX

t ) and Ms(DX

s ). According to
Theorem 3, it can be accuracy estimated by its empirical counterparts, which is minimized
during the training step (Equation (9)).

• The third term depends on how different h⇤s and h
⇤

t are, and it is essentially determined by
how difficult the adaption problem is.

• The last term is the minimal error achievable by H with feature mapping Mt on the target
domain. When H is a complex family of hypothesis, such as neural networks, this term can
be viewed as a lower bound of the adaptation performance, and it is determined by how
difficult the learning problem on the target domain is.

Therefore, the only term we have control over is the discrepancy term, and thus by minimizing the
discrepancy during training, we are reducing the upper bound on the adaptation performance. This
validates the use of discrepancy in ADDA.

E Connection Between DGAN and Maxent

Both DGAN and maximum entropy (Maxent) are methods for density estimation. In this section we
show that Maxent is a regularized version of DGAN.

Let � denote the simplex of all probability distributions over X , and let � : X ! Rd be the
feature mapping. The maximum entropy (Maxent) model for density estimation solves the following
optimization problem:

max
P2�

H(P), s.t.
��� E

x⇠P
[�(x)]� E

x⇠bPr

[�(x)]
���
1

 �,

where � = (f1, f2, . . . , fn), and F = {fi, i 2 [n]} is the set of feature functions, fi : X ! R. Note
that maxP2� H(P) is equivalent to maxP2� KL(P k bPr).

To see the connection between Maxent and DGAN, we can set F = {`h,h0 : `h,h0(x) =
`(h(x), h0(x)), h, h0 2 H}, where H is the hypothesis set that defines the discrepancy discH,`.
Then the Maxent optimization problem becomes

max
P2�

KL(P k bPr), s.t. max
h,h02H

��� E
x⇠P

⇥
`
�
h(x), h0(x)

�⇤
� E

x⇠bPr

⇥
`
�
h(x), h0(x)

�⇤���  �. (10)

In fact, we can write the dual problem of (10) as

min
P2�

�KL(P k bPr) + ↵

⇢
max

h,h02H

��� E
x⇠P

⇥
`
�
h(x), h0(x)

�⇤
� E

x⇠bPr

⇥
`
�
h(x), h0(x)

�⇤���
�
, (11)

where ↵ � 0 is the Lagrange multiplier.

Recall that DGAN solves the following optimization problem:

min
P2{P✓:✓2⇥}

max
h,h02H

��� E
x⇠P

⇥
`
�
h(x), h0(x)]

�
� E

x⇠bPr

⇥
`
�
h(x), h0(x)

����, (12)

where {P✓ : ✓ 2 ⇥} is a parametric family of distribution, {P✓ : ✓ 2 ⇥} ✓ �. Thus, the dual
problem of Maxent (11) can be viewed as DGAN (12), plus a regularization term in the form of KL
divergence KL(P k bPr).

However, to use (11) under the DGAN framework, P is optimized over the special parametric family
of distributions {P✓ : ✓ 2 ⇥}. The probability density of P✓(x) at any x 2 X is unavailable,
and thus we cannot directly compute the KL divergence KL(P✓ k

bPr). One option is to use the
Donsker-Varadhan [Donsker and Varadhan, 1975] representation:

KL(P✓ k
bPr) = sup

f : X!R
E

x⇠P✓

[f(x)]� log
⇣

E
x⇠bPr

[ef(x)]
⌘
.
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Putting everything together, we get the regularized DGAN formulation that is motivated by the
Maxent model: for some ↵ > 0,

min
✓

⇢
inf

f : X!R
log

⇣
E

x⇠bPr

[ef(x)]� E
x⇠P✓

[f(x)]
⌘�

+ ↵

⇢
max

h,h02H

��� E
x⇠P

⇥
`
�
h(x), h0(x)

�⇤
� E

x⇠bPr

⇥
`
�
h(x), h0(x)

�⇤���
�
. (13)
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