
A Omitted proofs from Section 3358

In Section 3, we stated Lemma 9 and proved the first part of it (a moment bound for the determinant).359

Here, we provide the proof of the second part (a moment bound for the adjugate).360
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Proof Let �max and �min denote the largest and smallest eigenvalue of adj(A). We have364
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We will now bound the two probabilities. Let �max and �min denote the largest and smallest eigenvalue365

of matrix A� I. Recall the following concentration bounds implied by Lemma 8 (see the first part of366

the proof of Lemma 9):367
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From the formula adj(A) = det(A)A�1 it follows that �max  det(A)
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For x � ed � 1, since �max  (1 + �max)d  e
d�max and ln(1 + x) � d, we have:369
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Next, we use the fact that for � = max
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we have:370
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so for x 2 [⌘, 1] we have:371
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Putting everything together we obtain that:372
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which completes the proof.373

374

As a consequence of the moment bounds shown in Lemma 9, we establish convergence with high375

probability for the average of determinants and the adjugates. For the adjugate matrix, we require a376

matrix variant of the Khintchine/Rosenthal inequalities.377

Lemma 12 ([GCT12]) Suppose that p � 2 and r = max{p, 2 log d}.2 Consider a finite sequence378

{Xi} of independent, symmetrically random, self-adjoint matrices with dimension d⇥ d. Then,379
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Corollary 13 (Corollary 10 restated) There is C > 0 s.t. for A as in Lemma 9 with all Zi rank-1380
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where A1, . . . ,Am are independent copies of A.382

Proof Applying Lemma 9 to the matrix A, for appropriate C and any fixed p � 2, if � � C✏d�
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Applying Lemma 12 to the matrices Xt =
1
mYt, where Yt = rt

�
adj(At)� I

�
, we obtain that:387
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for p � 2 log d and C
0 chosen appropriately. Now Markov’s inequality yields:388
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Setting ↵= ⌘p
m

, �= ⌘
4C0p and p = 2 dmax{log d, log 1

� }e, the above bound becomes ( 12 )
p  � for389

k � C
00
µd

2
⌘
�2(log3 1

� + log3d). Showing the analogous result for the average of determinants of390

matrices At instead of the adjugates follows identically, except that Lemma 12 can be replaced with391

the standard scalar Rosenthal’s inequality.392

393

2In [GCT12] it is assumed that d � 3, however this assumption is not used anywhere in the proof.
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B Proof of Newton convergence394

Here, we provide a proof of Corollary 6, which describes the convergence guarantees for the395

approximate Newton step obtained via determinantal averaging. It suffices to show the following396

lemma.397

Lemma 14 Let loss L be defined as in (1) and assume its Hessian is L-Lipschitz (Assumption 5). If398

��bp� p
⇤��
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 ↵ kp⇤kr2L(w), where p

⇤ = r�2L(w)rL(w),

then the approximate Newton step ew = w � bp satisfies:399
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o
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L(w),

where  and �min are the conditioning number and smallest eiganvalue of r2L(w), respectively.400

Proof The lemma essentially follows via the standard analysis of the Newton’s method. For the401

sake of completeness we will outline the proof following [WRXM17]. Denoting H = r2L(w) and402

g = rL(w), we define the auxiliary function403
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We invoke the classical result in local convergence analysis of Newton’s method [NW06], using the405

statement of Lemma 9 in [WRXM17].406

Lemma 15 ([WRXM17]) Assume Hessian is L-Lipschitz and that bp satisfies �(bp)  (1 �407

↵
2) minp �(p). Then ew = w � bp satisfies408
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Lemma 15 immediately implies that one of the following two inequalities hold:409
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which proves Lemma 14.410

Note that Corollary 6 follows immediately by combining Corollary 4 with Lemma 14.411
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Figure 2: Comparison of the estimation error between determinantal and uniform averaging on four
libsvm datasets.

C Experiments412

In this section, we experimentally evaluate the estimation error of determinantal averaging for the413

Newton’s method (following the setup of Section 1.1), and we compare it against uniform averaging414

[WRXM17]. We use square loss `i(w>
xi) = (w>

xi � yi)2, where yi are the real-valued labels for415

a regression problem, and we run the experiments on several benchmark regression datasets from416

the libsvm repository [CL11]. In this setting, the local Newton estimate computed from the starting417

vector w = 0 is given by:418

bp =

✓
1

k

nX

i=1

bixix
>
i + �I

◆�1 1

n

nX

i=1

yixi, where bi ⇠ Bernoulli(k/n).

In all of our experiments we set the regularization parameter to � = 1
n . Let bp1, . . . , bpm

i.i.d.⇠ bp be419

m distributed local estimates and denote bHt as the tth local Hessian estimate. The two averaging420

strategies we compare are:421

determinantal: bpdet =

Pm
t=1 det(

bHt) bptPm
t=1 det(

bHt)
, uniform: bpuni =

1

m

mX

t=1

bpt.

Figure 2 plots the estimation errors kbpdet �p
⇤k and kbpuni �p

⇤k, where p⇤ is the exact Newton step422

starting from w = 0, for datasets ABALONE, CPUSMALL, MG3 and CADATA [CL11] (for convenience,423

the plot from Figure 1 in Section 1.1 is repeated here). The reported results are averaged over 100424

trials, with shading representing standard error. We consistently observe that for a small number425

of machines m both methods effectively reduce the estimation error, however after a certain point426

uniform averaging converges to a biased estimate and the estimation error flattens out. On the other427

hand, determinantal averaging continues to converge to the optimum as the number of machines428

keeps growing. We remark that for some datasets determinantal averaging exhibits larger variance429

than uniform averaging, especially when local sample size is small. Reducing that variance, for430

example through some form of additional regularization, is a new direction for future work.431

3We expanded features to all degree 2 monomials, and removed redundant ones.

14


